
Generic User-guided Interaction Paradigm for Precise  
Post-slice-wise Processing of Tomographic Deep Learning 

Segmentations Utilizing Graph Cut and Graph Segmentation 

Gerald A. Zwettler1,2,3 a, Werner Backfrieder3, Ronald A. Karwoski2 and David R. Holmes III2 b 
1Research Group Advanced Information Systems and Technology (AIST), Department of Software Engineering,  

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria 
2Biomedical Analytics and Computational Engineering Lab, Department of Physiology and Biomedical Engineering,  

Mayo Clinic College of Medicine, 200 First St. SW, 55905 Rochester, MN, U.S.A. 
3Medical Informatics, Department of Software Engineering, University of Applied Sciences Upper Austria, 

Softwarepark 11, 4232 Hagenberg, Austria 

Keywords: Graph Cut, Graph Segmentation, U-Net, Deep Learning Image Segmentation, Evolution-strategy,  
User-guided Medical Image Analysis. 

Abstract: State of the art deep learning (DL) manifested in image processing as an accurate segmentation method. 
Nevertheless, its black-box nature hardly allows user interference. In this paper, we present a generic Graph 
cut (GC) and Graph segmentation (GS) approach for user-guided interactive post-processing of segmentations 
resulting from DL. The GC fitness function incorporates both, the original image characteristics and DL 
segmentation results, combining them with weights optimized by evolution strategy optimization. To allow 
for accurate user-guided processing, the fore- and background seeds of the Graph cut are automatically 
selected from the DL segmentations, but implementing effective features for expert input for adaptions of 
position and topology. The seamless integration of DL with GC/GS leads to marginal trade-off in quality, 
namely Jaccard (JI) 1.3% for automated GC and JI 0.46% for GS only. Yet, in specific areas where a well-
trained DL model may potentially fail, precise adaptions at a low demand for user-interaction become feasible 
and thus even outperforming the original DL results. The potential of GC/GS is shown running on ground-
truth seeds thereby outperforming DL by 0.44% JI for the GC and even by 1.16% JI for the GS. Iterative slice-
by-slice progression of the post-processed and improved results keeps the demand for user-interaction low.   

1 INTRODUCTION 

Precise segmentation with the need of no or only 
marginal user interaction is of high importance in 
computer-assisted medical diagnostics, both in 
research and clinical practice. Thereby automated and 
generally applicable image processing methods are 
still in focus of research. A fully automated albeit 
highly precise segmentation approach shipping as 
black box thereby is not necessarily of highest interest 
as the diagnostician always holds the ultimate 
responsibility for segmentation accuracy and 
diagnostic outcome. With the advances in medical 
image processing, a broad range of semi-automated 
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approaches is available for processing tomographic 
datasets, such as Region Growing, Live-Wire, Level 
Sets, Graph Cuts or Graph segmentation that are 
provided by various frameworks and tools (Strakos et 
al. 2015). While the radiographer or diagnostician 
using these tools and algorithms keeps full control of 
his actions, the achievable accuracy, the high demand 
for user interaction and the subjectivity of the 
findings and interpretations are a constant drawback 
during the last decades.  

In recent years, the application of deep learning 
(DL) neural networks led to a sustainable impact in 
many segmentation domains in industry as well in 
medicine. Trained on a huge amount of reference 
datasets, these DL models allow for fully automated 
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and highly precise segmentation, analysis and 
classification in specific diagnostic domains. Due to 
their black-box nature, the user must accept the 
generally impressive results as they are. Nevertheless, 
this is only acceptable as long as there is no need for 
adaptions. As no machine learning approach ever will 
have perfect sensitivity and specificity, the seamless 
integration of DL models in clinical routine necessita-
tes for user-centric post-processing paradigms.   

1.1 State of the Art and Related Work 

In the domain of fully automated segmentation, 
classic approaches such as Statistical Shape Models 
(Cootes et al. 1992) utilizing PCA or Active 
Appearance Models (Cootes et al. 1998) need to be 
adapted for specific domains, modeling the shape 
variability and finding individual concepts for robust 
positioning, registration and reference point 
determination. 

