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Abstract: Computer vision has a wide range of applications, and the current demand for intelligent embedded 
terminals is increasing. However, most research on CNN (Convolutional Neural Network) detectors did not 
consider mobile devices' limited computation and did not specifically design networks for mobile devices. 
To achieve an efficient object detector for mobile devices, we propose a lightweight detector named 
Lightweight SSD. In the backbone part, we design our MBlitenet backbone based on the Attentive linear 
inverted residual bottleneck to enhance the backbone's feature extraction capability while achieving the 
lightweight requirements. In the detection neck part, we propose an efficient feature fusion network CFPN. 
Two innovative and useful Bag of freebies named BLL loss (Both Localization Loss) and GrayMixRGB are 
applied to the Lightweight SSD’s training procedure. They can further improve detector capabilities and 
efficiency without increasing the inference computation. As a result, Lightweight SSD achieves 74.4 mAP 
(mean Average Precision) with only 4.86M parameters on PASCAL VOC, being 0.2x smaller yet still more 
accurate 3.5 mAP than the previous best lightweight detector. To our knowledge, the Lightweight SSD is 
the state-of-the-art real-time lightweight detector on mobile devices with the edge Application-specific 
integrated circuit (ASIC). Source Code will be released after paper publication. 

1 INTRODUCTION 

The CNN-based object detectors are commonly used 
in practical scenarios, including security monitoring, 
unmanned driving, searching for free parking spaces 
via cameras. The detector usually consists of three 
parts: the backbone, the detection neck part, and the 
detection part. The backbone part is for feature 
extraction, the neck part is for feature fusion, and 
the detection part is for object detection or instance 
segmentation. 

Many networks can be used as a backbone, 
containing both large networks like Resnet-101 (He 
et al., 2015) and lightweight networks like 
Mobilenet (Howard et al., 2017). The lightweight 
networks mean smaller receptive field, faster 
running time, and smaller parameters than the large 
networks. The detection neck part is used to fuse the 
semantic information and feature information 
between multiple feature maps, including FPN (Lin 
et al., 2017), PAN (Liu et al., 2018). It is necessary 
to use the detection neck part to improve the 

detector’s accuracy rate. For the detection part, the 
typical examples are one-stage detectors and two-
stage detector. One-stage detector directly predicts 
the classification and localization of the inputs. It is 
real-time and fast in device with GPU. Famous one-
stage detectors are SSD (Liu et al., 2016), YOLO 
(Redmon et al., 2016, 2017, 2018). Two-stage 
detector is different from the one-stage detector. In 
the first step, the two-stage detector predicts if the 
object in the detection boxes and localization 
regression, and the second step completes 
classification and localization. 

A two-stage detector with a heavy detection part 
leads to more accuracy, but it is too much computing 
overhead to use the two-stage detector in a mobile 
device. 

To balance the mobile device’s computing-
ability and detector’s accuracy, we have to design a 
detector that operates in real-time on a mobile 
device. To our knowledge, the best detector for a 
mobile device should have a lightweight backbone 
with persuasive receptive field ability, a fused 
detection neck part, and a one-stage detection part.  
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Figure 1: Model Parameters vs VOC accuracy - Lightweight SSD achieves 74.4 mAP with only 4.86M parameters on 
PASCAL VOC, being 0.2x smaller yet still more accurate 3.5 mAP than the previous best lightweight detector Pelee. 

This inspires us to design a new lightweight detector 
named Lightweight SSD. Besides, good detectors in 
mobile devices should be easy to train in less GPU. 
This means Bag of freebies methods of object 
detection during the detector training is 
indispensable. 

This paper aims to design a real-time and 
lightweight detector for mobile devices. 
Furthermore, this detector is easy to train in only a 
few GPUs and easily used. To some extent, anyone 
who uses  one GPU to train and uses the mobile 
device to test can achieve real-time, high quality 
results, as the Lightweight SSD results are shown in 
Fig.1. In summary, our contributions are two-fold: 
1. We propose the innovated and efficient object 
detectors Lightweight SSD. It contains a new 
lightweight backbone and a new detection neck part 
whose names are MBlitenet and CFPN (Circle 
Feature Pyramid Networks), respectively. It makes 
the detector more accurate in mobile devices and can 
be trained fast in limited computation, i.e. only one 
or two 2080Ti GPUs.  
2. We verify the influence of “Bag of freebies” 
methods of object detection during the detector 
training, like Mosiac (Bochkovskiy et al., 2020), 
focal loss (Lin et al., 2017). Furthermore, we 
propose two new Bag of freebies methods, including 
BLL (Both Localization Loss) and GrayMixRGB. 
They are useful for the detector's accuracy and not 
increase the operation parameters. 
 
