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Abstract: In this paper, a deep learning approach is introduced to detect pathological voice disorders from continuous 
speech. Speech as bio-signal is getting more and more attention as a discriminant for different diseases. To 
exploit information in speech, a long-short term memory (LSTM) autoencoder hybrid with multi-task learning 
solution is proposed with spectrogram as input feature. Different speech databases (voice disorders, 
depression, Parkinson’s disease) are applied as evaluation datasets. Applicability of the method is 
demonstrated by obtaining accuracies 85% for Parkinson’s disease, 86% for dysphonia, and 90% for 
depression on test datasets. The advantage of this method is that it is fully data-driven, in the sense that it does 
not require special acoustic-phonetic preprocessing separately for the types of disease to be recognized. We 
believe that the applied method in this article can be used to other diseases as well and can be used for other 
languages also. 

1 INTRODUCTION 

Speech as bio-signal getting more and more attention 
as a discriminant for different diseases. There can be 
many alterations in speech production due to 
neurological and/or organic disorders caused by 
illnesses. In general, any alteration from ‘normal’ 
speech might be an indication of pathological speech. 
Alterations of speech may be caused by various 
things, for example psychological conditions such as 
depression. Voice disorders are also main causes of 
voice alternations. Voice disorder happens once 
somebody’s voice quality, pitch, and loudness are 
inappropriate for an individual’s age, gender, cultural 
background, or geographic location. The American 
Speech-Language-Hearing Association divides voice 
disorders into two groups: organic voice disorders 
and functional voice disorders. Organic disorders can 
be structural and neurogenic in nature. Structural 
disorders involve physical changes in the voice 
mechanism, such as alterations in vocal fold tissues 
such as oedema or vocal nodules, polyps, 
gastroesophageal reflux disease (GERD), cyst and 
vocal cord paralysis. Neurogenic voice disorders on 
the other hand are caused by a problem in the nervous 
system, that include voice problems caused by 

abnormal control, coordination, or strength of voice 
box muscles due to an underlying neurological 
disease such as stroke, Parkinson’s disease, multiple 
sclerosis. 

Classifying speech into normal and disordered is 
more problematic than it first seems. There are a large 
number of works (Dastjerd et al., 2019; Filiou et al., 
2020; Jeancolas et al., 2020; Kiss & Vicsi, 2017a; 
Klempíř & Krupička, 2018; Low et al., 2020; Tóth et 
al., 2018; Zhang et al., 2019) subjected to 
classification of these diseases using various machine 
learning techniques. 

Deep learning (DL) is one of the most frequently 
used machine learning solutions nowadays. There are 
many DNN algorithms developed, each is a proper 
solution to a given data type processing. In this paper, 
we utilize a long-short term memory (LSTM) 
autoencoder (AE) hybrid with multi-task learning 
(MTL) solution to propose a DL structure for 
detecting multiple diseases, using a voice disorder, a 
depression and a Parkinson’s disease dataset. 

An important disadvantage of these classification 
methods is that they may need complex phonetic 
preprocessing in order to detect different parts of the 
speech and, therefore, they may be language 
dependent. The proposed method in this paper is an 
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automatic way without the need of segmenting the 
speech by an automatic speech recognizer (ASR). 

Feature extraction is a critical step of any 
classification method. DL has the ability to learn to 
extract the best needed features for the best result. 
There are end-to-end systems that receive raw sound 
signals (amplitudes) as input and derive the proper 
features themselves. For this, huge available data is 
needed. Generally, dealing with speech and diseases, 
this is not the case. In our work we use spectrograms 
as inputs to the DL method and apply autoencoder 
based feature learning (Yu et al., 2019). 

Speech production process is time-varying. The 
same linguistic content can be said in many durations. 
Importantly, this variation may not correlate with the 
given task (disease detection) at all. LSTMs, as a 
special DL building element, has the property to learn 
information across time due to its ability to have 
memory. Therefore, it can learn information that 
concerns different diseases (Gupta, 2018; Kim et al., 
2018; Mallela et al., 2020; Yang et al., 2016; Zhao et 
al., 2019). 

Overfitting is always an important concern in 
classification trials. There are multiple ways of 
overcoming this error, mostly by applying proper 
dataset splitting (train-validation-test). Here, beside 
the correct dataset splitting, multi-task learning 
(Ruder, 2004) is also utilized. MTL is not only used 
as regularization, but also for the parallel 
classification and autoencoder (feature learning) 
implementation. 

