
Online Point Cloud Object Recognition System using Local Descriptors
for Real-time Applications

Yacine Yaddaden1,2, Sylvie Daniel1,3 and Denis Laurendeau1,2
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Abstract: In the context of vehicle localization based on point cloud data collected using LiDAR sensors, several 3D
descriptors might be employed to highlight the relevant information about the vehicle’s environment. However,
it is still a challenging task to assess which one is the more suitable with respect to the constraint of real-time
processing. In this paper, we propose a system based on classical machine learning techniques and performing
recognition from point cloud data after applying several preprocessing steps. We compare the performance of
two distinct state-of-the-art local 3D descriptors namely Unique Shape Context and Signature of Histograms of
Orientation when combined with online learning algorithms. The proposed system also includes two distinct
modes namely normal and cluster to deal with the point cloud data size and for which performances are
evaluated. In order to measure the performance of the proposed system, we used a benchmark RGB-D object
dataset from which we randomly selected three stratified subsets. The obtained results are promising and
suggesting further experimentation involving real data collected from LiDAR sensors on vehicles.

1 INTRODUCTION

During the last decades, we have witnessed the emer-
gence of new acquisition devices and sensors which
allow to capture more reliable and relevant informa-
tion. Indeed, new camera models (such as the Mi-
crosoft Kinect) and wide range sensors are employed
to capture depth information. Moreover, these sensors
are becoming more affordable which leads to create
new fields of application. One of the most interest-
ing use of this kind of sensors remains autonomous
vehicle or self-driving car (Lee et al., 2016). Several
systems have been proposed aiming to exploit the po-
tential of depth information in order to avoid obstacles
or for localization (Wolcott and Eustice, 2014).

The main aim of this work lies in developing an ef-
ficient recognition system from point cloud data that
will be used in the context of driving assistance and,
more precisely, for localization in real-time. In this
paper, we present a comparison in terms of perfor-
mance of the proposed system when using different

techniques in the processing blocks. Indeed, we com-
pare two distinct local 3D descriptors namely USC
and SHOT (including the color version SHOT-rgb)
for data representation. We also compare two oper-
ating modes, namely normal and cluster, in order to
deal with variable size of the point cloud. However,
the most important improvement in comparison to tra-
ditional systems lies in the use of incremental or on-
line versions of the learning algorithms. They allow
to tackle the memory issue caused by processing huge
amounts of data. In order to evaluate the performance
of the proposed system, we use a common and pub-
licly available benchmark RGB-D dataset (Lai et al.,
2011).

The remainder of the paper is structured as fol-
lows. In section 2, we present basic notions about
recognition systems from point cloud data. Section 3
details each component of the proposed system. Sec-
tions 4 and 5 are dedicated to the description of the
experimental protocol for system evaluation with sev-
eral metrics and the discussion of the results. Finally,
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in section 6 concluding remarks and further works are
presented.

2 BACKGROUND

2.1 Fundamentals

Object recognition systems from point cloud data
consist of the same building blocks as those of com-
mon pattern recognition system. Indeed, they include
an input which is fed by raw point cloud data and an
output which represents the label of the recognized
object. Between them, there are several processing
blocks, some of which are mandatory and other op-
tional. The preprocessing block aims to prepare and
clean up the input point cloud data before the fea-
ture extraction step. This building block is critical
since it aims to generate an efficient and robust rep-
resentation using either handcrafted descriptors (Guo
et al., 2016) or new deep learning techniques (Zaki
et al., 2016) and (Schwarz et al., 2015). In order to
reduce the size of the generated representation to op-
timize the computation time, dimension reduction is
employed to highlight discriminant information while
getting rid of the redundant one. Finally, the clas-
sification block exploits a supervised machine learn-
ing technique to perform recognition (Maturana and
Scherer, 2015).

Working with point cloud data and depth infor-
mation is not new. In fact, several 3D descriptors
have already been proposed in order to provide a re-
liable representation from raw data. Moreover, nu-
merous works have been conducted in order to pro-
vide an accurate comparison in terms of performance
of state-of-the-art and most common 3D descriptors
(Guo et al., 2016), (Hana et al., 2018) and (Car-
valho and von Wangenheim, 2019). We distinguish
three different categories of descriptors: 1) local de-
scriptors which encode the local geometric informa-
tion at each point based on its neighbors, 2) global
features (do Monte Lima and Teichrieb, 2016) that
highlight the geometric information of the whole 3D
point cloud, 3) hybrid descriptors (Alhamzi et al.,
2015) which combine and group the essential infor-
mation provided by both previous representations in
the sake of performance improvement. Each one has
its strengths and limitations. Indeed, local descriptors
are more robust and less sensitive to partial occlusion,
but remain computationally inefficient in comparison
to global ones. The computational inefficiency of lo-
cal descriptors lies in the huge size of the extracted
representation. However, it is possible to get rid of

this flaw by reducing the size of the generated repre-
sentation by applying dimension reduction.