 
 

2 RELATED WORK 

Object Detection Models: Object detection refers 
to identifying whether there is an object of interest 
from a new image and determining its location and 
classification. Object detection models are used for 
object detection, which usually includes one-stage 
detectors and two-stage detectors. Standard one-
stage detectors are SSD (Liu et al., 2016), YOLO 
(Redmon et al., 2016, 2017, 2018). One-stage 
detector directly predicts the localization and 
classification of objects from the bounding boxes in 
the feature map. On the contrary, a two-stage 
detector first generates a series of sparse candidate 
frames on the input image through a heuristic 
method or a Convolutional Neural Network. It then 
extracts the feature values of these candidate frame 
regions. Finally, it predicts localization and 
classification of objects, such as R-FCN (Region-
based Fully Convolutional Network) (Dai et al., 
2016), Fast RCNN (Region Convolutional Neural 
Network) (Girshick, 2015), Faster RCNN (Ren et 
al., 2015). Intuitively, a one-stage director is an end-
to-end object detector and can realize real-time 
object detection. The two-stage director's processes 
are complex but have competitive accuracy. In this 
work, we utilize a one-stage detector that focuses on 
efficiency because of limited computing ability in a 
mobile device. 

Backbone Networks for Object Detection: To 
design a lightweight detector, the small backbone 
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networks are necessary. Some famous small 
networks often are used as the backbone in light 
detectors, such as Mobilenetv1/v2/v3 (Howard et al., 
2017, 2018, 2019), ShuffleNet (Zhang et al., 2018). 
The Mobilenet series proposed depth separable 
convolution, which decreases the computing 
parameters, and the ShuffleNet proposed channel 
shuffle and grouped convolution also focus on 
reducing computing. Small networks for 
classification or object detection's backbone part 
need different attributes of networks. Therefore, it is 
not appropriate to directly use a small network for 
classification as the backbone of object detection. In 
this work, we consider the drawbacks of previous 
different lightweight backbone networks and 
propose a new lightweight backbone named 
MBlitenet for the lightweight detector. 

Detection Neck Part for Detection Models: 
Detection neck parts mainly represent feature fusion 
networks, which improve detection accuracy by 
fusing the feature information from multiple 
different scale feature maps. Feature fusion 
networks in object detection attract much research 
efforts, and there are some feature fusion networks 
such as FPN (Lin et al.,2017), PAN (Liu et al.,2018), 
and BiFPN (Tan ET AL.,2020). FPN merges feature 
information of different scales to form a feature 
pyramid. PAN and BiFPN combine feature 
information from a couple of feature pyramids in 
order. In our work, we propose a circle feature 
pyramid network (CFPN) to recycle different feature 
pyramid information for fruitful feature fusion and 
better object detection accuracy. 

Bag of Freebies: A CNN-based object detector 
contains two procedures: training and inference. 
Once we have completed the training and obtained a 
better model, we will use it as the inference model. 
We can optimize the model to get more accuracy 
and more accessible training procedure from two 
aspects: training tricks and some methods only 
increase training time without increasing inference 
cost. The above two parts are usually called "Bag of 
freebies". 