Recent works dealing with deep learning and 
disease classification include various convolutional 
network assemblies, recurrent neural networks, 
LSTMs and even solutions on mobile devices. Since 
the majority of these works use different datasets for 
evaluation (even for the same disease), it is hard to 
compare their results. Most of them report about 90% 
classification accuracy (Gunduz, 2019; Kaur et al., 
2019, 2020; Lam et al., 2019; Mdhaffar et al., 2019; 
Mohammed et al., 2020; Rejaibi et al., 2019, p.). The 
proposed AE-LSTM hybrid can be considered as 
novel architecture among the found studies. 

There are several approaches for the binary 
classification of a healthy subject from voices 
affected by some disorder. The first question is 
whether to use sustained vowels or continuous 
speech. Researchers achieved high accuracies using 
sustained vowels (Orozco-Arroyave, 2015; Zhang, 
2008; Ali, 2017; Teixeira, 2017), however, a 
significant proportion of researchers use continuous 
speech in their research pointing out the benefits of 
using continuous speech over sustained vowels 
(Vicsi, 2011; Guedes, 2019; Cordeiro, 2015). The 

research findings are expected to be more applicable 
to practical work since continuous speech is used in 
real-world situations. In the work of (Guedes, 2019) 
the German Saarbrücken Voice Database with the 
phrase “Guten Morgen, wie geht es Ihnen?” to 
classify dysphonia and healthy voices. A 66% f1-
score was reached in their experiment with Long-
Short-Term-Memory and Convolutional Network for 
classification.  In (Tulics, 2019) researchers used 
acoustic features and phone-level posterior 
probabilities computed by the DNN soft-max layer of 
the speech recognition system and used them as an 
input for an SVM and a Fully-Connected Deep 
Neural Network. Classification accuracies were 
ranging from 85% to 88% in their experiments. 

The accuracy of distinguishing between depressed 
and healthy subjects depends largely on the database 
used, such as the size of the database and the severity 
of the subjects included in it (Cummins et al., 2015). 
The accuracy of the classification also depends on the 
methods used, such as the feature extraction, or the 
use of gender dependent or independent models (Low 
et al., 2020).  In (Kiss & Vicsi, 2017b) researchers 
used gender dependent models and used selected 
acoustic features as an input for an SVM, achieving 
86% accuracy with a database which can be 
considered similar as ours. 

The paper is structured as follows: in Section 2, 
the used speech datasets are described. Section 3 
discusses the methods applied. Section 4, 5 and 6 
contains the results, discussions and conclusions. 

2 DATABASE 

The proposed DL structure was tested on three 
datasets of three disease types. Each dataset contained 
the recording of reading a short folk tale ‘The North 
Wind and the Sun’ in Hungarian. For each dataset, 
healthy speakers are included as a control population 
with the same sample number as the given disease 
dataset and age and gender distribution matching the 
patients’ statistics. Although the classification task 
described is binary, for the sake of completeness, the 
severity of the disease is also noted here for each 
dataset. The audio samples were recorded with 
external USB sound card and clip-on microphone in 
PCM format using 44 kHz sampling rate and 16-bit 
quantization. Informed consents were signed by each 
patient before recordings. 
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2.1 Hungarian Parkinson’s Speech 
Dataset (HPSD) 

Speech samples were collected from patients 
diagnosed with Parkinson’s disease (PD) by two 
health institutes in Budapest: Virányos Clinic and 
Semmelweis University. The severity of PD was 
labelled according to the Hoehn & Yahr scale (H-Y) 
(Hoehn & Yahr, 1967). The H-Y scale ranges from 1 
to 5, where 1 indicates minimal PD while 5 is the 
worst PD condition. We did not filter the patients 
according to the taken medications. All patients were 
in ON state. 

83 speech sample were collected from patients 
with PD: 43 male speakers (mean H-Y score: 
2.74(±1.05); mean age: 64(±9.5)) and 40 female 
speakers (mean H-Y score: 2.74(±1.10); mean age: 
65.4(±9.4)). 

2.2 Voice Disorder Speech Dataset 
(VDSD) 

Voice samples from patients were collected during 
patient consultations in a consulting room at the 
Department of Head and Neck Surgery of the 
National Institute of Oncology. The collected speech 
database contains voices from people suffering from 
diseases like tumors at various places of the vocal 
tract, gastroesophageal reflux disease, chronic 
inflammation of larynx, bulbar paresis, amyotrophic 
lateral sclerosis, leukoplakia, spasmodic dysphonia, 
etc. The recorded voice samples in this experiments 
were classified by a leading phoniatric according to 
the RBH scale. The RBH scale gives the severity of 
dysphonia, where R stands for roughness, B for 
breathiness and H for overall hoarseness. The degree 
of the category H cannot be less than the highest rate 
of the other two categories. For example, if B = 3 and 
R = 2, H is 3, and cannot be 2 or 1. A healthy voice’s 
code is R0B0H0; the maximum H and respectively 
RBH value is 3, so a voice’s code with severe 
dysphonia is R3B3H3. Here the H score is given. 