It is important to highlight the fact that depending
on the field of application, the point cloud size might
vary. Indeed, when using point cloud data collected
with LiDAR sensors in the context of localization,
the amount of data is too large to be processed in one
shot. Usually, in order to deal with this type of sit-
uation, the point cloud is partitioned using dedicated
techniques, then each segment is processed individu-
ally. However, in the case of small object recognition,
the partitioning step is not required.

As mentioned above, several descriptors can be
used in order to generate a relevant representation
from point cloud data and choosing the most ade-
quate one is tough since it depends on the context.
In our case, details are important and contribute to
improve the discrimination capability of the devel-
oped system when performing localization. Thus, the
choice of local 3D descriptors seems adequate. The
hybrid ones might also do the job, but in the context
of real-time application, reducing the amount of com-
putation is mandatory and combining two descriptors
does not help. Among all the existing local 3D de-
scriptors, we chose USC for its capability to decrease
memory requirement while improving accuracy (Guo
et al., 2014). As for our primary choice, we chose
SHOT and its color version SHOT-rgb since it is
highly descriptive, computationally efficient and ro-
bust to noise (Guo et al., 2014), (Alexandre, 2012)
and (Hana et al., 2018).

USC stands for Unique Shape Context and con-
sists in a local 3D descriptor proposed by (Tombari
et al., 2010). USC is an improvement and optimiza-
tion of the 3DSC (Frome et al., 2004) aiming to re-
duce the computational load. In order to generate
this representation, the first step consists in construct-
ing a LRF (Local Reference Frame) before aligning
the neighboring points to ensure invariance to trans-
lations and rotations. As shown in Figure 1a, the
neighborhood of the keypoint from which is extracted
the descriptor is divided into several bins. The final
histogram is computed by accumulating the weighted
sum of the points in each bin.

SHOT or Signature of Histograms of OrienTation
is also a local 3D descriptor introduced by (Salti et al.,
2014). It is one of the most effective 3D features in
terms of descriptiveness and computational efficiency
(Hana et al., 2018). Just like the USC descriptor, the
first step consists in the construction of a LRF and
aligning the neighboring points. As shown in Fig-
ure 1b, the sphere around the keypoint is divided into
several volumes along the azimuth, radial and eleva-
tion axes. Then, for each volume, a local histogram is
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(a) 3DSC descriptor. (b) SHOT descriptor.

Figure 1: The local 3D descriptor representations.

computed by counting the points into bins according
to the angles between the normals at the neighboring
points inside the volume and the normal at the key-
point. The last step consists in concatenating all the
local histograms.

One of the common issues when working with
point cloud data lies in the huge number of points to
process. In order to deal with this situation, keypoints
selection has to be included in the system’s building
blocks in order to reduce the size of the input data
and at the same time improving computer efficiency.
Basically, it consists in selecting a certain amount of
points from the initial point cloud using a specific
technique. Then, instead of generating the represen-
tation from a large point cloud, the operation is per-
formed on a smaller one. Several techniques exist
and might be employed, (Filipe and Alexandre, 2014)
presented an accurate comparison in terms of perfor-
mance. Among the different existing techniques we
find: Harris3D, SUSAN, SIFT3D and ISS3D, the
best performance being achieved by the two latter
techniques. However, the presented list is not exhaus-
tive and several other techniques might be used.

2.2 Related Works

As discussed previously, there are several building
blocks for object recognition systems applied to point
cloud data. Besides, we distinguish two categories
of pipelines. The traditional one is based on hand-
crafted representation and classic learning techniques
for recognition. (Chen et al., 2018) have employed
several local 3D descriptors, among which figure the
USC and SHOT, in order to perform construction ob-
ject recognition. Moreover, they used matching learn-
ing techniques for recognition. (Cop et al., 2018)
proposed a new system called DELIGHT that al-
lows a robot to estimate its position based on Li-
DAR data and using the SHOT descriptor. Simi-
larly, (Guo et al., 2019) proposed a localization sys-
tem in the context of mobile robotics using a new lo-
cal 3D descriptor ISHOT (Intensity SHOT). It yields
the best performances when compared with other 3D

descriptors. (Garstka. and Peters., 2016) have com-
pared the performance of several local 3D descrip-
tors for object recognition using the same pipeline de-
scribed above. In the context of object manipulation
by robots, (Costanzo. et al., 2018) proposed a hybrid
and real-time object recognition system.

