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Abstract: Target matching is a common task in the field of computer vision, which has a wide range of implements in 
the fields of target tracking, medical image analysis, robot navigation, etc. The tasks in these scenarios have 
high requirements for locating accuracy, reliability and robustness, but the existing methods cannot meet these 
requirements. To improve the algorithm performance in these aspects, a novel practical target matching 
framework is proposed in this paper. We firstly present a new bounding box regression metric called 
Coverage-Intersection over Union (Co-IoU) to obtain higher positioning accuracy performance compared to 
previous bounding regression strategies. Also, a reasonable region validation and filter strategy is proposed 
to reduce the false positive matches and the Region of Interest (ROI) adjustment and relocation matching 
strategy are innovatively present to acquire higher locating accuracy. Our experiments show that the proposed 
framework is more robust, accurate and reliable than the previous relevant algorithms. Besides, Coverage-
Intersection over Union Loss and relocation strategy proposed in this paper can significantly improve the 
performance of the general object detector as well.  

1 INTRODUCTION 

Target matching is a basic problem in computer 
vision, of which purpose is to find the position of the 
specific target object in the whole image, it has a wide 
range of applications involving manufacturing, 
detecting edges in images, and medical image 
analysis (James and Alex Pappachen, 2014).  

There are two common ways of target matching 
task. One is in template matching approach that 
focuses on matching the similarity of pixel 
information without semantics information between 
matching patches pairs (Hashemi et al., 2016). 
Another way named instance detection (Nan et al., 
2019) is to take advantage of semantic information in 
instance templates to match and locate targets.  

In template matching way, the approach based on 
region is more frequently used in many real-world 
scenarios. Normalized Cross-Correlation, NCC) is a 
representative template matching method (James et 
al., 2014), which is invariant to linear brightness and 
contrast changes, but it is still sensitive to rotation, 
scale changes, and background changes, which 
imposes some restrictions on deforming templates or 

complex backgrounds (Perveen et al., 2016). Best-
Buddies Similarity (BBS) can overcome outliers (i.e., 
background noise, occlusion) and target nonrigid 
distortion (Dekel et al., 2015), but when the scale 
ratio of the template to the target image is small or 
outliers (occlusion or background clutter) cover most 
templates, the success rate decreases. Co-occurrence 
based template matching (CoTM) improves the 
performance of target matching (Kat et al., 2018), but 
is susceptible to interference from areas with similar 
pixel colour distribution. Quality-aware template 
matching (QATM) is one of the best template 
methods so far, and the parameters of QATM can be 
trained by a neural network to improve the 
performance of matching (Cheng et al., 2019). 
However, this method is still sensitive to lighting, 
noise, and scale changes, and the time consuming is 
unacceptable in many applications.  

Another way in instance detection is to make use 
of semantic information from instance templates to 
solve the problem of target matching. The Target 
Driven Instance Detection (TDID) based on Faster 
RCNN (Ren et al., 2017) two-stage detector and  
an instance template to boost target matching 
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Figure 1: Pipeline of target matching framework. Enhanced Detector & Feature Extractor shows feature extracted by the 
enhanced detector from the target object in the scene and template. ROI Verification demonstrates the similarity metrics of 
the selected ROI in the patch pair feature. Relocation shows the ROI adjustment and relocation process. The blue in the final 
result output chart is the coarse positioning box, the yellow is the region of interest after region screening and adjustment, 
and the green is the output after relocation. 

positioning (Ammirato et al., 2018), which improves 
the accuracy, but the false positives is still high. (Nan, 
et al., 2019) proposed a feature extraction method to 
measure the similarity between the matched 
positioning result and the instance template to filter 
the mismatch result, which improves the positioning 
reliability, but the algorithm is time-consuming. 
Moreover, in target detection framework, bounding 
box regression is a significant step to predict 
bounding boxes to locate the target, which can also 
greatly affect the final positioning` accuracy. Loss 
function like Intersection over Union (IoU) loss is 
optimized by calculating the ratio of the intersection 
and union between the prediction box and the real box 
(Rezatofighi et al., 2019), but the problem is that only 
two boxes that intersect can be returned. Generalized 
Intersection over Union (GIoU) solves the 
optimization problem when no intersection exists by 
expanding the prediction box, but this method takes 
too long. Distance Intersection over Union (DIoU) 
reduces the iteration time and improves the accuracy 
by adding the loss of the distance between the 
prediction box and the true box center (Nan, et al., 
2019), but the recall rate and coverage of the 
regression shape can still improve.  

