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Abstract: Stroke patients discharge planning is a complex task that could be carried out by the use of a suitable 
decision support system. Such a platform should be based on unsupervised machine learning algorithms to 
reach the best results. More specifically, in this kind of prediction task clustering learning algorithms seem 
to perform better than the other unsupervised models. These algorithms are able to independently subdivide 
the treated clinical cases into groups, and they can serve to discover interesting correlations among the 
clinical variables taken into account and to improve the prediction accuracy of the treatment outcome. This 
work aims to compare the prediction accuracy of a particular clustering learning algorithm, the Growing 
Neural Gas, with the prediction accuracy of other supervised and unsupervised algorithms used in stroke 
patients discharge planning. This machine learning model is also able to accurately identify the input space 
topology. In other words it is characterized by the ability to independently select a subset of attributes to be 
taken into consideration in order to correctly perform any predictive task.  
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1 INTRODUCTION 

According to the Italian Ministry of Health website, 
approximately 196,000 strokes occur every year in 
Italy, of which 20% are relapses. As defined by the 
World Health Organization, stroke is a "neurological 
deficit of cerebrovascular cause that persists beyond 
24 hours or is interrupted by death within 24 hours" 
(Italian Ministry of Health website, 2020). 

Stroke is caused by an interruption of 
oxygenated blood supply due to an occlusion or a 
rupture of the arteries supplying the brain. As a 
result, brain functions controlled from that area 
(limb movement, language, vision, hearing or other) 
are partially or totally impaired or lost (Donnan et 
al., 2008). About 10-20% of people with stroke die 
within a month and another 10% within the first year 
after the event. Only 25% of stroke survivors 

recover completely, 75% survive with some form of 
disability, and half of these suffer from a deficit so 
severe that they lose self-sufficiency. 

Major risk factors include age, high blood 
pressure, tobacco smoking, obesity, high blood 
cholesterol, diabetes mellitus, a previous TIA or 
stroke, and atrial fibrillation. Diagnosis is performed 
by a physical examination and it is supported by 
neuroimages (CT and/or MR). 

During hospitalization, different pharmacological 
and/or interventional treatments are put in place to 
preserve vital functions and minimize brain damage. 
The National Institutes of Health Stroke Scale 
(NIHSS) is used to assess stroke severity (Putra 
Pratama et al., 2019; Lyden et al., 2009). 

In the discharge phase, it is important to make a 
proper plan, not only to enhance individual recovery, 
but also to reduce the high social burden and the use 
of health system resources (Mess et al., 2016) 
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(Pereira et al.,2014). To help in planning, functional 
outcome after stroke is evaluated using the modified 
Rankin Scale (mRS) which measures the degree of 
disability or dependence in activities of daily living. 
The lower the score the higher the likelihood of 
being able to live at home with a degree of 
independence after being discharged from the 
hospital or a long-term care ward (Saver et 
al.,2010)(Wilson et al.,2002). 

Aim of this paper is to present an innovative and 
effective prediction model for discharge planning, 
based on a machine learning algorithm derived from 
data gathered during hospitalisation in the acute 
phase. 

2 PREVIOUS WORK 

A considerable body of literature exists on the use of 
machine learning algorithms based on the 
assimilation of the data of previously treated clinical 
cases. The accuracy of prediction generally tends to 
increase over time, as new data become available 
(Bishop, 2006). However, there is no algorithm 
capable of providing the best predictive accuracy for 
each category of problem (Alpaydin, 2020). 

Machine learning algorithms can be subdivided 
into supervised and unsupervised. In the supervised 
learning human experts select the correct answers of 
the machine learning model, while unsupervised 
learning does not need the intervention of human 
experts (Alpaydin, 2020). 