In recent years, the advance in GPU hardware and 
machine learning frameworks enable deep neural 
networks to find their way into industrial and medical 
image processing and computer vision domains. 
While feed forward neural networks are successfully 
applied for multi-modal image fusion (Zhang and 
Wang 2011), self-organizing neural networks allow 
clustering in complex domains such as classification 
of renal diseases (Van Biesen et al. 1998). Deep 
semantic knowledge as present in natural language 
processing is covered by incorporation of recurrent 
cycles introduced by Hochreiter (Hochreiter and 
Schmidhuber 1997) as long short-term memory 
(LSTM) showing huge potential for predicting 
diagnostics from several input sources (Lipton et al. 
2015).  First deep feature networks were introduced 
with Haar Cascades (Viola and Jones 2011), thereby 
combining and boosting a large number of weak 
convolution features at varying scale. A specific CNN 
architecture perfectly applicable for medical image 
segmentation in 2D and 3D is the U-Net architecture 
(Ronneberg et al. 2015) (Cicek et al. 2016). 

In the field of user-centric segmentation 
approaches, conventional Region Growing, LiveWire 
Segmentation (Mortensen and Barrett 1995) and 
Graph cut (GC) (Boykov et al. 1998) are of high 
relevance utilizing input image intensities or edges. 
Graph cut refers to application of min-cut/max-flow 
algorithms from the domain of combinatorial 
optimization, generally utilizing Gaussian mixture 
models (GMM) as fitness function. Graph cut is 
perfectly applicable to user-guided video processing 
at low demand for interaction and high accuracy. 
With the GMM iteratively improved along the border 

areas, denoted as Grab cut (Rother et al. 2004), the 
results achievable by conventional Graph cuts are 
further improved. 

Combination of high-quality DL segmentation 
with applications for user-guided post-processing is a 
topic of ongoing research. In the work of (Sakinis et 
al. 2019), the DL model is trained together with 
reference user markers roughly indicating the target 
shape. Thus, after training, these markers are placed 
and adapted to control the contour in incorrect areas 
in an iterative optimization process. Thereby, the DL 
model has learned to obey the user markers. While 
this is a very intuitive and adequate solution, the 
application to arbitrary DL models is not possible as 
the image data always has to be trained together with 
reference user adaptions. A similar approach for real-
world RGB images is presented in the work of Xu et 
al. (Xu et al. 2016), where Euclidean distance maps 
calculated from user-clicks are provided as channel 
for a fully convolutional network (FCN) and graph 
cut is used to refine the probability segmentation 
resulting from the FCN.   

In the domain of GC, Boykov demonstrated the 
benefit of arbitrary fitness functions, thus modelling 
an energy function similar to snakes or geodesic 
contours where edges are incorporated too (Boykov 
and Funka-Lea 2006). 

1.2 Graph Cut / Segmentation for 
User-guided Post-processing of DL 

To overcome the limitations of DL segmentation 
models with respect to frequently needed post-
processing, the utilization of Graph cut and Graph 
segmentation technology is evaluated in this paper.  
We present a generic approach that is perfectly 
applicable for post-processing all kinds of 
segmentations. Instead of a GMM, the graph weights 
are derived from the DL segmentation combined with 
edge information from the original slice. To allow for 
inevitable user intervention only, the foreground (FG) 
and background (BG) seeds for the graph are derived 
from the DL segmentation, too. Thus, user-interaction 
after visual inspection is in the range between simple 
confirmation of the initial segmentation result and 
mild adaptions by altering the FG and BG graph. 

2 MATERIAL 

For training, validation and testing 131 abdominal CT 
datasets of the liver from the Medical Segmentation 
Decathlon database (MedDecathlon 2019) providing 
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reference segmentations are used. After scaling to iso 
voxel spacing, 27,000 slices are split into a training 
set (22,500) and a validation set (4,500) with strict 
separation of the volumes. All slices are clipped to 
size 308x372 with a 10 pixel outer margin around the 
borders for reasons of data augmentation during DL 
model training.   