The second category of pipeline consists in using
deep learning techniques which offer better recog-
nition rates but requires high performance computa-
tional hardware. (Zaki et al., 2016) and (Schwarz
et al., 2015) have introduced systems based on CNN
(Convolutional Neural Network) architectures. (Guo
et al., 2020) also presented an interesting compari-
son of deep learning based systems in the context
of recognition from point cloud data. Among them
are the following architectures: PointNet++ (Qi et al.,
2017), VoxNet (Maturana and Scherer, 2015), etc.

To our knowledge, most of the existing methods
which allow processing point cloud data in the con-
text of object recognition or vehicle localization, have
as main focus the improvement of the accuracy. In our
case, we are more interested in enabling and improv-
ing the real-time capability of the proposed system.

3 PROPOSED SYSTEM

In this paper, we introduce a system allowing auto-
matic recognition of common everyday objects from
point cloud data. After validation, it is intended to
be used for assisting bus drivers by performing ac-
curate localization even under adverse climatic con-
ditions. As shown in Figure 2, the system includes
several processing blocks which we describe in this
section.

3.1 Preprocessing

The number of points per point cloud varies and since
we are working with local 3D descriptors, the size of
the generated representation varies as well. Moreover,
the some next processing blocks, namely dimension
reduction and classification require a constant feature
vector size. In order to deal with this issue, we pro-
pose two different operating modes called normal and
cluster.

In the normal mode, the system applies downsam-
pling which aims to reduce the size of the point cloud
data. Basically, the employed technique creates a 3D
voxel grid. Then, in each voxel, all the points present
will be approximated with their centroid. In the con-
text of the object dataset that we are using for eval-
uation, we set empirically the parameter that sets the
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Figure 2: Overview of the proposed point cloud recognition system.

size of each voxel to d = 0.5 cm. This step is impor-
tant since it reduces the computing time by getting rid
of redundant data. Even with such an approach, the
size of the input vectors remains variable. To com-
pensate for this, we apply a simple zero padding op-
eration after performing the feature extraction step.

As shown in Figure 3, the cluster mode applies the
k-means algorithm to the point cloud data (in blue).
It consists in an unsupervised machine learning tech-
nique that identifies similar instances or points and
assigns them to a cluster (in red) using a specific
metric (euclidean distance). After applying k-means,
the closest point (black circles) to the centroid (green
squares) is selected for each cluster. In this case,
downsampling is not applied for the sake of keeping
all the details. Thus, for each one of the selected key-
points, a local descriptor will be computed in the next
step based on all the neighboring points within the
defined radius. Similarly as the normal mode, the
number of clusters k involved in the k-means algo-

Point Cloud
Data

Cluster

Centroid

Closest
Keypoint

Figure 3: Overview of the keypoints selection process.

rithm needs to be set empirically (k = 50 for the object
dataset used for evaluation).

3.2 Feature Extraction

In order to optimize the performance of the system
in terms of recognition, an efficient representation of
the input is required. The proposed system allows the
extraction of two distinct local 3D descriptors namely
USC (Tombari et al., 2010) and SHOT (Salti et al.,
2014) (including the color version SHOT-rgb). Since
the generation of both representations implies that the
neighbors around the concerned point be taken into
account, we need to set empirically the search radius
parameter (in our case r = 1.0 cm).

Both descriptors generate an histogram for each
point and the size of these descriptors, related to
the histogram number of bins, is different. More
precisely, here is the size of the related histograms:
|VUSC| = 1980, |VSHOT | = 352 and |VSHOT−rgb| =
1344 bins. The final feature vector consists of a con-
catenation of all histograms. However, this last oper-
ation varies depending on the selected mode. In the
case of normal mode, the concatenation is performed
on all the histograms generated from all the points af-
ter downsampling. Then, since the number of points
is not the same, a zero padding operation is applied.
For the cluster mode, the number of keypoints is al-
ways the same as initially defined. Therefore, the con-
catenation is performed only on the histograms gen-
erated from these keypoints.

3.3 Dimension Reduction

The size of the generated representation using the
chosen 3D descriptors namely USC and SHOT (in-
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cluding the color version SHOT-rgb) is huge consid-
ering the number of keypoints and the size of his-
tograms. Therefore, we need to reduce its size to
ease and optimize the recognition performance. Even
if several dimension reduction techniques exist, the
most commonly used is the PCA (Principal Compo-
nents Analysis) (Jolliffe and Cadima, 2016). It is de-
fined as an unsupervised, non-parametrical statistical
technique used in machine learning aiming to iden-
tify the hyperplane such that the variance of the data
when projected onto this plane is changed as little as
possible. The generated axes or principal components
are orthogonal. The reduced feature vector which
consists in a certain number of principal components
feeds the classification block.