Within the unsupervised learning paradigm, it is 
possible to operate a further subdivision between 
symbolic models that seek to reach a formal 
representation of knowledge (using for example 
logical representations, inference rules or decision 
trees) and sub-symbolic models where the acquired 
knowledge is stored in complex representations such 
as artificial neural networks. Clustering learning 
algorithms (Van Hulle, 1989; Kohonen, 1988; 
Kohonen, 1989; Kohonen, 1990) are subsymbolic 
unsupervised models that allow to achieve the best 
results in an unsupervised manner. If a class attribute 
is chosen, such as the length of the hospital stay or 
the outcome expressed using a suitable evaluation 
scale, these algorithms are able to divide the clinical 
cases that can occur in clusters, corresponding to 
hospitalizations that end with the same length of 
hospital stay or with the same outcome. Even if 
these models are not classifiers, after being trained 
with a set of clinical cases used as test sets, they are 
able to assign a test set record to a correct class, 
achieving a considerable high prediction accuracy 

when new treated cases are processed. Among the 
learning cluster algorithms, Kohonen's Self 
Organizing Maps (Kohonen, 1989) have been 
widely used in the health sector, but better results 
can be achieved by using a more adaptive algorithm 
such as Fritzke's Growing Neural Gas (GNG) 
(Fritzke,1994). GNG is an incremental network 
model based on a simple Hebb-like learning rule. 
Unlike previous approaches like the “neural gas” 
method of Martinetz and Shulten (Martinetz and 
Shulten, 1991) (Martinetz and Shulten,1994) this 
model has fixed parameters and it is able to continue 
the learning phase, adding other neural units and 
connections, until a performance goal is achieved. 
By being able to accurately identify the input space 
topology, this model is able to identify the variables 
to be considered in order to effectively operate the 
prediction of a class attribute. 

For example, if the mRS is chosen as class 
attribute (that is the study variable to be predicted), 
the GNG model could predict that a male individual 
aged between 40 and 65, with a particular form of 
diagnosed stroke and treated with certain 
pharmacological therapies, at the end of the hospital 
stay, is able to reach a mRS score of 1. This 
prediction could be made without taking into 
consideration other variables such as risk factors, 
results of instrumental and laboratory tests etc. In 
other cases the same model could need a greater 
number of variables in order to make an accurate 
prediction. 

The GNG model has already been successfully 
used in similar areas, such as in the prediction of the 
length of hospital stay (Lella and Licata, 2017) 

Functional outcome after stroke is related to 
many variables, from biometric data (gender, age, 
weight, pressure levels) to risk profiles, from the 
results of laboratory tests to the results of 
instrumental tests to therapies. 

Given this complex interaction of many 
variables, using machine learning appears to be the 
best solution choosing an unsupervised model that 
can improve its predictive accuracy over time. The 
purpose of these algorithms is to identify over the 
course of time new possible and clinically 
meaningful correlations among the available data. 

This approach has proved particularly effective 
in the clinical setting, especially to predict the 
therapeutic outcome of stroke patients (Zdrodowska, 
2019; Zdrodowska et al., 2018; Chen et al., 2017) 
(Alaiz-Moreton, 2018). The best results were 
obtained through the use of the Random Forest 
algorithm (Breiman, 2001; Alaiz-Moreton, 2018) 
(Tin Kam Ho, 1998; Tin Kam Ho, 1995), an 
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ensemble learning method for classification obtained 
through the aggregation of decision trees, and the 
PART model, a partial decision tree algorithm that 
does not need to perform global optimization like 
other rule based learners (Zdrodowska et al., 2018; 
Ali and Smith, 2006). Excellent results were also 
obtained by using supervised models such as the 
Support Vector Machine (SVM) (Zdrodowska et al., 
2018), a model based on a binary non-probabilistic 
linear classifier (Ben Hur et al.,2001) (Cortes and 
Vapnik, 1995). 

3 METHODOLOGY 

On the basis of the above literature review, it was 
decided to use GNG networks to predict the status 
of stroke patients one day and seven days after 
entering the hospital, as well as at hospital discharge 
and after three months, comparing the results with 
the ones achieved by the best models used in this 
kind of study, i.e. the Random Forest model, the 
PART model and the SVM model. 