The data augmentation uses some methods to 
make the training dataset bigger. They have more 
information dimensions for model generalization, 
such as random erase (Zhong et al., 2017), CutOut 
(DeVries et al.,2017), and Mosiac (Bochkovskiy et 
al.,2020). In order to solve the problem of uneven 
data distribution, another method in Bag of freebies 

named hard negative example mining (Sung et al., 
1998) method is adopted in the training procedure. 
The last Bag of freebies is designing better loss 
functions, including Bounding Box regression and 
classification for improving model accuracy and 
easy training. Like the focal loss (Lin et al., 2017) 
method, the classification loss function can balance 
the negative and positive samples and consider the 
classification difficulty differences. The traditional 
Bounding Box regression loss function is L1 loss 
function, which does not consider the intersection-
over-union (IOU) between bounding boxes and 
ground truth boxes. Therefore, some new Bounding 
Box regression loss functions that care about the 
intersection-over-union (IOU) were proposed, such 
as IOU loss (Yu et al., 2016), GIOU loss 
(Rezatofighi et al., 2019). In this work, we propose 
two new Bag of freebies methods, including BLL 
loss and GrayMixRGB to improve detectors' 
accuracy. 

3 LIGHTWEIGHT SSD 

Based on traditional SSD (Single Shot MultiBox 
Detector), we have developed a new object detector 
named Lightweight SSD. In this section, we will 
discuss the detector architecture and some new parts 
in this detector. 

3.1 Lightweight SSD Architecture 

The Lightweight SSD architecture is shown in Fig.2, 
which contains three parts: the backbone, the 
detection neck part, and the detection part. Fig.2 
includes the Bag of freebies in the Lightweight 
SSD’s training process. We proposed a new 
lightweight backbone named MBlitenet for feature 
extraction, and a new detection neck part named 
CFPN (Circle Feature Pyramid Networks) for 
feature fusion. The detection neck part takes the 
level 3-7 feature maps from the backbone network 
and applies the feature fusion. After that, these fused 
feature maps are fed to the detection part to get the 
object class and bounding box regression 
respectively. 

3.2 Backbone Network: MBlitenet 

In this subsection, we introduce a new lightweight 
backbone network named MBlitenet. The 
architecture of MBlitenet is composed of both 
traditional linear inverted residual bottleneck  
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Figure 2: Lightweight SSD Architecture (above) and the Bag of freebies in Lightweight SSD’s training process (below). 

(Sandler et al., 2018) and the attentive linear 
inverted residual bottleneck. The detailed 
convolutional operations inside these two parts are 
mixed depthwise convolutions that will be 
introduced in chapter 3.2.2. 

3.2.1 Attentive Linear Inverted Residual 
Bottleneck 

We proposed a novel part named Attentive linear 
inverted residual bottleneck composed of traditional 
linear inverted residual bottleneck (Sandler et 
al.,2018) and spatial attention module (SAM) part 
(Wang et al., 2019). 

The traditional linear inverted residual 
bottleneck performs feature dimensionality expend 
first, and then feature dimensionality reduction 
(Sandler et al., 2018). The feature maps after 
dimensionality reduction use linear functions. Fig.3 
shows a traditional linear inverted residual 
bottleneck in the right side. The spatial attention 
module part uses the pooling method to merge the 
channels of feature maps. After that, get an attention 
map for enhancing the original feature maps. 

After adding the spatial attention module part to 
the traditional linear inverted residual bottleneck, 
our attentive linear inverted residual bottleneck will 
focus more attention on the objected area. This 
solves the problem that the traditional linear inverted 
residual bottleneck does not have the spatial 
attention information. And this helps the bottleneck 
increase the focus on the prominent part of the  
 

 
Figure 3: Attentive linear inverted residual bottleneck  
(left side) and Traditional linear inverted residual 
bottleneck (right side). 

image, thereby improving the detector’s object 
detection accuracy. 

Fig.3 shows an attentive linear inverted residual 
bottleneck in the left. The spatial attention module 
part is used in the middle of the bottleneck. After the 
mixed depthwise convolution, the spatial attention 
module performs average pooling and maximum 
pooling on the feature maps to obtain two 2-
dimensional images. It then merges these two 
images and uses a standard convolution operation to 
get the final 2-dimensional spatial attention image. 
The 2-dimensional spatial attention image obtained 
by the SAM module is subjected to matrix 
multiplication with the original feature image. And 
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then the new feature image obtained is used as the 
input of the next pointwise convolution layer of the 
network. Table 1 is the operations process of the 
attentive linear inverted residual bottleneck. 

Table 1: Attentive linear inverted residual bottleneck – 
The dwise represent the depthwise convolution. The t 
represents the expansion factor. The k and k’ represent the 
output channels and s represents stride. 

