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Abstract: Time correlated single photon counting (TCSPC) is used to obtain the time-of-flight (TOF) information 
generated by single-photon avalanche diodes. With restricted measurements per histogram and the presence 
of high background light, it is challenging to obtain the TOF information in the statistical histogram. In order 
to improve the robustness under these conditions, the concept of machine learning is applied to the statistical 
histogram. Using the multi-peak extraction method, introduced by us, followed by the neural-network-based 
multi-peak analysis, the analysis and resources can be focused on a small amount of critical information in 
the histogram. Multiple possible TOF positions are evaluated and the correlated soft-decisions are assigned. 
The proposed method has higher robustness in allocating the coarse position (± 5 %) of TOF in harsh 
conditions than the case using classical digital processing. Thus, it can be applied to improve the system 
robustness, especially in the case of high background light.

1 INTRODUCTION 

With the arising of advanced driver assistance 
systems, sensor-based environment perception 
becomes more and more important in automotive. 
Therein, depth information is one of the key 
parameters (Horaud et al., 2016). Light detection and 
ranging (LiDAR) is one method to measuring 
distance (Schwarz, 2010). Compare to other range 
sensors, it provides the most depth range with high 
distance resolution (Zaffar et al., 2018). Among the 
detectors used in LiDAR systems, the single photon 
avalanche diode (SPAD) is one solution with high 
energy efficiency and excellent timing performance. 
The SPAD-based LiDAR system determines the 
distance by time-of-flight (TOF). However, the 
SPAD can be easily triggered falsely by background 
light because of its high sensitivity (Vornicu et al., 
2019). Therefore, one of the greatest interferences of 
a SPAD-based LiDAR system is the background light 
(Niclass et al., 2014).  

Due to the interference, the TOF information 
cannot be estimated from a single measurement. Time 
correlated single photon counting (TCSPC) (Süss et 
al., 2016) is a measuring method to obtain accurate 
TOF information from a SPAD-based direct-TOF 

system. The TCSPC accumulates plurality of 
measurements and forms a statistical histogram in 
order to distinguish the laser pulse from background 
noise. The final TOF information is typically 
obtained from the statistical histogram by classical 
digital processing (CDP). The CDP estimates 
distributions of noise and constructs noise-reduced 
histograms. However, the performance of CDP 
degrades significantly with the increasement of 
background light and TOF (Kostamovaara et al., 
2015). 

This paper focuses on TCSPC histograms 
generated by the SPAD-based direct TOF flash 
LiDAR system. The robustness of TOF prediction 
can be improved by analysing unused information in 
the TCSPC histograms. Considering the application 
in automotive, where an approximation of the TOF 
must be made and updated within restricted time and 
under dynamic background light condition (Niclass et 
al., 2014), the robustness of data processing methods 
becomes therefore demanding. We propose a simple 
method called multi-peak extraction (MPE) in 
combination with a neural-network-based multi-peak 
analysis (NNMPA) which assigns the soft-decision to 
each extracted peak. The goal is to allocate the coarse 
position (± 5 %) of the TOF in a noisy histogram. 
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The following content is structured as follows: 
Section 2 covers the state-of-the-art works and 
limitations in the field of LiDAR data processing. 
Afterwards, the methodology including the 
theoretical analysis and the structure of the neural 
network is presented in section 3. Subsequently, the 
used datasets for training, validation and testing are 
described in section 4. Section 5 is devoted to the 
result and discussion. In particular, the method 
performance is discussed by means of the control 
variable method and a comparison to the CDP is 
carried out. Finally, section 6 summarizes the 
outcome and outlines of the future work. 