Taking into account the number of samples and
the size of previously generated representations, ap-
plying the standard version of the PCA might lead
to memory issues. Therefore, we propose to use the
incremental or online version which allows to apply
PCA in an iterative way by taking as input small
batches of samples (from the dataset).

3.4 Classification

In order to perform recognition based on the reduced
representation, we use a classification technique. It
consists in a supervised machine learning technique
which requires a learning phase using labeled data.
Even if several techniques might be used, we adopt
the multi-class and linear SVM (Support Vector Ma-
chine) since it yields relatively good performance. It
has been proposed by (Cortes and Vapnik, 1995) as
a binary classifier aiming to find a hyperplane to op-
timally separate two distinct classes. It might be de-
fined by yi = sign(〈w,xi〉+ b) where the maximum-
margin hyperplane is represented by (w,b), the fea-
ture vectors by xi ∈ Rd and labels by yi ∈ {±1}.
In order to distinguish between several objects, we
adopt the One-Against-All architecture which consists
of several linear binary-SVM classifiers.

Similarly to the PCA and in order to deal with
huge amount of samples, we adopt the online version
of the multi-class SVM.

4 EVALUATION

In order to evaluate the proposed system in both
modes namely normal and cluster, we used the bench-
mark and publicly available RGB-D1 dataset (Lai
et al., 2011) (see Figure 4). It consists of 300 common

1https://rgbd-dataset.cs.washington.edu/dataset.html

Figure 4: Overview of the RGB-D dataset (Lee et al., 2016).

everyday objects organized in 51 distinct categories.
The samples are collected using a Kinect-style cam-
era enabling the emphasis of depth information. The
type of sensors employed to collect the used dataset
is not the same as the one we are targeting and which
consists in LiDAR sensors. However, the data for-
mat is the same since the LiDAR sensors also collect
point cloud data. The main differences when using
these two types of sensors lies the covered range and
density. Moreover, the main aim of this work consists
in validating the systems and defining the most suit-
able configuration in terms of mode, descriptor and
algorithm version. Therefore, in order to speed up
the evaluation, we selected three different stratified
subsets namely: first subset (greens, pliers, food jar,
hand towel and toothpaste), second subset (binder,
sponge, camera, kleenex and lemon) and third subset
(water bottle, scissors, banana, flashlight and bowl).
Each one contains 250 different samples. The choice
of the different objects and samples for each subset is
made in a random manner.

As for the evaluation metrics, we employed sev-
eral ones. Usually, the most important one is related
to the recognition rate. Thus, we compute the accu-
racy which represents the number of correct predic-
tions divided by the total number of samples. More-
over, since the proposed system performs multi-class
classification, the recognition rate for each object is
also provided. The accuracy might be biased if the
system performs better with certain classes than for
the others. Therefore, by computing the average of
all the objects recognition rate, we provide more pre-
cision about the system performances. Furthermore,
since we are targeting real-time application, we also
measured the elapsed time when performing learning
and evaluation with different system configurations.

As for the evaluation protocol, we adopted the k-
fold cross-validation splitting strategy. We set the
number of folds to k = 5 and therefore, each one of the
three sets of data (namely first subset, second subset
and third subset) is divided into five subsets. During
each iteration, four subsets are used for training and
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Figure 6: Accuracy per number of principal components.

the last one for evaluation. The final accuracy of each
set of data is computed by averaging the obtained ac-
curacy at each iteration.

5 RESULTS AND DISCUSSION

In this section, we present and discuss the results ob-
tained after performing several evaluations. Each one
focusing on a specific metric.

Figure 5 displays system performance in terms of
accuracy when using the two local 3D descriptors
in both working modes (normal and cluster). We
notice that the highest accuracy is achieved by the
SHOT-rgb descriptor in both modes. Indeed, it al-
lows to reach 87.55% and 71.54% in normal and
cluster mode, respectively. The reason might be ex-
plained by the additional color information provided
by SHOT-rgb. As for the USC descriptor, it yields
the lowest accuracy.

In Figures 6a and 6b is shown the variation of ac-
curacy for the two local 3D descriptors in both work-
ing modes (normal and cluster) regarding the num-
ber of principal components. Similarly to Figure 5,
the best performance is achieved by the SHOT-rgb
descriptor in normal mode. We also notice how the
PCA contributes to compress the feature vectors and
highlights the relevant and discriminant information.
Thus, we are able to obtain a relatively good accuracy
using only a few attributes or principal components.
From both Figures 6a and 6b, we notice that there is
not a constant and regular increase when adding more
principal components. It might be explained by the
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Figure 5: Comparison of both modes (normal & cluster).

fact that adding more attributes or variables does not
necessarily improve the accuracy since some of them
introduces noise to the classifier.