Input  Operation  Output  

h w k× ×  1x1 conv2d，
ReLU 

( )h w tk× ×  

( )h w tk× ×  3x3,5x5dwise, 
ReLU ( )h w tk

s s
× ×

( )h w tk
s s

× ×
 

spatial attention 
module ( )h w tk

s s
× ×

( )h w tk
s s

× ×
 

Linear 1x1 
conv2d 

'h w k
s s

× ×

3.2.2 Mixed Depthwise Separable 
Convolutions 

Depthwise Separable Convolutional is an efficient 
block for many lightweight neural network 
architectures (Howard et al., 2017). Therefore, we 
use it as a fundamental convolution part of the 
present work. Depthwise Separable Convolutional 
includes depthwise convolution and pointwise 
convolution two parts. The depthwise convolution 
part applies a single convolutional filter per input 
channel to realize lightweight. The pointwise 
convolution is 1×1 convolution, which is used to 
fuse the features through different channels after 
depthwise convolution. 

Furthermore, to facilitate our module to get a 
larger receptive field, we use Mixed Convolution 
(Tan et al.,2019) to replace the traditional depthwise 
convolution in Depthwise Separable Convolution, 
and called this new convolution operation Mixed 
Depthwise Separable Convolution. The architecture 
of Mixed Depthwise Separable Convolution is in 
Fig.4. Mixed Convolution means not only use one 
size kernel filter but apply kinds of different kernel 
sizes to get a larger receptive field. In this paper, we 
apply both 3×3 and 5×5 kernel filters in mixed 
depthwise convolution. The operation is splitting the 
input tensor into two parts in channels, and one part 
uses 3×3 kernel's depthwise convolution. The other 
part uses 5×5 kernel's depthwise convolution. 
Finally, we merge these two parts to finish mixed 
depthwise convolution. 

 
Figure 4: Mixed Depthwise Separable Convolution. 

Standard convolution gets an input 
tensor ,I ID D M× ×  and the output tensor 
is I ID D N× × . The kernel size is .K KD D M N× × ×  
The computation cost of standard convolution is 

I I K KD D M N D D× × × × ×  . 
In the same situation, the Mixed Depthwise 

Separable Convolution has two steps. Firstly, mixed 
depthwise convolution part’s computation cost is 
equation (1): 

1 1 2 2

1 1 2 2

/ 2 + / 2
= / 2

I I K K I I K K

I I K K K K

D D M D D D D M D D
D D M D D D D

× × × × × × × ×
× × × × + ×（ ）

 (1)

Next, the pointwise convolution part’s 
computation cost is equation (2): 

1 1I ID D M N× × × × ×  (2)

The computation cost of Mixed Depthwise 
Separable Convolution is equation (3): 

1 1 2 2/2I I K K K K I ID D M D D D D D D M N× × × × + × + × × ×（ ）   (3)

From the equations, it is clear that the Mixed 
Depthwise Separable Convolution is 7~8 times less 
computation than the standard convolution. 

3.2.3 MBlitenet Architecture 

Only one kind of bottleneck cannot fully utilize the 
feature extraction capabilities of the model. 
Therefore, the architecture of MBlitenet is in Table 
2, which is composed of a traditional linear inverted 
residual bottleneck, mixed linear inverted residual 
bottleneck, and attentive linear inverted residual 
bottleneck. Traditional linear inverted residual 
bottleneck and attentive linear inverted residual 
bottleneck have been introduced in chapter 3.2.1. 
The mixed linear inverted residual bottleneck only 

Input

Dwise 5 5

concat

Dwise 3 3

Conv 1 1
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replaces the Depthwise Separable Convolutional in 
traditional linear inverted residual bottleneck to the 
Mixed Depthwise Separable Convolution. 

Table 2: MBlitenet architecture - Each line represents a 
bottleneck or a regular convolution, repeated n times. The 
c represents the output channels of each layer. The first 
layer of each bottleneck has a stride s and all others use 
stride 1. The t represents the expansion factor of each 
bottleneck. 

