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Abstract: Introduction: Erythema is redness of the skin or mucous membranes, which is symptomatic for any skin injury, 
infection, or inflammation. In some cases, it can be indicative of certain medical conditions (e.g., 
nonblanchable erythema in Stage I pressure injuries), and its detection can facilitate intervention at an earlier 
timepoint. The most common and effective means of erythema detection is a visual inspection of the skin. 
However, in many cases (especially for people with darkly pigmented skin), erythema can be masked by 
melanin. Moreover, it would be useful to have an automated delineation and measurement of erythema using 
consumer-grade devices, e.g., smartphones. It would facilitate automated symptom detection and measuring 
healing progress in various settings, including the patient's home. Aims: This study aims to evaluate and 
compare several algorithms that can be used for automated erythema detection using a smartphone's camera 
in clinical settings. Methods: We have compared three potential estimators, which can be derived from an 
RGB image: a) log(R/G), b) R-G, and c) a* channel in CIELAB color space. Here, R and G are red and green 
channels of an RGB image, respectively. Imaged skin was divided into two classes: erythema and non-
erythema. The "erythema" class was seeded with pixels with E>mean(E)+z*st.dev(E), where E is the value 
of the estimator for a particular pixel, z is a model parameter (z-score). The erythema cluster was then grown 
by gradually adding nearby regions with an estimator E closer to the estimator’s mean of erythema cluster 
than the mean of the estimator for the normal skin area (K-Mean (K=2)). The segmentation algorithm was 
tested on a subset of labeled images from the Swift Medical proprietary wound imaging database. To evaluate 
algorithm performance, the results of segmentation were compared with ground truth, manually labeled 
images. To quantify results, sensitivity, specificity, and ROC curves were used. Results: We have found that 
all investigated estimators could provide reasonable sensitivity (>0.8) and specificity (>0.78). However, a* 
based estimator offers slightly better performance (0.86/0.84). Discussion: The preliminary data shows that 
smartphone cameras can delineate erythema with reasonable sensitivity and specificity. Further studies are 
required to correlate the accuracy with the skin type (melanin concentration in the skin). 

1 INTRODUCTION 

Erythema is redness of the skin or mucous 
membranes caused by hyperemia in capillaries. It is 
symptomatic of any skin injury, infection, or 
inflammation. In some cases, it can be indicative of 
certain medical conditions (e.g., nonblanchable 
erythema in Stage I pressure injuries), and its 
detection can facilitate intervention at an earlier 
timepoint. For example, detecting a Stage I ulcer will 
allow timely intervention to prevent the ulcer's 
progression. 
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The most common and effective means of 
erythema detection is a visual inspection of the skin. 
However, for people with darkly pigmented skin, 
erythema can be masked by melanin. One specific 
benefit of a robust erythema detection algorithm is the 
development of an instrument for use by health care 
professionals to detect erythema. This can be useful 
in monitoring reactive hyperemia or detecting Stage I 
pressure ulcers in intensely pigmented subjects.  

Several techniques have been proposed to 
increase the sensitivity and specificity of erythema 
detection. Tissue Reflectance Spectroscopy (TRS) is 
a non-invasive method of quantifying skin color. In 
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particular, TRS has been used to characterize the 
presence of erythema due to reactive hyperemia or 
Stage I pressure ulcers (Hagisawa, 1994). While TRS 
is a data-collection technique, the absorption data 
have to be processed by an algorithm to detect and 
quantify the erythema. In Riordan et al. (Riordan, 
2001), five different algorithms have been compared. 
The authors found that most algorithms demonstrated 
adequate validity across all subjects. However, 
spectroscopic techniques have certain limitations. 
Firstly, they are a single point measurement, which 
precludes them from providing additional clinical 
parameters, e.g., redness surface size, which can be 
used by dermatologists, alergologists, and other 
clinical specialists. Secondly, it may require contact 
with the skin, which is undesirable in many cases. 
Finally, they are labor- and time-consuming and 
require specialized equipment, which cannot be 
universally available. 

With the proliferation of smartphones and 
improvements in their cameras, they have become 
standard tools for healthcare professionals to measure 
and document wounds and skin conditions. These 
measurements are remote and non-invasive. More 
importantly, they can be performed in any setting, 
including the patient's home. Thus, the ability to 
detect erythema using a smartphone can have a 
significant clinical value. 

This study aims to evaluate and compare several 
estimators that can be used for automated erythema 
detection using a smartphone's camera. 

Skin detection and tissue type analysis are fairly 
active research areas. Skin detection is important for 
many applications (e.g., automated screening for 
adult content detection). Tissue type analysis and 
classification are important for wound care 
applications. 

These areas use multiple approaches, which 
typically fall into a) traditional image processing 
methods (e.g., Mukherjee et al. (Mukherjee, 2014)) or 
b) Machine Learning (ML) algorithms, and 
particularly deep neural networks (DNN) (e.g., Wang 
at al. (Wang, 2015)). In some cases (see, for example, 
Veredas et al. (Veredas, 2010) or Li et al. (Li, 2018)), 
hybrid methods are used. 