The database contains a total of 261 recordings 
from patients with dysphonia: 159 females (mean H 
score: 1.72(±0.77); mean age: 57.3(±14.8)) and 102 
males (mean H score: 2 (±0.83); mean age: 
53.7(±15.1)). 

2.3 Hungarian Depressed Speech 
Dataset (HDSD) 

Speech samples were collected from patients 
diagnosed with depression by the Psychiatric and 
Psychotherapeutic Clinic of Semmelweis University, 

Budapest. Patients with antipsychotic medication 
which can affect the acoustical features of speech 
were left out. The degree of severity of depression 
was recorded using the Beck Depression Inventory II 
(BDI) scale (Beck et al., 1996)). The BDI-II scale 
ranges from 0 to 63, where 0 indicates a healthy state, 
while 63 is the worst depression condition. The BDI-
II scale uses the following rating: 0-13 healthy, 14-19 
mild depression, 20-28 moderate depression, 29-63 
severe depression.  

A total of 107 speech sample were recorded from 
depressed patients: 64 female subjects (mean BDI 
score: 28.0(±9.0); mean age: 37.5(±13.5) and 43 
males subjects (mean BDI score: 26.1(±8.0); mean 
age: 40.8(±13.6)). 

3 METHODS 

3.1 Implemented Deep Learning 
Architecture and Input 

The DL architecture, training and evaluation was 
implemented in Tensorflow 2.1.0. The implemented 
DL architecture consists of an LSTM and an 
autoencoder part. Multi-task learning is applied in 
order to train the network for the task-specific labels 
and the autencoder-based feature extraction. Figure 1 
shows the structure of the implemented network. 
Spectrogram is fed to the network as input. For each 
audio sample, the spectrogram was extracted by 10 
ms timestep and 256 FFT size (resulting in 16 ms 
window size), commonly used in speech analysis. 
Because Tensorflow did not manage the varying 
duration of the samples, this was solved by using a 
Masking layer at the input. Technically, each 
spectrogram was padded with 0.0 elements to reach 
the duration of the longest audio sample. By using the 
Masking layer, the 0.0 elements were skipped during 
training and prediction processes. 

The DL architecture consists of two parts. An 
autoencoder part learns feature representation 
(dimensionality reduction) for the audio sample 
spectra. This is intended to encode information in the 
spectra. Part of the bottleneck layer (fcautoencoder) has 
shared neurons that are also trained to the task-
specific target labels. This tries to ensure that part of 
the encoded spectra contains information that is 
specific to the given disease. This also serves as a 
regulation technique to avoid overfitting. The idea 
behind this multi-task learning is that this forces the 
encoded spectra to contain information partly about 
the disease characteristics. 
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The other part of the DL architecture performs 
disease-specific classification. This part contains 

two fully connected layers (one is a shared layer in 
the bottleneck layer) with relu activation functions, 
dropout layers (dropout parameter set to 0.5) and 

softmax layer at the end. Before the softmax layer an  

 
Figure 1: Structure of the implemented network. 

Table 1: Number of units in DL layers. 

layer name units

lstm 100 
fcautoencoder1 30 
fcautoencoder2 30 

fct1 200 
time distributed layer 128 

 

average pooling layer is needed in order to make one 
decision for one audio sample (by averaging the 
outputs of layer fct). 

A shared LSTM layer is also applied in order to 
learn time varying information. 

Layer sizes are shown in Table 1. The appropriate 
numbers were selected according to preliminary 
experiments. 

3.2 Dataset Splitting and Network 
Training 

Evaluation was performed by splitting each database 
into training, validation and test sets by the following 
method. 

Due to the limited number of audio samples 
available, all samples were used for testing by a 10-
fold cross-validation process. 10 test sets were 
created by 10-fold cross-validation (stratified). In 
each cross-validation iteration, the remaining 90% of 
the samples were split into training and validation 
sets, 70% and 20% respectively, by stratified random 
sampling. Training was done on the training set and 
an early stopping was applied on the validation set. 
Minimum cross-entropy of the disease classification 
was used as a cost function for early stopping. 
Maximum 1000 training epochs were done with 50 
patience steps for early stopping. During training, 
‘Adam’ optimizer was used. 

4 RESULTS 

Accuracy, sensitivity and specificity was used as 
evaluation metrics. Tables 2, 3 and 4 show the results 
in each set during tests (training, validation and 
testing). The confusion matrices for the test sets are 
also shown in Table 5. The values in the cells are the 
number of samples (subjects). 

The results show that the applied DL performs 
well on all three datasets. The lowest accuracy on the 
test sets is 0.86, which means that 86% of the samples 
are correctly classified into healthy or disease 
categories. The highest score is 0.90 in the case of 
depression. 