The ZeroR model (Witten et al., 2011), the 
OneR (Holte, 1993), the Naive Bayes (John and 
Langley, 1995) and the J48 (Witten et al., 2011) 
were also taken into consideration. 

The ZeroR model is used as a benchmark to 
verify that all the other tested algorithms have been 
configured and used correctly. ZeroR always 
predicts the most frequent class variable in the 
presence of any combination of input variables. 
Given its simplicity, it has generally a much lower 
level of prediction accuracy than the other 
algorithms. If this does not occur, the found result 
may be due to a bad data selection and coding, or to 
a bad configuration of the models. 

The OneR, which stands for "one Rule", is a 
one-level decision tree. In various areas and 
predictive tasks, this model has proved to be much 
more efficient than other more complex models, and 
it is always advisable to check whether the problem 
in question can be effectively treated using this 
model which requires a reduced amount of 
resources. 

The Naive Bayes is a simple probabilistic 
classifier based on applying Bayes' theorem with 
strong (naive) independence assumptions between 
the features. 

The J48 is a decision tree based on the "divide 
and conquer" strategy used recursively. At each 
training step, the node characterized by the highest 
amount of information is selected and split into a 
series of nodes corresponding to some possible 

values that the original node can assume. The 
process ends when all the considered instances refer 
to the same class attribute value. 

The study involved a subset of 20,000 samples 
taken from the Italian subset of the SITS registry 
(Safe Implementation of Treatments in Stroke 
website, 2020), a non-profit, research- driven, 
independent and international monitoring initiative 
for stroke patients. 

Of these, just the data that hold the fields of the 
outcome 24 hours after the patient's access to the 
hospital (Global Outcome 24), the mRS at 7 days 
(Rankin at 7 days), the mRS at hospital discharge 
(Rankin at hospital discharge) and the mRS at 3 
months (Rankin at 3 months) were taken into 
consideration. These three variables were chosen as 
class attributes for the tests. 

The first class attribute is a qualitative clinical 
variable that can take 7 possible values 
("muchBetter", "better", "unchanged", "worse", 
"muchWorse", "dead"). The other three class 
variables can only take the scores 0,1,2,3,4,5 and 6. 

The first subgroup of records, with the global 
outcome at 24 hours specified, consisted of 13008 
records characterized by 69 non class attributes; the 
second subgroup, with the mRS at 7 days specified, 
was made by 10460 records characterized by 99 non 
class attributes; the third subgroup, with the mRS at 
hospital discharge specified, was constituted by 
4989 records characterized by 129 non class 
attributes; the fourth subgroup, with the mRS at 3 
months specified, was made by 10777 records 
characterized by 152 non class attributes. The 
reason why the number of non-class attributes is 
different in the four subsets is that an higher length 
of hospitalization also increases the number of 
available data deriving from further tests performed. 
Therefore, the number of non-class variables that 
can be considered increases. 

The characteristics of the four subsets of records 
are presented in table 1. 

Table 1: Features of the considered data sets. 

Data set Total no.(male,female); avg age(min,max); 
hemorrhagic stroke; ischemic stroke

1–Global 
Outcome 24

13008(6974,6034); 71(14,102); 1902; 
11106 

2–Rankin at 
7 days

10460(5491,4969); 71(14,101); 1376; 
9084 

3–Rankin at 
Hospital 
Discharge

4989(2780,2209); 68(14,102); 557; 4432 

4- Rankin at 
3 months

10777(5685,5092); 71(14,104); 755; 
10022 
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Part of the patient data was incomplete, but it 
was not necessary to perform any type of data 
cleaning due to the data entry performed by a 
codified online form. 

Data were discretized and normalized before 
being processed. All predictive machine learning 
models taken into consideration were trained with 
60% of the samples and tested with the remaining 
40% of the samples. The Weka 3.8.4 platform was 
used to test ZeroR, OneR, J48, Naive Bayes, SVM 
and Random Forest models, while a Java 
implementation was used to test the GNG model. 