Skin detection and segmentation are well 
performed using conversion into YCbCr color space 
(see Brancati et al. (Brancati, 2017)). In YCbCr 
space, skin colors for healthy skin are clustered in a 
compact area, which can be approximated by an oval 
(Hsu, 2002)). 

Machine learning methods require labeled 
images. While Swift Medical has its own database of 

labeled wound images, in our first proof of concept 
study, we did not use any ML approaches. The reason 
for this is the following. While wound tissue types 
(namely epithelial, granulation tissue, slough, and 
eschar) can be considered "absolute," i.e., their colors 
are independent of the color (tone) of the surrounding 
skin, erythema colors are "relative" with respect to the 
surrounding skin. Thus, wound tissue types are ideal 
candidates for the ML, and particularly for DNN-
based algorithms. However, the "relativeness" of 
erythema colors makes it possible to apply traditional 
image segmentation techniques. Moreover, 
traditional methods can be useful to derive and 
quantify underlying physiological information. 

While several attempts were made to develop and 
analyze such classifiers before (e.g., Roullot et al. 
(Roullot, 2005)), these studies were conducted in a 
well-controlled lab environment on healthy 
volunteers. While it is useful as a proof of concept and 
benchmarking, it is not clear how these classifiers will 
perform in real-life scenarios on patients with 
wounds, dressings, etc. This article aims to evaluate 
the performance of classifiers in a realistic setting on 
wound care patients. 

The article is structured as follows:  
First, we discuss several potential estimators, 

which can be derived from simple physiological 
considerations.  

Then, we discuss the cluster segmentation 
algorithm to segment the erythema cluster. 

Finally, we evaluate the estimators' performances. 

2 METHODS 

2.1 Estimators 

We can try to select candidates for an erythema 
estimator based on simple physiological 
considerations. It is known that erythema is 
characterized by an elevated blood supply. Thus, one 
can expect that erythema will be accompanied by 
reduced reflectance in the green range of the spectrum 
(oxyhemoglobin absorption peaks) and 
approximately the same tissue reflectance in the red 
range of the spectrum (oxyhemoglobin absorption is 
small).  

Based on these considerations, we can consider 
several potential candidates for estimators. 

Diffey et al. (Diffey 1991) proposed 𝐸஽ ൌ
log ሺR଺ଷହ/Rହଶହሻ . Here R635 and R525 are the 
reflectances of the skin at 635nm and 525nm, 
respectively. Based on this idea, we can start from the 
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following estimator based on red and green channel 
pixel values 

 

𝐸஽ ൌ log ሺ
𝑆ோ

𝑆ீ
ሻ (1)

 
Tronnier erythema index (Tronnier, 1969) is 

based on the difference between red and green 
reflectance at a control site and an erythematic area. 
Melanin compensation is achieved by comparing two 
sites. Based on these considerations, we can introduce 
another estimator: 

 

𝐸் ൌ 𝑆ோ െ 𝑆ீ (2)
 
Finally, we can take into account that in CIELAB 
color space (Lab color space): L* is the lightness, 
which changes from black (0) to white (100), a* 
changes from green (−) to red (+), and b* changes 
from blue (−) to yellow (+). Taking into account that 
definition, we can transform the initial image from 
RGB to Lab color space and use a* channel as an 
estimator: 

 

𝐸௅ ൌ 𝑎∗ (3)

2.2 Test Set 

The estimators' performance was evaluated on the 
wound images from Swift Medical (Swift Medical 
Inc, Toronto, Canada) image repository. Swift’s 
image repository consists of wound images taken by 
a proprietary Swift Skin and Wound system using 
iOS smartphone cameras. The image dimensions are 
1077x808 and are in jpg format. 2000 images were 
cleared of personally identifiable information (PHI). 

Subsequently, images were labeled using a 
browser-based image labeling platform (LabelBox) 
by a team of trained labelers and reviewed.  

Tissues were labeled using the following 
categories: four types of wound tissue (epithelial, 
granulation, slough, and necrotic), 
maceration/erythema, normal tissue, a fiduciary 
object, and other (e.g., gloves, cloth). For the 
purposes of this pilot study, we manually went 
through the dataset and selected a much smaller 
subset, which contained the correct labeling of the 
erythema. In particular, we selected 18 images that a) 
contained erythema visually, and b) erythema was 
correctly labeled, and 20 images that a) does not 
contain erythema visually, and b) no erythema labels 
on the image. An example of an unlabeled wound 
image from the Swift Medical image repository is 
depicted in Figure 1. 

 

 

Figure 1: An example of an unlabeled wound image from 
the Swift Medical image repository. The white/blue circle 
at the center is a fiduciary object. 

2.3 Cluster Segmentation 

Each intact skin area was segmented into two 
clusters: "normal" skin and erythema. Wound tissues, 
fiduciary objects, and others (gloves, cloth) were 
excluded from consideration (it was assumed that 
other methods could identify these classes). 