In this paper, we present a novel target matching 
framework. Firstly, we design a new bounding box 
regression strategy called Coverage with intersection 
over union loss function (Coverage-IoU), based on 
which the detector can achieve higher locating 
precision in target matching tasks. Moreover, a 
verification strategy is present to reduce false positive 
in matching. And we finally propose a relocation 
strategy to locate in higher precision. Overall, 
Compared with the previous methods, the framework 
we proposed can improve the target locating 

performance without instance-level labels and shows 
strong robustness and fast speed in various scales, 
lighting, stain noise and other difficult environments, 
which means it is practical for the application in real-
world scenes. 

The contribution of our work is summarized as 
follows: 
 A coverage-intersection over union loss, i.e., 

Coverage-IoU loss, is proposed by considering 
four geometric measures, i.e., corner points 
distance, coverage area, overlap area and shape 
recall, which better describes the regression of 
rectangular boxes. 

 A verification strategy is presented to 
effectively filter regions of interest without 
target object, which can reduce the false 
positive detection rate and improve the overall 
performance of target matching. 

 A relocation strategy is proposed to improve 
the performance of the target matching 
framework, which can reduce information loss 
in the neural network to acquire higher location 
accuracy. 

 The relocation strategy and Coverage-IoU Loss 
proposed in this paper can be easily ported to 
other tasks, such as target detection, instance 
segmentation, and so on. 

2 METHOD 

The target matching framework proposed in this 
paper consists of three stages:  
 Enhanced Detector:  

We first run an enhanced detector with Co-IoU 
loss, this stage provides candidate bounding 
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box detections with location and confidence, 
which will be verified by feature extracted from 
the template in the next stage. 

 Verification Tests:  
We next predict similarity between the 
templates image and each proposed candidate 
bounding box detection in the proposed 
filtering strategy, which take Class similarity, 
co-occurrence matrix and recall into 
consideration. 

 Adjustment and Relocation: 
Given the verified region of interests (ROI), we 
adjust the regions and relocate to achieve high 
locating precision.  

The entire framework is shown in Figure 1.  

2.1 Coverage-IoU Loss 

Bounding box regressing is one of the key 
components in target detection, which has a great 
impact on the precision of locating objects. In target 
matching task, the output used to be (x, y, w, h) or (x1, 
y1, x2, y2) to represent the prediction boxes. 
Intersection over Union (IOU) is the most popular 
metric to compare the similarity between two 
arbitrary boxes (Eq. 1).  
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where 𝐵௣௕ and 𝐵௚௧are the prediction positioning box 
and the ground truth box respectively. 

Also, IOU can be used as a criterion to measure 
distances between bounding box predictions (Eq. 2). 

 IoU = 1 - IoUL  (2) 

The IoU based loss has the virtue of scale 
invariance, non-negativity, symmetry and triangle 
inequality and the identity of indiscernible target, but 
still has many weaknesses like optimization 
instability, box regression speed and so on. Thus, we 
propose a novel loss function to figure out these 
problems.  

First of all, we use the distance between the two 
corners (upper left corner and lower right corner) of 
the prediction box and the target box to optimize the  
 

loss function, which can be defined as (Eq. 3). 
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Figure 2: Schematic diagram of corner distance, in which 
the green rectangle is the real box, the black rectangle is the 
prediction box, d1 and d2 are the distance between the 
prediction box and the real box, c is the diagonal distance. 

Where bpr and bpl denote right bottom corner and left 
top corner of B, while bgr and bgl denote right bottom 
corner and left top corner of B௚௧. As shown in Figure 
2, ρ (·) is the Euclidean distance, and c is the diagonal 
length of the smallest enclosing box covering the two 
boxes.  

Moreover, coverage and intersection over union 
are added in the measurement (Eq.4 and Eq.5). 
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        * (1 ) *Co IOU Coα α= + −L      (5) 
Where α is a positive trade-off parameter, which 
determines the weight of intersection over union and 
coverage. Generally, the higher the requirement of 
coverage is, the lower the value should be set. When 
the value is 1, the coverage ratio is not considered. In 
this paper, the default choice is 0.8 through 
experiments. 

Finally, a strict shape restriction is finally added 
to punish the mismatch of shape, which makes the 
method obtain more precise positioning results with 
fewer iterations, and it can be met by implementing v 
as (Eq. 6). 
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 Where v measures the consistency of shape. 