2 RELATED WORKS 

Studies are carried out in different processing stages 
of the LiDAR system to suppress the background 
light. In this work, they are divided into three 
categories: 

2.1 On Hardware Stage 

A bandpass filter can remove most of the background 
light. However, remaining background light is still 
significant. The coincidence detection (Perenzoni et 
al., 2017) (Beer et al., 2018) is an effective approach 
to prevent the SPADs from blocking out. This 
approach involves several detectors in one pixel. The 
detectors work in parallel. When two or more 
detectors are triggered in a defined time interval, a 
coincidence event is generated. The approach 
performs well when the background light and the 
laser echo are both high. In addition, time-gating 
(Kostamovaara et al., 2015) improves the reception 
rate of wanted signals by shortening the activation 
duration of the SPADs. In order to activate the SPAD 
at the right moment, the approach needs the 
approximate position of the object as the prior-
knowledge, which is typically impractical in reality. 

2.2 On Histograms 

Using digital filters e.g. the matched-filter and the 
center-of-mass algorithm are one of the classical 
solutions applied on histograms. Besides, Tsai et al. 
introduce a likelihood ratio test (LRT) based on a 
probabilistic model (Tsai et al., 2018). They focus on 
the precision of the measurements and report that the 
standard deviation of the predicted distances is lower 
than the center-of-mass algorithm under 100 MHz 
background photon rate. However, the maximum 
detection range is not sufficient in automotive, since 

their experiment carried out only in 2 m. 

2.3 On Point Cloud 

The point cloud is the final output of the LiDAR 
front-end. A good overview for applications of 
machine learning methods on the point cloud can be 
found in (Gargoum and El-Basyouny, 2017). One of 
the pioneers analysing the point cloud data is 
PointNet (Qi et al., 2017). They take the point sets 
directly as input and provides a unified approach to 
several 3D recognition tasks. These approaches can 
improve the system robustness to a certain extent. 
However, since they treat the LiDAR front-end as a 
black box, errors introduced before the point cloud, 
e.g. the background interference, cannot be handled 
adequality. 

3 METHODOLOGY 

3.1 Multi-peak Extraction 

A SPAD-based direct-TOF LiDAR front-end consists 
of laser emitters, SPAD arrays, and corresponding 
circuits and storage module. One measurement of the 
first photon detection principle is described as 
follows: A timer starts with the emission of the laser 
pulse. Then, the laser pulse travels through the air and 
is reflected by the object. Afterwards, the timer stops 
with the detection of the first arrived photon. Finally, 
the distance is calculated from the laser pulse 
traveling time, i.e.: 
 

ைி்ܦ ൌ
ܿ ൈ ்ܶைி

2
 (1)

 

where ்ܶைி is the arrival time of the first laser photon, 
ைி்ܦ  is the distance between the object and the 
sensor, and ܿ is the speed of light. Since the triggering 
event follows the Poisson process (Beer et al., 2016), 
the probability density function (PDF) of the first 
arriving photon is: 
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where ݎ஻  and ݎ௅  denote the photon rates of the 
background and the laser pulse on the receiver side. 
௅஻ݎ  is equal to the sum of ݎ஻  and ݎ௅ . ௣ܶ  is the laser 
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pulse width. In practice, the time axis is discrete due 
to the sensor resolution ܴ௦௘௡௦௢௥ . Therefore, the 
TCSPC histogram follows the probability mass 
function (PMF) ܨ௉ெி , which can be obtained by 
integrating (2) over ܴ௦௘௡௦௢௥. An example of the ideal 
PDF of the first received photon and the correlated 
TCSPC histogram with specific settings is shown in 
Figure 1. According to the optical statistics, it can be 
interpreted that the TOF information corresponds to a 
local maximum in a valid histogram, since the photon 
intensity at the TOF moment is the superposition of 
the laser and background photons. The rest of the 
histogram contains only noise. However, as shown in 
Figure 1, the measurement distribution will be sparse 
and the jitter will be large in a time-restricted scenario 
with certain amount of background noise. In this case, 
selection of local maximums becomes critical. 
Therefore, the MPE works as follows: 1) The 
histogram is divided into adjacent ܰ  regions, 2) in 
each region, the local maximum ܯ௡ and its correlated 
bin number bn will be extracted and coupled as a 
region feature ܨ௡ ൌ ሺܯ௡, ܾ௡ሻ , where ݊ ∈ ܰ , 3) the  
feature group  ܪ௙ …,ଵܨ} =  , ேܨ } is formed as the 
simplified representation of the complete histogram. 
The number of extracted features is defined as: 