Input Operation t c n s 
2300 3×  conv2d - 64 1 1 

2300 64×  conv2d - 32 1 2 
2150 32×  bottleneck 1 16 1 1 
2150 16×  bottleneck 6 24 2 2 

275 24×  attentive-
bottleneck 

6 32 3 2 

238 32×  mix-
bottleneck 

6 64 4 2 

219 64×  attentive-
bottleneck 

6 96 3 1 

210 96×  mix-
bottleneck 

6 160 3 2 

25 160×  attentive-
bottleneck 

6 320 1 1 

25 320×  conv2d 
1x1 

- 1280 1 1 

25 1280×  Avgpool 
5x5 

- - 1 - 

21 1280×  Conv2d 
1x1 

- k -  

3.3 Detection Neck Part: CFPN 

Based on the traditional FPN (Feature Pyramid 
Networks) (Lin et al., 2017), and think about the 
actual biological neuron connection process, a 
specific neuron between different neurons may be the 
input or output node other neurons. We proposed a 
new CFPN (Circle Feature Pyramid Networks) that 
circularly fuses the feature information so that 
different scales' feature information is better 
integrated. 

The circle feature fusion network of CFPN and 
traditional FPN are shown in Fig.5(b) and Fig.5(a), 
respectively. The purpose of CFPN is to fuse feature 
information of different feature maps scales. 

As shown in Fig.5 (b), 3 4 7( , ,..., )in in in inP P P P=  
represents the level of 3-7 feature maps from 
backbone network, and intermediate fusion layer is 

3 4 7( , ,..., )mid mid mid midP P P P= . Finally, the output feature 
maps from CFPN is 3 4 7( , ,..., )out out out outP P P P= . 

 
Figure 5: FPN and CFPN feature fusion networks. 

The procedure of CFPN (Circle Feature Pyramid 
Networks) is as follows equation (4): 

7 7

6 6 7 7

3 3 4 4

Resize( ) Resize( )
...

Resize( ) Resize( )

mid in

mid in mid out

mid in mid out

P P
P P P P

P P P P

=

= + +

= + +

 
(4)

After obtaining the intermediate layer result, the 
final output feature fusion result is obtained from the 
intermediate layer result: 

7 7 6

6 6 5

3 3

( Resize( ))
( Resize( ))

...
( )

out mid out

out mid mid

out mid

P Conv P P
P Conv P P

P Conv P

= +

= +

=

 
(5)

where Resize is usually upsampling or 
downsampling for resolution matching, and Conv is 
usually convolution for feature processing. 

3.4 Bag of Freebies: BLL Loss and 
GrayMixRGB 

3.4.1 BLL (Both Localization Loss) Loss 

The traditional SSD object detection algorithm's loss 
function contains two parts: classification loss and 
position regression loss. 

The classification loss function has been 
optimized for Focal loss. For the position regression 
loss function, the traditional object detection 
algorithms usually use the Smooth L1 loss function. 
However, in the evaluation of the detection boxes, 
the IOU (Intersection over Union) is used to 
evaluate the prediction box's quality compared with 
the ground truth box. The Smooth L1 loss and the 
value of IOU are not equivalent. To solve this 
problem, Jiahui Yu et al. (Yu et al., 2016) proposed 
IoU Loss in 2016. However, IoU Loss keeps zero 
when the prediction box and the ground truth box do 
not intersect. It cannot reflect the distance between 
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the prediction box and the ground truth box, and it 
cannot be derived at this time. 

To solve the above-mentioned problems of IoU 
Loss, Zhaohui Zheng et al. proposed DIoU Loss and 
CIoU Loss (Zheng et al.,2020) in 2020. The formula 
of DIoU Loss is defined as follows equation (6): 

2

2
( , ) 1 a bDIoU loss IoU
c

ρ= − +  (6)

Where, ρ represents the Euclidean distance, a,b 
represents the center point of the prediction box and 
ground truth box respectively, c represents the 
diagonal distance of the smallest bounding rectangle 
of the prediction box A and the ground truth box B. 

The formula of CIoU Loss is defined as follows 
equation (7): 

2

2

2
2

( , ) 1

(1 )
4 (arctan arctan )

gt

gt

a bCIoU loss IoU v
c

v
IoU v

w wv
h h

ρ α

α

π

= − + +

=
− +

= −

 
(7)

Where, gtw  and gth represent the width and 
height of the ground truth box respectively, w and h 
represent the width and height of the predicted box. 