 
Figure 3: Comparison examples between the CIoU loss and Ours, the blue rectangle box is the detection result. 
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Thus, the final Coverage-IoU loss function is 
formed (Eq. 7). 

- cd1Co IoU Cov= − ∗ +L L L      (7) 

The Comparison examples between the CIoU loss 
and Ours are shown in Figur3. An enhanced target 
detector with this loss function is used to extract 
features, which are combined with the features 
extracted from the template into the next verification 
and filtering step to select the ROI. 

2.2 Verification Tests 

Since the regions predicted by the basic detector 
included non-target object regions, it means that the 
false positive ratio is relatively high and the results 
are not reliable. Therefore, we present verification 
tests to find the region of interest rather than time-
consuming post-processing like matching key-points 
of each candidate with target. In order to properly 
filter the regions of interest, the verification criteria 
include two components: class similarity evaluation 
and target similarity evaluation. 

Class similarity evaluation calculates the 
probability that two regions belong to the same 
category. 𝑓௧ and 𝑓௥ are the features extracted from the 
template image and candidate regions in search-
image respectively. 𝑓௧ and 𝑓௥  can be measured as 
feature vectors using similarity formulas such as 
cosine similarity (as Eq. 8, Eq.9 below) to directly 
calculate the class similarity. Where μ and λ are 
normalization factors, and the similarity can be 
normalized into [0,1] intervals though taking 0.5 and 
0.5 respectively. 
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Furthermore, Target similarity evaluation 
calculates the probability of the target object in the 
same category, which is consists of 3 parts: co-
occurrence pixel matrix, anti-background 
interference metric and shape recall.  

The co-occurrence pixel matrix takes colour, a 
certain distortion rigidity, mapping precision into 
account (as shown in Eq.12 below), which is 
calculated between the template image and candidate 
regions. 

 
2

2, 

( , )( , ) exp
2 p q

p q

d p qC a b I a I b
Z σ
ρ        

−= = =    (10) 

Where Ip and Iq are pixel values in a and b, Z is the  
 

normalization factor and P is the edge pixel weight 
reduction factor, which will be applied when the edge 
area of the candidate area appears more frequently. 

Anti-background interference reduces the impact 
of surrounding pixels that occur frequently in 
multiple areas (as Eq.10 and Eq.11 below), especially 
the pixels near the edge. Where 𝜉 is the normalization 
factor, 𝑝  is the pixel location, ℎ(𝑝) represents the 
occurrence weight of pixel 𝑝 , the higher the 
frequency of occurrence, the lower the weight. 
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 Shape recall mainly measures the shape recall of 
the detection boxes and the template. The greater the 
difference, the lower the score (Eq. 12). 
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In all, the whole verification criterion is calculated 
by the following (Eq.13) and the candidate region 
with the highest score in the regions of target. If all 
candidate area scores are smaller than the threshold, 
no matching area will be outputted. 

( | ) ( | ) recallrConf t r Sim t r S T= ∧ ∧   (14) 

2.3 Region Expansion and Relocation   

In the end-to-end deep learning detection method, due 
to the quantification error caused by pooling 
operations in the CNN structure, the final location 
results are always not accurate enough.  

Algorithm 1: ROIs Verification and Target Relocation. 

Input: ሼ 𝑅௜ ሽ, 𝑖 ∈ ሾ1, 𝑛ሿ 𝑎𝑟𝑒 the set of Predictions from 
the enhanced base detector, 𝑛 is the number of Predictions 
(ROIs),  𝑇 is the target template. 
Output: Target Region 𝑅෠ 
1: Do Region of Interests verification: 
2: T ’ ← Feature Extracter( 𝑇)  
3: 𝑅 i’ ← Feature Extracter ( 𝑅 i )  
4: Compute 𝐶𝑜𝑛𝑓(𝑇 ’|𝑅 ୧’) = 𝑆𝑖𝑚(𝑇 ’|𝑅 ୧’) ∧ 𝑆௥ ∧ 𝑇௥௘௖௔௟௟                                                          %Eq.14
5: 𝑅ௌ ← Softmax ( 𝐶𝑜𝑛𝑓( 𝑇 ’|𝑅 ୧’) ) 
6: Do Target Relocation: 
7: 𝑅௘ ← Region expansion( 𝑅௦ )  
8: 𝑅ௗ ← Redetection ( 𝑅௘ ) 
9: 𝑅෠   ← max (Confidence ( 𝑅ௗ, 𝑅ௌ ))                          
10:    Return 𝑅෠
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Figure 4: Examples of relocation, in which the blue box as the initial locating region, the green box represents the region of 
interest, and the red box is the output after relocation. 