The input slice intensities ai are rescaled to 8bit in 
range 0 to 255 with mean intensity value µliver per 
volume shifted to 127.0, transformed according to 
scale factor s and truncated to [0;255], see Eqn. 1-2. 

𝑠 ൌ
115

3 ∙ σ୪୧୴ୣ୰
 

(1)

Tሺ𝑎௜ሻ ൌ ൜
127 െ |𝑎௜ െ µ௟௜௩௘௥| ∙ 𝑠 𝑎௜ ൑ µ௟௜௩௘௥

127 ൅ |𝑎௜ െ µ௟௜௩௘௥| ∙ 𝑠 𝑎௜ ൐ µ௟௜௩௘௥
 (2)

For DL segmentation, a U-net cascade approach 
is utilized, thereby incorporating axial, sagittal and 
coronal views for improved robustness (Zwettler et 
al. 2020), see Fig.1. The reconstructed axial 
segmentations from Saxial, Ssagittal and Scoronal input are 
thereby slightly varying and combined with another 
U-net expecting these three input channels per slice 
leading to robust segmentation Scomb. These DL 
segmentations utilized as testing data for this research 
work are of good quality with DSC=97.5 and JI=95.2 
for Scomb. The single slice results are e.g. DSC=96.2 
and JI=92.6 for Saxial. In the work of Zwettler et al. 
(Zwettler et al. 2020) another improvement 
incorporating spatio-temporal aspects between 
neighbouring slices was presented increasing to 
DSC=98.9 and JI=97.9 overall. This improvement is 
not applied for this paper to allow the evaluation of 
the GC and GS potential for correcting DL models in 
an unbiased and objective manner. 

 

Figure 1: The slice-wise segmentations are performed in 
axial, sagittal and coronal view utilizing specific U-nets. 
Another U-net then combines the three slices as input for 
processing the final segmentation result. 

To perform a GC study, two test sets with each 
n=30 slices randomly selected from the validation set 

are utilized. The test sets refer thereby to intervention 
with and without skeleton support. Within the 30 
slices, the initial segmentation comes from the axial 
view only (10), from combined U-net model (10) and 
axial with manually applied errors (10), i.e. left out 
parts, closed/opened vessels or attached artefacts. A 
group of three test persons, all experts in medical 
image segmentation, evaluates these 60 slices. 

To test the result propagation in case of user post-
processed DL results with Graph cut/segmentation, 
the m=10 volumes from the Medical Segmentation 
Decathlon database are manipulated within the 3D 
volume in areas of topographic changes of the liver 
parenchyma in axial view. This way, the propagation 
of corrected results is evaluated on the slice stack.   

3 METHODOLOGY 

To allow for seamless post-processing of DL 
segmentation results utilizing GC or GS, a specific 
fitness function is required as input. Thereby, the  
 

 

Figure 2: Process Overview. Based on DL segmentation 
results and original image (gradients), a fitness function is 
calculated. Graph cut is then performed with FG and BG 
seeds (red and green) from the DL segmentation and the 
fitness function utilizing maxFlow. For Graph 
segmentation, the fitness function is used for pre-
fragmentation. The pre-fragmented regions are selected 
according to at least 0.5 overlap-ratio compared with the 
DL segmentation. Both GC and GS allow for expert user 
adaption by either altering the FG and BG seeds or 
selecting/unselecting the GS regions.    
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fitness function incorporates the DL results as seeds 
to conserve the high accuracy at the provided 
flexibility of expert user-centered post-processing. 
The process overview is shown in Fig. 2 while the 
utilized fitness functions are illustrated in Fig. 3. 

   

   

   

   

Figure 3: Per column illustration of horizontal results 
ORIG, EXP, S1 and S4 for the datasets #506, #13789 and 
#11623 as basis for fitness-function. 

For each slice i, the original image ORIGi, the 
expected intensity profile EXPi, and the 
segmentations Saxi, Ssagi, Scori and Scombi (axial, 
sagittal, coronal and combined) are incorporated in 
the fitness function:  

ORIGi: horizontal (H) and vertical (V) edges of 
the original intensity profile after shift to 𝜇௜௡௧ ൌ 127 
window centre as ORIGHi and ORIGVi respectively, 
cf. Eqn. 1. 