Regarding the IoU Loss, DIoU Loss, and CIoU 
Loss mentioned above, observing their formulas, we 
can see that their formulas have common points. 
They all contain 1 IoU−  part, mainly for the overlap 
area of the ground truth box and the predicted box. 
The formula’s last part focuses on the center point 
distance or aspect ratio between the ground truth 
box and the predicted box. In the position regression 
loss function, the center point distance and aspect 
ratio between the ground truth box and the predicted 
box is the part that the traditional Smooth L1 loss 
function or L2 loss function are concerned about. 

Therefore, we innovatively propose the 
BothLocalizationLoss (BLL) position regression 
loss function. Considering the overlap area, center 
point distance, and aspect ratio of the ground truth 
box and the predicted box, the formula is simplified 
as much as possible to facilitate practical application 
and implementation. The formula is defined as 
follows equation (8): 

2
2

 1 L lossBothLocalizationLoss IoU
c

= − +  (8)

Where, c represents the diagonal distance of the 
smallest bounding rectangle of the prediction box 
and the ground truth box. 2c  helps unify the 2  L loss  
and 1 IoU−  to the similar values. 

The formula contains both the 1 IoU− part to 
focus on the overlapping area of the prediction box 
and the ground truth box, and the Smooth L1 loss 
function or the L2 loss function, which is used to 
focus on the center point distance and aspect ratio 
between the ground truth box and the predicted box. 

The most crucial point is that compared with 
CIoU Loss, it dramatically reduces the complexity 
of the formula and the complexity of the 
implementation code, making it more suitable for 
multiple applications in the actual field. 

3.4.2 Data Augmentation: GrayMixRGB 

In this section, we will perform a new data 
augmentation method named GrayMixRGB. As we 
all know, the color image and grayscale image of the 
same picture contain the same objects. This is very 
easy to recognize for humans. However, it is 
difficult for the CNN-detector model to maintain the 
model's robustness, enabling the model to recognize 
the same target under both grayscale and color 
images. In order to solve this problem, we propose 
this new data augmentation method GrayMixRGB. 
It can make the training set images contain the color 
information and gray information at the same time. 

The process of GrayMixRGB dealing with the 
training set images is three steps: Firstly, getting an 
image from the training set. Secondly, replacing the 
minimum value from the image’ RGB values to the 
gray value. Finally, save the new image. The 
program code of this process is as follows: 

begin 
img = RGBimage 
imggray = grayimage 
height = img’s height 
width = img’s width 
for i,j in range height,width: 
for k in range(3): 

   # find the minimum value of RGB 
     if img[i,j,k] < min: 
       min=minimum of RGB  
       index=index of minimum 
if imggray[i,j] > min: 

  # change minimum to gray value 
img[i,j,index]=imggray[i,j] 

End. 

3.4.3 Additional Bag of Freebies: Mosaic 

We innovatively combine the Mosaic data 
augmentation method used in YOLOv4 
(Bochkovskiy et al., 2020). Mosaic is a data 
augmentation method by mixing 4 training images. 
The example is shown in Fig.6. It also mixes the 
semantics of the four images simultaneously. The 
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purpose is to make the detected targets exceed their 
general semantics and make the model have better 
robustness. Simultaneously, doing Mosiac enables 
the batch normalization (BN) operation during 
training to count 4 images at a time, which can 
sufficiently reduce the size of the largest mini-batch 
during training. 

 
Figure 6: Mosaic data augmentation method. 

4 EXPERIMENTS 

In this section, we first evaluate the effects of our 
proposed backbone MBlitenet and the CFPN part 
with SSD detectors on both MS COCO (test-dev 
2017) dataset (Lin et al., 2014) and PASCAL VOC 
(07+12trainval and 07 test) dataset (Everingham et 
al.,2010). We then show the performance of the 
other parts of Lightweight SSD on VOC 
(07+12trainval and 07test) dataset. Finally, we 
compare our Lightweight SSD detector to other 
lightweight detectors on VOC (07+12trainval and 
07test) dataset. The deep learning platform uses 
Tensorflow. 