The segmentation algorithm consisted of the 
following steps: 

1. Find a "normal" skin cluster (manually or 
automatically) 

2. Calculate mean ሺ𝐸ே
തതതതത) and standard deviation 

(𝜎ሺ𝐸ேሻ) for an estimator for all pixels within 
the "normal" cluster 

3. Seed an erythema cluster (R) using the 
following algorithm 

𝐸 ൐ 𝐸ேതതതത ൅ 𝑧𝜎ሺ𝐸ேሻ 
4. Grow the erythema cluster from seed points 

using the algorithm similar to (Roullot, 2005): 
a. Compute C, which is the region of pixels 

adjacent to the current region R, obtained 
with morphological dilatation: C = (R ⊕ 
ES) − R where ⊕ represents a 
morphological dilatation with a 3x3 
structuring element ES 

b. K-Mean (K=2) step. Compute C2, which 
is the region of pixels that have an 
estimator closer to the mean of R than the 
mean of the normal skin area: C2 = |E − 
EN| > |E – R)| where ER is the mean 
estimator over the area R 

c. Update R : R = R ⋁ (C ⋀ C2) 

Developing a Robust Estimator for Remote Optical Erythema Detection

117



5. Repeat step 4 until R has no new pixels 
6. To improve the accuracy of the results, the 

noise was removed using open morphological 
operations on R. 

Here the first term ሺ𝐸ே
തതതതത ) is the mean of the 

estimator for the normal skin, 𝜎ሺ𝐸ேሻ is the standard 
deviation of the normal skin, z is a model parameter 
(z-score). 

The segmentation algorithm was applied to all 
estimators under consideration. 

2.4 Performance Evaluation 

Labeled images were processed using the 
segmentation algorithm for each estimator under 
consideration and compared with the ground truth 
(manually labeled images). 

If the algorithm identified a pixel as erythema, 
and it was labeled as erythema, then it was marked as 
true positive (TP).  

If the algorithm identified a pixel as erythema, 
and it was not labeled as erythema, then it was marked 
false positive (FP). If a pixel was not identified as 
erythema; however, it was labeled as erythema, we 
assign it to false negative (FN). Finally, if a pixel was 
neither identified nor labeled as erythema, it was 
marked as a true negative (TN).  

Thus, for each image, we can calculate sensitivity 
(true positive rate or TPR=TP/(TP+FN)) and 
specificity (true negative rate or TNR=TN/(TN+FP)). 

To find an optimal performance, we assessed 
performance at different values of z-score and built 
ROC (receiver operating characteristic) curves. 

3 RESULTS 

To compare estimators' performance, we calculated 
sensitivity and specificity for several values of z (see 
Table 1) and plotted ROC curves (see Figure2). 

One can see that the a*-based estimator provides 
the best prediction values. However, the performance 

of diff (R-G) and log (log(R/G)) estimators follows it 
closely. 

4 DISCUSSION 

Here we presented a pilot evaluation of potential 
estimators, which can be derived from a regular RGB 
image. While all estimators demonstrated reasonable 
sensitivity and specificity, the a*- based estimator 
outperformed the log(R/G) and R-G estimators. Thus, 
transformation to another color space (namely, 
CIELAB) provides some benefits. It also should be 
noticed that results are relatively consistent in the 
wide range of z-score (at least 1<z<3). It is a positive 
sign, which indicates that it is probably not a spurious 
finding.  

The results are also in good agreement with 
findings reported by other groups (Roullot, 2005). 

A variety of factors can impact the accuracy of the 
proposed approach. Firstly, various smartphones 
have different color-correction mechanisms (auto 
white balancing, AWB). Thus, disabling AWB can be 
helpful to standardize colors. Secondly, the results 
may be influenced by ambient illumination. Finally, 
the comparison with ground truth can be problematic 
for dark skin tones (e.g., V and VI). For example, it is 
challenging to label erythema on dark skin. Other 
means (for example, induced erythema) have to be 
used instead of labeled images. 

In future work, we plan to validate the algorithm 
by studying the induced erythema on volunteers. In 
particular, we plan to correlate algorithm 
performance with skin tone. We also plan to compare 
the performance of these estimators with CNN-based 
classifiers. 

 

 

 

 
 

Table 1: Performance of estimators at several z-scores. 

Estimator log (R/G) R-G a* 

Z-score Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Z=1.0 0.811 0.767 0.836 0.78 0.862 0.836 

Z=1.5 0.806 0.783 0.836 0.78 0.861 0.842 

Z=2.0 0.806 0.783 0.836 0.781 0.86 0.842 

Z=3.0 0.807 0.786 0.727 0.817 0.859 0.844 
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Figure 2: ROC curves for three estimators: R-G (blue 
curve), log(R/G) (red curve), and a* (green curve). 

5 CONCLUSIONS 

We have analyzed the performance of several simple 
estimators for erythema detection in realistic settings. 
The preliminary data shows that smartphone cameras 
can delineate erythema with reasonable sensitivity 
and specificity. The approach can be implemented 
using an inexpensive imaging setup (e.g., 
smartphone) and can be used in any setting. 
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