 

Figure 1: (a) An example of the ideal probability density 
function of the first received photon. (b) A correlated 
TCSPC histogram. Where, ܴ௦௘௡௦௢௥  is equal to 312.5 ps, 
்ܶைி is set to 216.67 ns, the background photon rate after 

the bandpass filter is 5 MHz, the echo photon rate is 10 
MHz, ௣ܶ  is 5 ns, and the number of accumulated 
measurements is 400 resulting in a frame rate of 25 Hz. 

௙ܰ ൌ ܰ ൌ ඄
ܴ௠
௥ܹ
ඈ (3)

 

where in ܴ௠ is the measurement range and ௥ܹ is the 
region width. All regions have the same ௥ܹ . After 
obtaining ܪ௙ , the memory space for the complete 
histogram can be released. 

3.2 Multi-peak Analysis 

In order to analyze the utility of ܪ௙, the NNMPA is 
designed. The NNMPA comprises a multi-
classification phase and a TOF recovery phase. In the 
multi-classification phase, we construct a ௙ܰ ൈ ௙ܰ ൈ

௙ܰ  fully-connected feed-forward neural network 
(FNN). The FNN has one hidden layer. The learning 
rate is set to 0.001. Additionally, L2 generalization 
and drop-out layer are used to improve the 
generalization. The FNN is trained and tested only by 
the extracted local maximums {ܯଵ,… ேܯ, }. The 
actual TOF information in the histograms is 
converted to categories as labels to supervise the 
training process. Accordingly, the soft-decisions 
{ ଵܵ, … , ܵே } are calculated and assigned to local 
maximums using the soft-max function. The local 
maximum ܯ௛  having the highest score ܵ௛  will be 
chosen as the final prediction. In the TOF recovery 
phase, the TOF is calculated from the bin index ܾ௛ 
correlated to ܯ௛. 

4 DATASETS 

In the scope of this work, two datasets are used: 

4.1 Dataset 1 

The first dataset is generated by a simulation tool 
developed by Fraunhofer IMS. The dataset consists 
of 600 histograms. The pulse width, the received laser 
photon rate and the measurements in each histogram 
is set to 5 ns, 10 MHz, and 400, respectively. The 
simulated background photon rates (BPRs) after the 
optical bandpass filter are 1, 2, 3, 4, 5 MHz and the 
simulated TOF information are from 2.5 m to 57.5 m, 
with an interval of 5 m. The simulated histograms are 
evenly distributed under each combination of 
aforementioned conditions. Dataset 1 is used for the 
probability analysis of MPE and the evaluation of the 
neural network. 
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4.2 Dataset 2 

The second dataset originates from the LiDAR 
system “OWL” developed by Fraunhofer IMS 
(mentioned as OWL in the following context). It 
consists of 120 histograms. The OWL is specified as 
follows: the used lasers emit at 905 nm wavelength 
with 75 W peak power, 10 kHz pulse repetition rate, 
and 17.5 ns pulse width resulting in a mean optical 
emission power of 11.25 mW. Each histogram 
contains 400 single measurements. The histograms 
are generated under BPR range of 3 – 10 MHz with 
the object at 7.49 m, 17.35 m and 25.95 m. The BPR 
is measured using OWL running in the counting 
mode. Dataset 2 is used to validate the MPE and as 
test dataset for the neural network. 