4.1 Evaluation Effect of Backbone and 
the CFPN 

In this paper, we proposed the backbone MBlitenet 
and the detection neck part CFPN in Lightweight 
SSD detector. We expect to know how much each of 
them can contribute to the detector’s accuracy and 
efficiency. Table 3 compares the effect of the 
backbone MBlitenet and the CFPN in both COCO 
and VOC dataset. All backbone and detection neck 
part in Table 3 are based on SSD detector. Starting 
from the backbone part, our proposed MBlitenet’s 
accuracy is 1.1 mAP better than Mobilenet v2 
(Sandler et al., 2018) and 2.5 mAP better than 
Mobilenet (Howard et al., 2017) in VOC dataset 

with slightly less parameters. This means the 
MBlitenet is a better backbone with both good 
accuracy and lightweight for mobile device. At the 
same time, our proposed detection neck part CFPN’s 
accuracy is 1.1 mAP better than traditional FPN (Lin 
et al.,2017) method and 3.5 mAP better than no use 
feature fusion method. These results suggest that the 
MBlitenet backbone and the CFPN detection neck 
part are both essential to our final lightweight 
Lightweight SSD detector in mobile device. 

Table 3: Evaluation effect of Backbone and the CFPN in 
COCO and VOC - The mAP (VOC) represents the mAP 
results in VOC dataset. The mAP (COCO) represents the 
mAP results in COCO dataset. The “-” means no relevant 
data. 

 mAP 
(VOC) 

mAP 
(COCO) 

Parameters 

Mobilenet 68 19.3 6.8M 
Mobilenet v2 69.4 21.5 6.2M 

Mobilenet v2 
+ FPN 

71.9 - 6.6M 

MBlitenet 70.5 22.3 4.16M 
MBlitenet  

+ FPN 
72.9 - 4.6M 

MBlitenet  
+ CFPN 

74 - 4.86M 

4.2 Evaluation Effect of the Bag of 
Freebies 

In this paper, we proposed two Bag of freebies 
methods and apply Mosiac method to our detector. 
We need to evaluate how effective these methods 
are for our Lightweight SSD detector. The Bag of 
freebies will not affect the parameters of the 
detectors, but only affect the accuracy. Therefore, in 
the comparison experiment, we only focus on 
accuracy of the detectors. Table 4 compares the 
effect of different Bag of freebies used in the 
Lightweight SSD detector on VOC dataset. The 
basic Lightweight SSD detector contains the 
MBlitenet backbone, the CFPN detection neck part, 
and the SSD prediction part. Table 4 shows that 
after applying BLL Loss as the localization 
regression loss, the accuracy is improved 0.1 mAP 
in VOC dataset.  

After applying GrayMixRGB data augmentation, 
the accuracy is improved 0.2 mAP than the basic 
Lightweight SSD in VOC dataset. The BLL Loss 
helps the prediction bounding boxes position more 
exact, and the GrayMixRGB data augmentation 
makes the dataset contain the gray information that is 
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Table 5: Lightweight SSD performance on PASCAL VOC. 

Model Backbone Input Parameters mAP 

Faster R-CNN VGG-16 300*300 138.5M 73.2 

SSD300 VGG-16 300*300 141.5M 77.5 

SSD300 Mobilenet 300*300 6.8M 68 

SSD300 Mobilenet v2 300*300 6.2M 69.4 

SSD300 Mobilenet v2 
+ FPN 

300*300 6.6M 71.9 

YOLOv2 Darknet-19 544*544 67.43M 73.7 

YOLOv3 Darknet-53 608*608 62.3M 84.1 

YOLOv3 Mobilenet 300*300 - 66 

YOLO Nano - 300*300 16M 69.1 

Tiny YOLOv2 Tiny Darknet 416*416 15.86M 57.1 

Tiny YOLOv3 Tiny Darknet 416*416 12.3M 58.4 

ThunderNet SNet49 320*320 - 70.1 

Pelee PeleeNet 304*304 5.43M 70.9 

Lightweight 
SSD(ours) 

MBlitenet 
+ CFPN 

300*300 4.86M 74.4 

 

better for the detector's robustness. However, the 
Mosaic data augmentation does not perform well in 
our detector. The reason is that some images after 
the Mosaic data augmentation will only contain 
some meaningless ground truth boxes but not real 
semantic objects in the boxes. 