The Process of adjustment of regions of interests 
(ROIs) and relocation in this paper are proposed to 
solve this problem, as shown in algorithm 1. the 
detector based on Coverage-IoU loss is designed to 
be used as a guide for target matching to output ROIs, 
and the region of interest will be selected after 
verification and filtration. Then expanding the 
selected region of interest and finally relocation in 
this region to achieve high location accuracy. Due to 
the scale of regions of target is relatively reduced to 
the scale of target in relocation process, the 
consuming time of whole process is close to the single 
detector. 

 
Figure 5: Comparison between IoU and Coverage-IoU loss. 
The green box is the ground truth, the blue detection box is 
the prediction box, and the dot region is the detected region 
of the target object. 

In Coverage-IoU loss function, we add a coverage 
item to optimize the loss, which makes the objects in 
the prediction box be included in ROIs as much as 
possible (close to the middle), which benefits the 
regional expansion in this step.  

As we can see from Fig.5, when the loss function 
is optimized, the IOU criterion can no longer be 
optimized when the IOU score can no longer be 
optimized (like A, B and C with same IoU), while 
Coverage loss proposed in this paper can still 
continue to be optimized. For many practical 
scenarios, matching and positioning tasks tend to be 
cover the target object in the prediction box as much 
as possible. And as shown in Figure 4, the target is 
more likely to be completely included and precisely 
located in output after relocation. 

3 EXPERIMENTS 

In this part, we test the performance of one of the most 
popular one-stage detectors (YOLOv3) based on our 
proposed Coverage-IoU (Joseph Redmon, 2013-
2016) on Pascal VOC, which is one of the 
most commonly used object detection datasets. Then 
we take advantage of OTB template matching dataset 
format to build our own dataset (4 times larger than 
standard OTB and takes illumination, noise and angle 
shift into consideration) to compare the performance 
of our framework with other advanced methods like 
NCC, QATM and so on. All evaluations are based on 
an Intel(R) I7 7800X CPU and a GeForce GTX 
2080Ti GPU. 

3.1 Coverage-IoU Performance 

In this experiment, we compare a single-stage 
detector (YOLOv3) based on Coverage-IoU loss with 
the detector based on other bounding box regression 
strategies in PASCAL VOC Dataset. 

To test the improvement of the basic detector 
based on Coverage-IoU, we used VOC 07+12 (a 
combination of VOC 2007 training validation set and 
VOC 2012 training validation set) as the training set, 
which contained 16551 images from 20 classes. The 
test set is VOC 2007 and consists of 4952 images. We 
used the Darknet training tool for training, with the 
maximum number of iterations set to 100K. The 
results of each loss function are shown in Table 1 
below. Average Precision (AP) is a common criterion 
to measure the performance of the algorithm with the 
change of threshold value.  We used the same 
measure of performance AP (the average of 10 mean 
Average Precision across different IoU thresholds) = 
(AP50 + AP55 + … + AP95) / 10), AP75 (AP75, 
mAP@0.75) and AP90 (mAP@0.90).  

This article uses the framework of darknet416.  
As we can see from the Table.1, compared to ℒெௌா, the performance of ℒூ௢௎ is 7.72 points higher 

on AP, 18.28 points higher on AP75, and more than 4 
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Figure 6: Performance of different Methods in AUC in MOTB. (a) Comparison among different matching and locating 
methods, (b) Performance of different IoU loss, (c) the influence of α on the performance of relocation. 

times higher on AP90, which shows the superiority of 
the IoU. The loss proposed in this paper is an 
improvement on top of IoU. Therefore, using this 
method as a benchmark, we can measure the 
improvement of this method.  

Compared with the most advanced methods, we 
can find in table 1 that Coverage-IoU shows a 6.96% 
improvement on AP, 10.20% improvement on AP75 
and doubles on AP90 compared to ℒூ௢௎  respectively. 
And it can be summarized that Coverage-IoU based 
detector gradually increases in proportion to other 
IoU based detectors (AP90 > AP75>AP) as the 
threshold increases, which indicates that Coverage-
IoU is more suitable for the scenarios require for high 
locating precision. 