The sequential minimal optimization algorithm 
(Platt, 1998) was used to train the SVM model. 

The GNG model was tested with the following 
parameters: 
λ=100, εb=0.2, εn=0.006, α=0.5, αmax=50, δ=0.995. 

The training was stopped when the mean square 
error, i.e. the main of the local square error related to 
each unit (expected distortion error), dropped below 
the threshold of E=0.7. 

4 RESULTS 

The results in terms of prediction accuracy (i.e. the 
number of correct predictions over the total number 
of predictions) are shown in table 2. 

All the tested models reached an higher 
prediction accuracy than the ZeroR model, and the 
OneR model resulted to be the second worst 
algorithm, confirming the complexity of the 
prediction task. Naive Bayes, J48, SVM and PART 
performed better with a low number of training 
records characterized by more non class attributes. 

The best results were obtained by the GNG 
model and by the Random Forest model, followed 
by PART and SVM. The result confirmed the 
correctness of the choice of the unsupervised models 
over the supervised ones and the chosen clustering 
learning model proved to be more performing than 
the Random Forest ensemble model. 

Once trained, it is also possible to use the GNG 
model to identify which non-class attributes are 
linked to particular values of the selected class 
attribute. For example, it is possible to identify 
which clinical variables are linked to the worsening 
of patients during the first 24 hours of 
hospitalization. 

Using the Girvan-Newman algorithm (Girvan 
and Newman, 2002) it is possible to identify 
communities of nodes starting from the portion of 
the trained model of self-organizing neural network 
associated with a deterioration of state. In the case of 
 

Table 2: Prediction accuracy of the tested models. 

Tested 
Models

Prediction Accuracy on data set 1; data 
set 2; data set 3; data set 4 

ZeroR 30.67; 19.55; 24.05; 27.73 
OneR 38.72; 29.96; 37.36; 43.73 
Naive 
Bayes

29.44; 46.21; 80.36; 56.76 

J48 68.9; 71.48; 82.08; 44.88 
SVM 41.48; 78.46; 99.19; 82.57 
PART 72.26; 76.54; 83.04; 46.89 

Random 
Forest

97.99; 97.54; 97.25; 84.89 

GNG 99.17; 99.64; 99.05; 89.88 

the first GlobalOutcome24 subset the selected nodes 
are those in which the values of the class attribute 
code corresponding to "worse", "muchWorse" and 
"dead" exceed a threshold value that has been set 
equal to 0.7. Girvan-Newman's algorithm identifies 
the communities of nodes by eliminating those 
connections characterized by the greatest number of 
shorter paths that link each pair of nodes. After 
training the first model with the records of the first 
subset of input records (GlobalOutcome24) and 
selecting the network portion corresponding to the 
values of the class attribute "muchWorse" and "dead", 
the Girvan-Newman algorithm was used to remove 
the first 100 connections characterized by the greatest 
number of shorter paths between pairs of nodes. 

Table 3: Clinical variables related to death in the first 24 
hours of hospitalization. 

Cluster 
no. 

Label (weight) 

1 Hypertension(0.99); HighTemperature(0.97)...
2 NIHSS1A=3(1.00); GenderMale(1.00)... 
3 NIHSS5A=4(0.99); NIHSS6A=4(0.99)...
4 LowAPTTvalues(1.00); GenderMale(1.00)...
5 NIHSS11=9(1.00); GenderMale(1.00)...
6 GenderMale(1.00);Hypertension(0.96)
7 Hypertension(0.99); NIHSS5B=4(0.98)...
8 Hypertension(0.99); Age>=80(0.96)...
9 Hypertension(0.99); Diabetes(0.95)...