Table 4: Evaluation effect of the Bag of freebies in 
PASCAL VOC –  The “” represents the Lightweight 
SSD detector apply this Bag-of-Freebie. The “ - ” 
represents the Lightweight SSD detector does not apply 
this Bag-of-Freebie. 

BLL Loss GrayMixRGB Mosaic mAP 

- - - 74 

 - - 74.1 

-  - 74.2 

- -  72.7 

  - 74.4 

4.3 Lightweight SSD for Object 
Detection 

We evaluate our Lightweight SSD on PASCAL 
VOC dataset, which contains the 12+07 trainval data 
as our training set and 07 test data as our test 
dataset. The results are exhibited in Table 5. The 
model is trained using Momentum optimizer with 
momentum 0.9 and with batch size 126 on 3 Nvidia 
GeForce RTX 2080 Ti GPUs. The learning rate is 
the cosine decay learning rate with the base learning 
rate 0.1, warm up learning rate 0.0333, and the total 
steps are 500k. For the activation function, we use 
the ReLU activation. We also apply commonly-used 
focal loss with =0.25α  and =2.0γ .  

Lightweight SSD exceeds the previous state-of-
the-art lightweight detectors. Lightweight SSD 
achieves 74.4 mAP with only 4.86M parameters on 
PASCAL VOC, being nearly 30% smaller than the 
Mobilenet-SSD and surpassing Mobilenet-SSD 
(Wang et al.,2018) by 6.4 mAP. The Lightweight 
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SSD also performs better than the Tiny YOLO-
series by almost 6 mAP and lighter 50% than Tiny 
YOLO-series (Redmon et at., 2017). Moreover, 
Lightweight SSD performs better than the two-stage 
detector ThunderNet (Qin et al., 2019) by 4.3 mAP. 
As a result, Lightweight SSD is 0.2x smaller yet still 
more accurate 3.5 mAP than the previous best 
lightweight detector Pelee (Wang et al., 2018).  

Furthermore, the Lightweight SSD achieves a 
competitive accuracy to the state-of-art large 
detectors such as YOLOv2 (Redmon et at., 2017), 
Faster R-CNN  (Liu et al., 2016), and SSD300 (Liu 
et al., 2016), but really decreases the computation 
cost. 

The models’ inference speed in Table 6 is 
obtained in only 1 Nvidia GeForce RTX 2080 Ti 
GPU, which can represent the mobile devices with 
the edge ASIC. Because the edge ASIC means the 
GPU specially designed for the mobile device  

Table 6:  The speed for different model on RTX 2080 Ti -
The speed represents that the detector infers one image’s 
time. 

Model Backbone Input Speed 
(ms) 

SSD300 Mobilenet 300*300 23 
SSD300 Mobilenet v2 300*300 23.5 
SSD300 Mobilenet v2 

+ FPN 
300*300 24 

YOLOv3 Darknet-53 608*608 46 
Lightweight 
SSD(ours) 

MBlitenet  
+ CFPN 

300*300 23.7 

From the Table 5 and the Table 6, the 
Lightweight SSD is compared to a lot of previous 
detectors in accuracy, parameters and speed. It 
performs a much better balance between accuracy 
and computation cost. Lightweight SSD is a very 
efficient detector to apply on practical mobile 
devices. 

5 CONCLUSIONS 

This paper proposes a lightweight and efficient 
object detector named the Lightweight SSD for 
mobile devices. In the backbone part, we analyse 
past lightweight backbone networks and design our 
MBlitenet backbone based on their advantages and 
circumvent their shortcomings. In the detection neck 
part, we propose an efficient feature fusion network 
CFPN. Two innovative and useful Bag of freebies 
named BLL loss and GrayMixRGB are applied to 

the Lightweight SSD detector to further improve 
detector capabilities and efficiency without 
increasing the inference computation. Lightweight 
SSD achieves a very competitive accuracy with 
particularly less computational cost in mobile 
devices. We hope to consider an efficient object 
detector for both arm and edge ASIC model devices 
in the future. 
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