EXPi: H and V edges of the original image 
damped or amplified by a difference image from the 
expected intensity level processed by a median filter 
𝑟 ൌ 1 followed by Gaussian smoothing (𝑟 ൌ 5, 𝜎 ൌ
2.5), referred to as EXPHi and EXPVi respectively. 

S1i and S4i: H and V edges from the binary 
segmentation results from axial, sagittal, coronal and 
combined with 1 and 4 hits per voxel respectively as 
S1Hi, S1Vi, S4Hi and S4Vi. The 2 and 3 hit cases are 
omitted due to expected high correlation and thus low 
entropy. Thus, either a pixel is an element of all 
segmentations or only of one to handle the optional 
segmentation regions S1i. 

Conservation of the gradient magnitude is of high 
relevance for calculating the cumulated fitness 
function. Thus, for the combination of ORIGi, EXPi, 
S1i and S4i, a max-operation is preferred over 
building the mean. To combine the four edge images 
utilizing a max function 

𝐹௜ ൌ max ൬
𝑠ሺ𝑂𝑅𝐼𝐺௜, 𝑤଴ሻ, 𝑠ሺ𝐸𝑋𝑃௜, 𝑤ଵሻ,

𝑠ሺ𝑆1௜, 𝑤ଶሻ, 𝑠ሺ𝑆4௜, 𝑤ଷሻ ൰  (3)

with function s() for scaling to [0; 𝑤௜], an adequate 
set of weights 𝑤௝ is required, thereby conserving the 
segmentation outcome of the DL model and still 
allowing adaption with respect to original image 
intensities. These weights need to be calculated for 
each segmentation domain, e.g. liver parenchyma 
from CT modality, only once. The weights are 
thereby optimized utilizing Evolution Strategy (ES) 
with recombination (μ/ρ+, λ) with epochs=100, 
batchSize=8, populationSize=8, children λ=32, 
mutationChance=0.4, mutationRate=0.25 dropping 
by around 4% each epoch. The fitness function is 
calculated for vertical and horizontal orientation as 
FHi and FVi, respectively.  

The fitness landscape is considered very flat and 
ambiguous as only the proportion of the weights is of 
relevance. As max-flow execution takes 400ms per 
slice, a higher number of epochs or larger batch sizes 
are not practical. Instead, iterative refinement using 
the ES is applicable.   

3.1 Graph Cut Method 

To facilitate little need for user interaction, the FG 
and BG markers for Graph cut are derived from the 
DL segmentation mask Scombi for slice i as 
initialization. The FG and BG markers thereby 
comprise a skeleton with minimal distance 
minDist=5 from the FG/BG borders together with 
inner region boundaries at a distance of 
borderDist=10, see Fig. 4. A topological cut of the 
skeleton graph when demanding minDist=5 is 
omitted which is of high relevance in narrow sections, 
i.e. the minimum distance is only enforced for leaf-
sections of the skeleton graph. 

In case of inaccuracies, the user alters the FG and 
BG markers suggested by the algorithm, i.e. by 
removing/adding seeds for both, the BG and the FG. 
With the FG and BG seed markers provided, the 
Graph cut is performed on fitness image Fi leading to 
graph-cut post-processed image GCi.    
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3.2 Graph Segmentation Method 

Based on the same fitness function Fi as used for the 
Graph cut, a graph segmentation algorithm is 
applicable leading to a watershed-like fragmentation 
of the input image denoted as GSi with fragmented 
regions 𝑅௝ ⊆ 𝐹௜. To transfer GSi with j region labels 
back to a binary segmentation representation, each 
region Rj is either assigned a FG or BG label, 
according to the largest intersection set with DL result 
Scombi leading to result segmentation GS’i, see 
Equation 4 with pixel ሺ𝑥, 𝑦ሻ ∈ 𝑅௝. 