10 Hypertension(0.99); HighTemperature(0.96)...
11 CurrentInfarct(1.00); GenderMale(1.00)...
12 NIHSS5A=4(0.98); Age65-80(0.83)...
13 NIHSS1C=2(0.95); NIHSS6A=4(0.90)...
14 Hyperlipidaemia(1.00);GenderMale(1.00)...
15 NIHSS4=2(1.00); GenderMale(1.00)...
16 PreviousStroke<3months(1.00)...
17 NIHSS8=2(1.00); GenderMale(1.00)...
18 CerebralOedema(1.00); GenderMale(1.00)...
19 NIHSSB=2(0.93); NIHSS1C=2(0.88)...
20 NIHSS7=4(1.00); GenderMale(1.00)...
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Subsequently, the non-class attributes associated 
with the nodes of the individual communities were 
extracted, that is, those characterized by 
corresponding code values higher than the threshold 
value of 0.7. 

For each node, using a weight function tf-idf 
(Baeza, 1999), the attribute most frequent in its own 
community and less frequent in the overall set of 
extracted communities was chosen. In this way, all 
the non-class attributes associated with the 
worsening of the clinical picture were identified. 
The results of this processing are shown in table 3 
and table 4. 

Table 4: Clinical variables related to the worsening in the 
first 24 hours of hospitalization. 

Clus
ter 
no. 

Label (weight) 

1 NIHSS1B=2(1.00); Hypertension(1,00)...
2 Hypertension(1.00); NIHSS5A=4(0.88)... 
3 Hypertension(0.97); NIHSS5B=4(0.87)...
4 Hypertension(0.92); NIHSS4=2(0.88)...
5 NIHSS1B=2(1.00); Hypertension(0.94)...
6 Hypertension(0.97); GenderFemale(0.96)...
7 Age65-80(0.98); NIHSS3=2(0.98)...
8 NIHSS5B=4(0.99); NIHSS4=2(0.99)...
9 Hypertension(1,00); LowAPTTvalues(0.93)...

10 NIHSS4=2(0.99); NIHSS11=2(0.88)...
11 Hypertension(0.98); CurrentInfarct(0.92)...
12 NIHSS10=1(0.99); Age18-65(0.87)
13 Hypertension(0.86); GenderMale(0.81); ...

For each cluster of nodes extracted by the use of 
Girvan-Newman's algorithm, the non-class attributes 
associated to the corresponding nodes are listed. Due 
to the GNG model training method, it is reasonable 
to assume that each identified cluster is related to a 
subset of analysed clinical cases. 

The clinical variables associated with the various 
clusters which are related to cases of serious 
worsening and death patient are displayed in the 
results tables 3 and 4. In the first lines the most 
important clusters are represented, i.e. those 
associated with a greater number of neural units and 
therefore with a greater number of clinical cases. 

For each cluster the non-class attributes, i.e. the 
clinical variables responsible for the worsening or 
the death of the patient, are sorted in descending 
order by weight associated with the attribute. The 
weight is a coefficient between 0 and 1 which 
indicates how much the neuronal units associated 
with the selected cluster are activated when the 
attribute is present in the considered clinical case. 

Values close to 0 mean that the attribute is not very 
relevant for the worsening or death of the patient, 
those close to 1 are instead considered the main 
responsible factors. 

The obtained results show that the presence of 
hypertension, assessed on the basis of the systolic 
and diastolic blood pressure values, is considered an 
important potential factor for the worsening the 
patient's state which can also lead to death. The 
presence of hypertension alone, however, is not 
sufficient to infer the risk of worsening or death. 
Considering for example the first cluster of table 3 
related to the death cases, hypertension is an 
important factor having a weight equal to 0.99, but it 
must also be accompanied by other factors such as 
hightemperature, hyperlipidaemia, genderfemale, 
NIHSS4 = 2 and age65-80. 

Using the tf-idf algorithm, the most 
representative clinical variables of the considered 
cluster were selected. These are represented in bold 
and they allow to highlight which are the attributes 
most related to the worsening or death of the patient. 