Table 1: Quantitative comparison of YOLOv3 (Redmon 
and Farhadi 2018) trained using ℒூ௢௎  (baseline), ℒீூ௢௎ , ℒ஼ூ௢௎ (ℒ஽ூ௢௎) and ℒ஼௢ିூ௢௎, the results are reported on the 
test set of PASCAL VOC 2007.  

Loss/Evaluation AP AP75 AP90 
M SEL  36.33 31.05 0.90 
IoUL  44.05 49.33 3.8 

GIoUL  
improv. % 

46.67 
5.95% 

53.91 
9.28% 

7.54 
98.42% 

o-IoUCL  
improv. % 

46.51 
5.58% 

53.87 
9.20% 

7.33 
92.89% 

-Co IoUL  
improv. % 

47.12 
6.96% 

54.36 
10.20% 

8.23 
116.59% 

From Figure 6(b) we can clearly see the 
performance of methods based on ℒூ௢௎ 
(baseline), ℒீூ௢௎ , ℒ஼ூ௢௎ (ℒ஽ூ௢௎ ) and ℒ஼௢ିூ௢௎  (Ours) 
in matching and localization task on the MOTB 
dataset (more details about MOTB dataset will be 
introduced in section 4.2), among which ℒ஼௢ூ௢௎ that 
we proposed shows 1.3%, 2.8% and 4.7% 
improvement in AUC compared to ℒூ௢௎  (baseline),  ℒீூ௢௎ , ℒ஼ூ௢௎ ( ℒ஽ூ௢௎ ) respectively, and with 
increasing IoU threshold, the performance of our 
method is consistently better than others.  

3.2 Performance on MOTB Dataset 

In the previous template matching paper (such as 
QATM, COTM), OTB dataset is one of the most 
commonly used datasets. It has 105 template- image 
pairs and about 31 scenarios for matching tests. 
However, the problem with OTB dataset is that the 
scale does not change much and the interference such 
as illumination, angle variation and noise is very 
little. 

Moreover, unlike template matching tasks only 
focus on the shallow similarity of  images patches, the 
templates in target matching tasks usually include 
specific objects, which means the internal semantics 
of images is also significant. So the general template 
datasets is not suitable for our experiments in target 
matching, and we set up a new dataset which has 393 
image pairs in different scenarios in OTB data format, 
which is about four times larger than the original OTB 
dataset and take the variation of illumination, noise, 
and view angle in the actual application scenario into 
Consideration. Also, as a test set for target matching 
and positioning task, each template in the dataset 
include a specific target and the categories of target 
collected in this dataset are as same as categories in 
VOC Dataset to facilitate qualitative comparison of 
target matching and positioning.  

3.2.1 Verification and Relocation  

In this section, we test the effects of verification and 
relocation strategy on top of the detector based on 
Coverage-IoU in MOTB dataset.  

Verification. Area Under Curve (AUC) describes the 
success rate of locating with the change of threshold 
value, which is a common criterion to measure the 
algorithm performance. As shown in Table 2, the 
AUC performance is enhanced gradually with multi 
verification processes. Naïve location represents the 
results of enhanced detector based on Coverage-IoU. 
 

(a)                                                             (b)                                                                 (c) 
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Table 2: Performance comparison among different 
verification strategy.    

Methods 
/Verifications Sim Co- 

occur Recall AUC 

Straight relocation    0.725 

Feature Similarity √   0.736 

Co-occurrence 
Verification √ √  0.745 

Union Verification √ √ √ 0.752 

The straight location represents directly using of shape 
recall to find the most matched region. Feature 
Similarity represents using of class probability to 
determine and filter regions of interests. Co-occurrence 
Verification takes advantage of a co-occurrence matrix 
considering colour, distortion, and background 
interference to verify ROIs. And it is clear that the 
union verification strategy includes all process above 
achieve the highest AUC improvement. 

Relocation. In this paper, we use a relocation strategy 
to improve the location accuracy, which expands the 
initial location region to a certain extent and redetect 
again in this region of interest. Re-detection in the 
adjusted region of interest can reduce the loss of 
features by narrowing the ROI compared with 
detecting in the whole image.  

However, the size for region of interest will affect 
our speed and precision to a great extent, so we have 
to carefully choose a suitable region expansion factor 
of relocation strategy (α). We have done a series of 
experiments on α, we set alpha varies within [1,1.3] 
to explore the impact of expansion factor on the 
performance of matching and positioning. Also, α can 
be selected by training the neural network, which will 
be our future work. 