𝐺𝐶ᇱሾ𝑥, 𝑦ሿ ൌ

൜𝐹𝐺 ห𝑅௝ ∩ 𝑆௖௢௠௕ሾ𝐹𝐺ሿห ൒ ห𝑅௝ ∩ 𝑆௖௢௠௕ሾ𝐵𝐺ሿห
𝐵𝐺 𝑒𝑙𝑠𝑒

  
(4)

Thus, the binary label assigned to the pixel 
coordinates of each region Rj result from majority 
voting of pixel-wise AND operation with the DL 
segmentation Scombi, see Fig. 5.  

Besides running this process in a fully automated 
way, i.e. utilizing the DL outcome for selecting the 
FG regions from Graph segmentation, the user can 
correct results too by selecting/unselecting the 
fragmented regions. 

Figure 4: From the deep learning result Scombi (left 
column), the FG markers (green) are derived as skeleton 
besides the inner contour with distance borderDist=10 to 
the binary contour borders. The outside marker (red) is 
calculated as skeleton from background in Scombi. 

3.3 Slice-wise Propagation of  
Post-processed Results 

In case of slice-wise processing a tomographic 
volume in axial direction, due to the high resolution 
of the imaging modalities the pixel-wise differences 
of two neighbouring slices slicei and slicei+1 is 
expected to be marginal. Furthermore, the 
automatically derived FG and BG markers for Graph 
cut show a safety margin to the border areas. Thus, 
the manually corrected results after user-guided 
Graph cut post-processing of slice slicei denoted as 
GCi can be applied as basis for FG and BG markers 
of the subsequent slice slicei+1. Consequently, FG and 
BG markers are derived from GCi instead of Scombi+1 
for slice slicei+1.  

The same slice-wise propagation of corrected 
results is applicable for the Graph segmentation 
approach elucidated in section 3.2, too. Thereby, the 
corrected / post-processed GS’i replaces Scombi+1 for 
slice slicei+1 by combining with 𝐺𝑆𝑖൅1

ᇱ ൌ 𝐺𝑆𝑖′ ∩  𝐺𝑆𝑖൅1 
instead. The fragmented regions after Graph 
segmentation yield sharp edges in the border sections 
and thus expected to be tolerant by applying the 
corrected previous slice for logic combination. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5: Based on input slice i (a) the fitness function Fi 
(b) is used for Graph segmentation GSi (d). With DL 
segmentation result Scombi (c) the regions are combined as 
𝑆𝑐𝑜𝑚𝑏௜ ∩  𝐺𝑆௜ (e) leading  to binary result GS’i (f). 
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Figure 6: GC GUI in non-study mode showing full information. After adaptions by the user, the JI is increased from 0.974 to 
0.977 compared to the axial DL model.  

4 IMPLEMENTATION 

A prototype for GC post-processing is implemented 
with Python using PyQt5 for the GUI and library 
maxflow for the GC implementation as proposed in 
(Zabriskie 2020) for RGB images.  

Besides the input slice, the GC fitness, the GC 
result and a FP/FN view of the adapted result, also the 
results from the DL model together with a FP/FN 
view of the initial results as well as the ground truth 
are presented. Furthermore, the quality metrics JI, DC 
and NSD are evaluated, see Fig. 6.  

For the study, only input slice and GC results are 
presented and no quality metrics reported to do not 
give the test persons a hint for the correct and 
expected outcome regarding the ground truth.  

5 RESULTS 

Evolution Strategy optimizes the weights for ORIG 
(w0),  EXP (w1), S1 (w2) and S4 (w3) with w0=0.287, 
w1=0.217, w2ൌ0.419, w3ൌ0.641, cf. Fig. 7.  

The result slices with maximum-function applied 
and scaled to the target weights are shown in Fig. 8. 
Thereby, the fitness function combines an edge 
representation of the binary segmentation as well as  
input image information.  

 

 

Figure 7: Parameter optimization of weights w0-w3 for the 
first 100 epochs with achievable accuracy close to 1.0. 
Despite the absolute weights, only the relative proportion is 
of relevance with stability in rank after around 60 epochs. 

 

Figure 8: Horizontal edges of the combined fitness function 
for slices #506, #13789 and #11623 respectively. 