For example, the attributes of table 3 most 
related to death cases with the relative weights are 
PreviousStroke<3months (1.00), Hyperlipidaemia 
(1.00), LowAPTTvalues(1.00), CerebralOedema 
(1.00), GenderMale (1.00), NIHSS8 = 2 (1.00), 
NIHSS4 = 2 (1.00), NIHSS1A = 3 (1.00), NIHSS7 = 
4 (1.00), Hypertension (0.99), NIHSS5A = 4 (0.99), 
NIHSS5B = 4 (0.98), HighTemperature (0.96), 
Age> = 80 (0.96), Diabetes (0.95), NIHSS6A = 4 
(0.90), NIHSS1C = 2 (0.88), Age65-80 (0.83). This 
means that the presence of a previous stroke that 
occurred no more than three months before, 
accompanied by hyperlipidaemia or a cerebral 
oedema or a low level of APTT, especially if the 
patient is male can be considered a quite worrying 
clinical picture. An age greater than 80 is to be 
considered a more important risk factor than an age 
between 65 and 80. 

The clinical variables of table 4 related to the 
severe worsening of the patient with the relative 
weights are NIHSS1B = 2 (1.00), NIHSS5B = 4 
(0.99), NIHSS10 = 1 (0.99), Age65-80 (0.98), 
GenderFemale (0.96), Hypertension (0.94), 
LowAPTTvalues(0.93), NIHSS11 = 2 (0.88), 
NIHSS4 = 2 (0.88), NIHSS5A = 4 (0.88), NIHSS5B 
= 4 (0.87), GenderMale (0.81). This means that the 
presence of a low sense of orientation, of plegia or 
dysarthria especially if the patient is aged between 
65 and 80 and hypertensive is to be considered a 
potential worsening factor. Female patients are 
considered more at risk of serious worsening than 
male patients. 
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A similar study was carried out to identify the 
clinical variables most correlated with a serious level 
of disability after 3 months (corresponding at a mRS 
of 3, 4 or 5). The results are shown in table 5. 

As it can be seen, high blood pressure levels are 
always related to the appearance of a disabling 
stroke. The mRS at three months is also strongly 
affected by the patient's state 7 days after 
hospitalization. Generally there are only slight 
differences in outcomes between male and female 
patients, although clusters 1, 4 and 6 show a greater 
correlation with the male sex while clusters 3 and 5 
are more correlated with the female sex. 

The first cluster is represented by patients aged 
between 65 and 80 characterized by the presence of 
occlusions that lead to the appearance of an 
ischaemic penumbra (perfusion infarct mismatch). 
The second cluster is represented by underweight 
patients over the age of 65 characterized by diabetes 
and hyperlipidaemia and occlusions and a 
hyperdensity of the arteries. The third cluster relates 
to underweight patients characterized by a mRS of 4 
both after the first 7 days and upon discharge from 
the hospital. Such patients are characterized by low 
APTT levels. The fourth cluster is made up of 
patients aged between 18 and 65, with high blood 
cholesterol levels, diabetes and occlusions. The fifth 
cluster is represented by patients over eighty 
characterized by hyperlipidaemia and low levels of 
APTT. The sixth cluster is associated with pre-
diabetic patients aged between 65 and 80 years. 

Table 5: Clinical variables related to the worsening in the 
first 24 hours of hospitalization. 

Cluster 
no. 

Label (weight) 

1 mRS_4_dis(0,90); mRS_3_7d(0,99); ...
2 LowApttValues(0,96); Hypertension(1,00); ... 
3 Age65-80(0,85); Hypertension(0,97); ...
4 GenderMale(0,91); Hypertension(0,99); ...
5 Age>=80(0,92); GenderFemale(0,97); ...
6 Prediabetes(0,83); Hypertension(0,97); ...