Table 1 provides details on the recognition rates
for each subset and objects. We notice that the
SHOT-rgb descriptor achieves relatively high accu-
racy with 92.17% in the second subset. As for the
recognition rate for each object, we notice that for
certain objects (pliers, lemon, hand towel), the high-
est accuracy of 100.00% is achieved. Based on the
obtained results in the different subsets, there is an
average difference of ≈ 8.00% between the normal
and cluster mode.

In Table 2 are shown the results relevant to the
computational efficiency of the proposed system. One
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Table 1: Accuracy comparison between the three subsets & both modes.

Mode Descriptors Objects recognition rates (%) Average (%) Accuracy (%)
First subset greens pliers food jar hand towel toothpaste - -

Normal SHOT 95.83 100.00 64.81 95.56 55.56 82.35 82.52
Cluster 47.92 98.15 50.00 51.11 44.44 58.32 59.33
Normal SHOT-rgb 95.83 100.00 75.93 100.00 62.22 86.80 87.00
Cluster 85.42 98.15 44.44 100.00 62.22 78.05 77.62
Normal USC 81.25 100.00 55.56 91.11 40.00 73.58 73.98
Cluster 31.25 92.59 81.48 46.67 6.67 51.73 54.06

Second subset binder sponge camera kleenex lemon - -
Normal SHOT 74.07 75.00 72.22 86.67 98.15 81.22 81.44
Cluster 42.59 27.78 53.70 37.78 88.89 50.15 52.25
Normal SHOT-rgb 74.07 94.44 94.44 100.00 100.00 92.59 92.17
Cluster 72.22 33.33 70.37 68.89 92.59 67.48 69.95
Normal USC 74.07 55.56 31.48 88.89 100.00 70.00 70.37
Cluster 59.26 0.00 64.81 15.56 75.93 43.11 47.30

Third subset water bottle scissors banana flashlight bowl - -
Normal SHOT 77.78 81.25 50.00 68.89 98.15 75.21 75.89
Cluster 50.00 81.25 31.25 28.89 61.11 50.50 51.00
Normal SHOT-rgb 83.33 83.33 68.75 91.11 90.74 83.45 83.49
Cluster 77.78 87.50 66.67 31.11 68.52 66.32 67.06
Normal USC 38.89 52.08 41.67 68.89 100.00 60.31 60.65
Cluster 57.41 91.67 68.75 17.78 35.19 54.16 54.22

of the main differences between the normal and clus-
ter modes lies in the feature vectors size. Indeed, the
latter mode is less complex since the descriptor vec-
tor size is relatively smaller than the former one. The
smallest vector size is associated with SHOT. Indeed,
it is 3.8× and 5.5× smaller than SHOT-rgb and USC,
respectively. The other criteria that is considered is
the computing time. The SHOT descriptor takes the
less time in comparison to the others. As for the on-
line version (see the second line for each descriptor
in Table 2), even if it deals with the memory issue, it
slightly reduces the accuracy and increases the com-
puting time.

Table 2: Computing time and vector size comparison.

Mode Descriptors Time (ms) Vector Size Accuracy (%)

Normal

SHOT 38 574112 82.53
65 72.80

SHOT-rgb 90 2192064 87.00
189 78.47

USC 113 3196760 73.98
286 65.09

Cluster

SHOT 238 17600 59.33
241 43.12

SHOT-rgb 257 67200 77.62
264 71.54

USC 657 98000 54.06
666 42.26

Taking into account all the evaluation criteria, we
suggest that the most suitable system needs to com-
bine the SHOT descriptor and the online versions of
both PCA and multi-class SVM.

6 CONCLUDING REMARKS

In this paper, we introduce an object recognition sys-
tem from point cloud data. We compare two local 3D
descriptors namely USC and SHOT (including the
color version SHOT-rgb) and show through experi-
ments that the latter performs better. We also propose
two different modes namely normal and cluster. The
former one performs better in terms of accuracy, but
the second one allows to reduce considerably the size
of the input point cloud. We overcome the memory is-
sue when working with huge amount of data by using
incremental versions of PCA and multi-class SVM.
As further works, we are planning on using the pro-
posed system on LiDAR data in the context of vehicle
localization. We also intend to optimize the proposed
system in order to increase its performances.
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