5.1 Graph Cut Post-processing 

5.1.1 Automated GC Test Runs 

With the FG and BG derived from the initial DL 
segmentation, cf. Fig. 9, almost the same accuracy is 
reached in a fully automated way, see Tab. 1 
processing all n=4859 slices. Due to the Graph cut 
processing, the JI marginally drops by 1.3% on 
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average (+537=55-4267) yet allowing the user to 
correct obviously incorrect areas on demand. If the 
FG and BG marker skeletons are derived from ground 
truth reference segmentations, the DL accuracy is 
even outperformed by the GC based post-processing 
by 0.44% JI and improving 2846 of the slices 
(+2846=1-2012), indicating the GC potential in post-
processing. 

Table 1: Achievable Jaccard (JI), Dice Coefficient (DC) 
and Normalized Surface Distance (NSD) tested on n=4859 
slices for original DL models, GC with skeleton from DL 
and GC with skeleton seeds from the ground truth (GT). 
Thereby, GC is applied in a fully automated way.  

metric DL GC, DL seeds GC, GT seeds 

JI .9488 .9358 .9532 

DC .9737 .9668 .9760 

NSD .9507 .9488 .9602 

Figure 9: The FG (green) and BG (red) skeletons and inner 
surface borders are well suited for performing GC 
segmentation almost at the same accuracy as the input DL 
model results. 

5.1.2 Manual Post-processing 

With support of the skeleton for the three test persons, 
processing of the 30 slices took on average 35.3sec 
per slice and 51.3sec for the 30 slices of the dataset 
without skeleton support. With the preset skeleton to 
adapt, the average amount of FG and BG seeds per 
slice is 1915.8 achieving an average accuracy of 
JI=.9573 and DC=.9782 and NSD=.9589 compared 
to the axial DL model with JI=.9548, DC=9769 and 
NSD=9577 at 1772.6 seeds per slice on average, see 
Fig. 10.a. Thus, due to manual post-processing, the 
average accuracy is increased. On average 16 out of 
30 slices outperform the DL model, mainly the ones 
with small applied errors. For slices with already a 
high quality result from the DL model, results rather 
get worse as expected due to GC discretization.  

Without skeleton support, the test persons place 
1099.7 seed pixels on average achieving an accuracy 
of JI=.9265, DC=.9618 and NSD=.9206 compared to 
JI=.9251, DC=.9611 and NSD=.9192 at 1873.6 seeds 
per slice on average, see Fig. 10.b. Generally, results 
are quite invariant  w.r.t. placed FG and BG markers.  

Thus, results are very robust and “drawing” close 
to the borders is not necessitated, see Fig. 11. 

 
(a) 

 
(b) 

Figure 10: JI for GC results with (a) and without skeleton 
support (b). The accuracy of the DL model is conserved, 
while the standard deviation and min/max range is 
generally reduced. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 11: Slice 28 (a) without skeleton support and 
expected ground truth (c) with suboptimal DL result 
JI=.877 (b) can be improved by all test persons (g-i) in 
range [.911;.920]. The axial error of missing upper part can 
be corrected with different skeleton interpretations (d-f). 
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With GC post-processing the obvious errors are 
corrected as indicated by the smaller JI standard 
deviation calculated for the slices with σJI,users=.0400 
compared to σJI,DL=.0614 for the DL model all with  
skeleton support. Without the skeleton support, 
similar results are noted, namely σJI,users=.0613 
compared to σJI,DL=.0964.     

5.2 Graph Segmentation  
Post-processing 

Running Graph segmentation on DL results of the 
MedDecathlon test datasets in an automated way, the 
trade-off between the deep learning results and the 
Graph segmentation results is low. While for DL, 
accuracy of JI=94.88% is reported, the Graph 
segmentation leads to JI=94.42%, which is a marginal 
drop by 0.46%, see Table 2.  