The DL method doesn’t seem to overfit. Balanced 
results metrics are achieved in the training, validation 
and test steps. 

Also, sensitivity and specificity scores are well 
balanced in the case of VDSD and HDSD datasets. 
Parkinson samples are a little bit unbalanced 
according to these metrics. Higher specificity is 
reached, which means that healthy samples are 
classified more accurate than the Parkinson samples. 
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Table 2: Results on the HPDS samples. 

 accuracy sensitivity specificity 

training 0.86 0.77 0.95 

validation 0.88 0.80 0.96 

test 0.85 0.75 0.95 

Table 3: Results on the VDSD samples. 

 accuracy sensitivity specificity 

training 0.90 0.89 0.91 

validation 0.87 0.86 0.89 

test 0.86 0.85 0.87 

Table 4: Results on the HDSD samples. 

 accuracy sensitivity specificity 

training 0.93 0.92 0.93 

validation 0.90 0.90 0.89 

test 0.90 0.91 0.89 

Table 5: Confusion matrices obtained on the test datasets. 

PDSD 
 predicted positive predicted negative 

true positive 62 21 

true negative 4 79 

PDSD 
 predicted positive predicted negative 

true positive 226 35 

true negative 28 164 
HDSD 

 predicted positive predicted negative 

true positive 95 12 

true negative 9 93 

5 DISCUSSION 

The achieved results on the applied three datasets 
show that the proposed DL method is able to extract 
information from the samples in order to make 
distinction between negative (healthy) and positive 
cases. These actual accuracy, sensitivity and 
specificity scores are, naturally, dependent on the 
datasets. However, they can be considered large 

enough, that some statements could be concluded 
based on them. With the extension of the recordings 
and by applying more datasets in different languages 
may also prove the proposed DL method to be more 
robustly usable. 

Based on the results, the highest evaluation scores 
were achieved on the depression database test set (and 
also on training and validation sets). Based on 
personal experience of clinical experts, intonation is 
also highly affected by depression. By applying an 
LSTM layer, this intonational disorder (which can be 
captured through temporal analysis) can be more 
accurately modelled. 

The suggested method not only captured 
intonational features of speech, but voice 
characteristics related to dysphonia, such as 
hoarseness and breathiness. 

In case of Parkinson’s disease lower sensitivity 
scores are achieved than specificity scores. Although 
a high sensitivity-specificity balance is more 
desirable, the present case doesn’t mean that the 
method can’t be used as pre-screening. Less positive 
samples will be detected, but the overall accuracy can 
be considered sufficient for the task. In fact, every 
method is usable with over random performance. 

The results achieved are comparable to the 
previous results in the field. Since actual results are 
dataset dependent, direct comparison of accuracy and 
other metrics is problematic. (Kiss & Vicsi, 2017b) 
reported 86% accuracy for a former version of the 
depression dataset. Here, we achieved 90%. In case 
of PD, (Sztahó et al., 2019) reported around 88% 
accuracy using cross-validation setup, without 
separate independent test set. The 85% achieved here 
is comparable, especially if we add that here we 
applied an appropriate test set.  In the case of VDSD 
dataset, a previous result is reported in (Tulics, 2019). 
In that, a 95% accuracy was described with possible 
overfitting effect, and between 85-88% without 
overfitting. Here, we achieved 86% without probable 
overfitting. All these researches used segmentation 
information to obtain the highest performance. In our 
case here, this computationally intensive step is not 
needed. 

Among many other usages, actual practical 
applicability can be pre-screening in general 
practitioner offices or home-care environments. A 
cheap, easy to use devices (software) can be 
implemented to detect various diseases that affect 
speech. 
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6 CONCLUSION 

The goal of this work is to introduce a novel method 
for pathological speech recognition using continuous 
speech without the need of a voicing detection or 
speech segmentation application. The proposed DL 
architecture consists of two parts: an autoencoder part 
learns feature representation and a disease-specific 
classification. 

We demonstrated the applicability of the method 
by classifying three different diseases:  Parkinson’s 
disease, dysphonia related voice disorders and 
depression. The method achieved 0.85 for 
Parkinson’s disease, 0.86 for dysphonia, and 0.90 for 
depression on the test datasets. These classification 
accuracies correspond to the classification accuracies 
mentioned in the literature. The advantage of this 
method is that it is fully data-driven, in the sense that 
it does not require special acoustic-phonetic 
preprocessing separately for the types of disease to be 
recognized. The speech recordings can be directly 
given to the deep neural network (using 
spectrographic extraction only). 

We believe that the applied method in this article 
can be used to other diseases as well and can be used 
for other languages also. 
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