The age range most at risk of incurring 
permanent disabilities at 3 months after treatment is 
consistent with the fact that in this cohort 78% of 
patients with a 3-month mRS equal to 3, 4 or 5 are 
over 65-year-olds. 

Analysing the subset of patients with a 3-month 
mRS of 3, 4 or 5 aged between 65 and 80, in 72% of 
these cases a significant ischaemic penumbra is 
detected (perfusion infarct mismatch) and in 44% of 
cases also an hyperdense artery sign. This subset of 
patients is clearly identifiable with cluster 1. 

Considering instead the subset of patients with a 
3-month mRS of 3, 4 or 5 aged between 65 and 80 
characterized by low APTT levels, in 85% of cases 
there are also high serum glucose levels. This subset 
of cases can be associated with clusters 2 and 3. 

Analysing the subset of patients with a 3-month 
mRS equal to 3, 4 or 5 aged between 18 and 65 
years it is found that in this case 67% of the patients 
are male, 81% have low APTT levels and 80% had 
high serum glucose levels. This subset of patients is 
clearly identifiable with cluster 4. 

The 87% of the subset of patients with a 3-month 
mRS equal to 3, 4 or 5 over the age of 80 with 
hyperlipidaemia are patients with low APTT levels. 
This group can be associated with cluster 5. 

5 CONCLUSIONS 

The findings of this study suggest that the use of 
clustering learning algorithms allows to identify in 
an unsupervised way a set of clinical variables 
which can be taken into consideration in order to 
carry out a good prediction of the clinical outcome. 

The Growing Neural Gas model has proved 
particularly effective in predicting the patient 
outcome compared to other algorithms used in the 
same application area. The best result in terms of 
predictive accuracy achieved by this model is due to 
its ability to exactly identify the input space 
topology, which also makes it particularly robust to 
noise and lack of data. By analyzing the final 
configuration of the trained GNG network, it is also 
possible to obtain useful information on the 
attributes which are most correlated with certain 
outcomes. Statistical analyses carried out on the data 
used as training set and test set seem to confirm the 
consistency of the extracted knowledge. The 
developed model is ready to be tested in prospective 
studies in the real world. 
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APPENDIX 

For the input data preprocessing the following coding 
rules were used: 

 
The age was codified in four main classes: age>=80; 

65<=age<80; 18<=age<65 and 0<=age<18. 
 
The clinical variables “Hypertension” and 

“Hyperlipidemia” refer to the risk factors which are 
specified in the data entry form. They are not 
automatically computed by the use of a codifying 
formulas. 

 
If the glucose level is lower than 69 the value is codified 

as “Hypoglycemia”, if the glucose level is between 70 
and 99 the value is codified as “Normoglycemia”, if 
the glucose level is between 100 and 124 the value is 
codified as “Prediabetes”, if the glucose level is higher 
than 125 the value is codified as “Diabetes”. 

 
If the cholesterol level is lower than 199 the value is 

codified as “NormalCholesterol”, if the cholesterol 
level is higher than 200 the value is codified as 
“HighCholesterol”. 

 
If the temperature level is lower than 98.5 Fahrenheit the 

value is codified as “NormalTemperature”, if the 
temperature level is higher than 98.6 the value is 
codified as “HighTemperature”. 

 
If the APTT is lower than 29 the value is codified as 

“LowApttValues”, if the APTT level is between 30 
and 39 the value is codified as “NormalApttValues”, if 
the APTT level is higher than 40 the value is codified 
as “HighApttValues”. 

 
If the BMI is lower than 18.4 the value is codified as 

“Underweight”, if the BMI is between 18.5 and 24,9 
the value is codified as “Normweight”, if the BMI is 
between 25 and 29,9 the value is codified as 
“IncreasedOverweight”, if the BMI is between 30 and 
34,9 the value is codified as “ModerateOverweight”, if 
the BMI is between 35 and 39,9 the value is codified 
as “SevereOverweight”, if the BMI is higher than 40 
the value is codified as “VerySevereOverweight”. 
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