Table 2: Achievable Jaccard (JI), Dice Coefficient (DC) 
and Normalized Surface Distance (NSD) tested on n=4857 
slices for original DL models, GS with auto-selection from 
DL and GS with selection from the ground truth (GT). 

metric DL GS auto-run GS, using 
GT 

JI .9488 .9442 .9604 

DC .9737 .9713 .9798 

NSD .9507 .9478 .9702 

If the ground truth (GT) is used for assigning the 
fragmented regions the BG and FG label respectively, 
then the accuracy can theoretically be gained to 
JI=0.9604 showing high potential in post-processing.  

The n=4,857 test slices are thereby fragmented 
into  2,829,228 regions utilizing a minimum region 
size 𝑟𝑒𝑔௠௜௡ ൌ 40  and a constant border threshold 
𝐾 ൌ 50 . Most of these regions are perfectly 
overlapping with the DL pre-segmentation, namely 
27.86% for the FG and 64.84% for the BG. These 
perfect matches are thus classified at very high 
confidence. Only the remaining regions close to the 
border areas that are partly overlapping with both, BG 
and FG areas of the DL segmentation, need to be 
assigned according to majority voting. From these 
regions, 1.96% are probably FG, i.e. FG ratio >= 0.5 
and 5.33% probably BG, i.e. BG ratio < 0.5. 
Nevertheless, even these regions show a clear trend 
for either FG or BG, which becomes obvious from the 
average DL classification values per region. For the 
probably FG regions, this average 𝜇௣௥௢௕ிீ ൌ 230.18 
is far above the equilibrium at 127.5. Similarly, for 
the probably BG regions,  𝜇௣௥௢௕஻ீ ൌ 28.52 indicates 
high confidence. Thus, even for the small amount of 

regions fluctuating between FG and BG, they show a 
clear trend for either BG or FG.   

5.3 Slice-wise Propagation of  
Post-processed Results 

To test the propagation of both, GC and GS post-
processing, four datasets are prepared, namely: 
 case 0: slices 22504-22516 with correct axial 
 case 1: slices 22504-22516, all views invalid 
 case 2: slices 25004-25012 with correct axial 
 case 3: slices 25004-25012, all views invalid 

For these test cases, the sagittal, coronal and 
combined DL results are manipulated in the selected 
slice range, cutting a part of the liver parenchyma, see 
Fig. 12. By adding test cases with and without invalid 
axial input the 1 or 4 hit count of the fitness function 
is tested. 

Figure 12: For the test cases 0/1 (left, combined slice 
#22505) and 2/3 (right, combined slice #25005) the caudal 
part of a liver lobe is removed from the DL results, shown 
as red areas in the images.  

As shown in Table 3 and Table 4, for all test 
datasets the automated propagation of the corrected 
first slice leads to an improvement of the subsequent 
slices too. Thus, the missing part in the DL 
segmentation, i.e. parts removed for testing purposes, 
are precisely reconstructed, see Fig. 13 for slice 
#2512.  

Table 3: Slice-wise propagation of the corrected first slice 
for test cases 0 and 1 in slice-range 22504-22516. 

case 0 case 1
metric DLerr GC GS GC GS

JI 0.9176 0.9403 0.9584 0.9385 0.9534
DC 0.9570 0.9692 0.9788 0.9683 0.9762

NSD 0.9019 0.9424 0.9632 0.9405 0.9575

Table 4: Slice-wise propagation of the  corrected first slice 
for test cases 2 and 3 in slice-range 25004-25012. 

case 2 case 3
metric DLerr GC GS GC GS

JI 0.9073 0.9246 0.9321 0.9216 0.9262
DC 0.9514 0.9608 0.9648 0.9592 0.9617

NSD 0.8850 0.9306 0.9292 0.9275 0.9190
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Figure 13: Results prior and post propagating the 
corrections from slice to slice. By adding the missing part 
thanks to FG/BG marker from previous slice, the JI is 
increased from JIprev=0.8624 to JIpost=0.8971. 

Comparing test case 0 to 1 and test case 2 to 3 it 
becomes obvious, that results drop a bit. 
Consequently, the fitness function decreases in 
quality, if not even the axial direction is correct and 
all segmentation is solely performed on input image 
edges, see Fig. 14.  