As we can see from the Figure 6(c) above, it is 
clear that the accuracy of location is improved with 
the enlargement of the region and reaches a peak at 
alpha is 1.07, but with the rising value of alpha, the 
AUC performance becomes worse due to increasing 
of false detection caused by fewer training pictures at 
these scales. To figure out this problem, we use a 
fusion strategy to avoid decreasing performance 
caused by a lack of training scale in relocation: only 
when the confidence of results after the relocation 
become higher, the predictions will be output. 

3.2.2 Comparison with Other Methods  

In this experiment, theαis set to 1.1 and the entire 
proposed target matching framework is evaluated on 

the MOTB dataset. Our method as well as all baseline 
method performance are shown in Table.3. It is clear 
that the method we proposed outperforms all popular 
methods and leads the second-best (QATM) by 
roughly 21% in terms of AUC score. 

Also, it can be seen from Figure 6(a) that when the 
threshold increases from 0.5 to 0.9, the IoU is all 
significantly higher than the previous methods, 
especially when the threshold value is 0.9, there is 
most obvious improvement in AUC, which indicates 
that this method can better locate the target in high 
precision.  

Table 3: The quantitative comparison of the localization 
effect of different matching methods was used. The results 
were tested on the MOTB data set, and the IOU 
performances at the thresholds of 0.5, 0.75 and 0.9 were 
measured respectively. 

Method 
/Evaluation 

IoU 
@50 

IoU 
@75 

IoU 
@90 AUC 

SSD 44.56 28.43 18.14 30.18 
NCC 50.02 35.37 19.91 35.16 

QATM 80.00 61.03 39.87 60.30 

Our 
improv. % 

96.34 
20.43 

68.01 
11.44 

52.26 
31.08 

76.25 
21.31 

3.3 Qualitative Evaluations 

In this section, we demonstrate the matching 
performance and matching speed of proposed method 
through qualitative comparisons. 

 

 

 

 
Template          Search             Our            QATM          NCC              SSD 

Figure 7: Qualitative matching performance comparisons. 

Figure 7 provides more qualitative comparisons 
between our method and other matching and locating 
methods. These results further demonstrate the 
superiority of our method, which makes full use of the 
semantic information of the template itself to eliminate 
interference from other objects with shallow similar 
features in the background. Also, the verification 
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strategy narrows the target area, while the relocation 
strategy is used to provide more accurate locations by 
reducing the loss of information in the neural network. 
As the example in the last line of Figure 7, the method 
proposed in this paper excludes interference from 
objects in same categories with similar appearance, 
while other methods are more susceptible to shallow 
features and more likely to find false target then. Or, as 
examples in the second and second-to-last figures, the 
other methods work not as well as ours when 
illumination is stronger or weaker than usual. And in 
the first line of the Figure 7 we can find that even there 
is only one salient target in the image (simple 
background and low interference), our method can also 
achieve a higher location accuracy than others.  

Table 4: Speed test on MOTB datasets, where NCC and 
SSD methods can only use CPU, while QATM and the 
method in this paper can use GPU to accelerate the 
positioning effect. 

Methods SSD NCC QATM Ours 
Backend CPU GPU 

Average(ms) 296 321 1780 90 

Finally, the matching speed is also an important 
criterion to measure the performance of the algorithm 
for practical application. Table.3 compares the 
average time consumed by different matching and 
locating methods on MOTB datasets, it is clear that 
the methods proposed in this paper has obvious 
advantages over traditional sliding window methods 
and QATM with GPU acceleration.  

4 CONCLUSIONS 

We introduced a novel target matching framework, 
which mainly includes Coverage- IoU based feature 
extractor, verification process and relocation after 
expanding region of interests. The idea of Coverage- 
IoU loss in this framework comes from that the 
existing IoU-loss cannot meet the coverage 
requirement in some scenes. The coverage, shape 
restriction and corner distance loss function can better 
describe the regression process of the bounding box 
and acquire more accurate position regression. 
Moreover, the verification strategy present here is to 
reduce false-positive results without the instance-
level template, so as to guide the regions of interest to 
the target area. Finally, the inspiration of relocation 
strategy comes from the location errors caused by the 
information loss caused by pooling and other 
operations in the neural network, while narrowing 
input size and relocating in this area can reduce the 

position errors to achieve better performance in 
location accuracy. Also, the relocation strategy and 
Coverage-IoU Loss proposed in this paper can be 
easily ported to other common tasks like target 
detection, instance segmentation and so on.  
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