  

Figure 14: With correct DL results (left), the fitness 
function shows sharp edges in the test area, while for one 
axial hit (middle) and zero hits (right) the missing liver part 
is vanishing, marked with red arrows.  

The slice-wise automated propagation of user 
corrected slices is applicable for GS strategy too as 
compared in Tables 3-4, thereby even outperforming 
the Graph cut approach. For case 0 the  JIprev=0.9176 
is increased to JIpostGS=0.9584 while JIpostGC=0.9403 is 
around 1.8% below.  

Analysing the FG/BG ratio it becomes obvious, 
that most regions still show 100% congruency with 
either FG or BG and for the in-between regions, 
𝜇௣௥௢௕ிீ ൌ 230.75  and 𝜇௣௥௢௕஻ீ ൌ 24.24 
recpectively indicate, that at high resolution of the 
tomographic volume in z-direction, the corrected 
results of the previous slice can be applied in a very 
robust way. With GS propagation, the one and zero 
hit cases (0/2 and 1/3) perform at very comparable 
accuracy, see Fig. 15 for slice #25012 in test case 1 
with the object borders strong enough for GS 
fragmentation even in case the DL models lack 
correct results.  

Figure 15: For the test case with zero hit count, shows still 
borders strong enough to facilitate result-propagation with 
GS for significantly improved accuracy.  

6 DISCUSSION 

Preparing results of binary segmentation together 
with edge information of the original slices allows the 
utilization of GC or GS as generic tool for user-
guided post-processing. In case of significant 
misclassification, results from DL models or other 
segmentation strategies can be corrected in a post-
processing step by experienced analysts. Thus, one 
can benefit from the high classification accuracy of 
well-trained DL models and yet overrule the black 
box outcome in case of obvious discrepancies.  

The trade-off in quality of the GC method with 
seeds derived from the DL results is marginal due to 
fitness function weights optimized by ES. Utilizing 
the same fitness function, the trade-off for GS is to be 
considered even lower.  

Propagation of corrected slices as pattern mask to 
the subsequent slices for automated post-processing 
allows for significant reduction in user interaction, 
yet featuring high quality result. Thereby, GS 
outperforms GC w.r.t. both, accuracy and robustness. 
This is the fundament for innovation in user-guided 
image processing, thereby incorporating the accuracy 
and precision of well-trained DL models together 
with adequate interaction paradigms for user-guided 
post-processing in rare cases of error.   

Although the trade-off in accuracy of GC post-
processing is marginal compared to particular DL 
models, there is still potential for further 
improvement. Instead of constructing the pixel graph 
with N4 adjacency based on vertical and horizontal 
edges derived from the fitness function, one can 
extend to N8 additionally incorporating diagonal 
edges to overcome the GC tendency of straight edges 
and discrepancies in narrow region areas. The same 
improvement is applicable to GS strategy. 

With respect to the user interaction, instead of 
mouse-based FG and BG pixel-area masking for GC, 
the skeleton graph could be manipulated too, i.e. sub-
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tree parts removed by selection, thus further 
improving efficiency. 

7 CONCLUSION AND OUTLOOK 

In diagnostic domains with initial lack of training 
data, DL models cannot be trained at highest accuracy 
from the very beginning. Yet, both the GC and the GS 
post-processing allow to post-process routine datasets 
and thus allow for steady improvement and adaption 
of the DL models if iteratively trained on the enlarged 
reference data. The chicken-egg problem of an 
insufficient amount of training data in the DL domain 
tackling new diagnostic domains is conquered by 
applying the proposed strategy. 

Future test runs will focus on different imaging 
modalities and anatomies as well as on low-data DL 
training tasks with incrementally enriching the 
database with GC or GS post-processed reference 
segmentations.  

To conclude, the proposed method shows a very 
high potential for application in medical diagnostics, 
meeting the needs of a real hospital environment, i.e. 
large number of patients and highly accurate 
segmentation. The generic approach does not require 
adaptions on the network architecture or training 
process and thus is applicable to both, arbitrary deep 
learning models and arbitrary diagnostic domains.  
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