5 RESULTS AND DISCUSSION 

5.1 Performance of Multi-peak 
Extraction 

The most important factor of MPE is the region 
width, which directly influences the extraction of 
local maximums and the number of extracted local 
maximums. The Monte-Carlo method is used on 
dataset 1 to estimate the accuracy of the MPE 
corresponding to each region width.  The histograms 
are filtered by a convolutional core C = {C(0), … , 
C(15)} before applying the MPE, where C(0) = …= 
C(15) = 1. Figure 2 shows the evaluation result. The 
accuracy of the MPE is defined as: 
 

ெ௉ாܥܥܣ ൌ
௧ܰ௥௨௘

ுܰ೑

 (4)

 

where ுܰ೑  represents the number of ܪ௙ , which is 

equal to the number of histograms. ௧ܰ௥௨௘ represents 
the number of true ܪ௙ . A true ܪ௙  must meet the 
following condition: ∃	ܾ௡ ∈  :௙, thatܪ

 
ሺ1 െ 5	%ሻ ൈ ்ܶைி ൑								 																												

ܾ௡ ൈ ܴ௦௘௡௦௢௥ ൑ ሺ1 ൅ 5	%ሻ ൈ ்ܶைி
(5)

 

As expected, the accuracy of MPE is inverse-
proportional to the region width. Due to 
discontinuous ்ܦைி in the histograms of dataset 1, the 
right part of the curve in Figure 2 (a) is jagged. As 
shown in Figure 2 (b), the accuracy of MPE increases 
rapidly in the initial period, and gradually stabilizes 
with the increasing number of extracted features.  

 

Figure 2: (a) Accuracy vs. region width on dataset 1. (b) 
Accuracy vs. number of inputs on dataset 1. Since each 
region width corresponds to one accuracy of MPE, while 
each number of extracted features corresponds to one or 
more region widths, the accuracy of MPE at each point in 
(b) is obtained by averaging the accuracies corresponding 
to the same number of extracted features. 

In the scope of this work, instead of evaluating the 
complete histogram (1200 bins), we extracted 12 
region features ( ௥ܹ = 4.91 m) for further processing, 
resulting in a 12 ൈ 12 ൈ 12  FNN. In this case,  
 ெ௉ா is 97.83 % on dataset 1. Note that under theܥܥܣ
harshest condition in dataset 1 (்ܦைி equals to 57.5 
m and BPR equals to 5 MHz), some histograms are 
invalid, i.e. there is no peak at the target position. The 
setting is further validated on dataset 2 and achieves 
99.17 % of ܥܥܣெ௉ா. 

5.2 Performance of Multi-peak 
Analysis 

The NNMPA is evaluated on the basis of dataset 1 
and dataset 2. The performance is compared to the 
CDP. The CDP in this work performs the same 
preprocessing method (including the convolutional 
core C and the noise subtraction algorithm) as the 
NNMPA and uses the matched-filter to extract the 
TOF. The FNN is trained on 70 % of dataset 1, 
validated on the rest 30 % of dataset 1, and tested on 
dataset 2. The error bound is set to ±5 % of the TOF. 
By saving ܯ௡  and ܾ௡  as feature pairs and the 
followed TOF recovery process, NNMPA preserves 
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the original resolution of the sensor, although the 
resolution of the used neural network is low.  

Table 1: Performance comparison of CDP and NNMPA 
from ்ܦைி perspective on dataset 1. 

DTOF 

[m] 
Number of 
histograms 

CDP 
(±5 %) 

NNMPA 
(±5 %) 

2.5 50 88.00 % 92.00 % 

7.5 50 82.00 % 94.00 % 

12.5 50 100.00 % 98.00 % 

17.5 50 90.00 % 92.00 % 

22.5 50 88.00% 92.00 % 

27.5 50 84.00 % 88.00 % 

32.5 50 84.00 % 100.00 % 

37.5 50 72.00 % 88.00 % 

42.5 50 58.00 % 96.00 % 

47.5 50 60.00 % 92.00 % 

52.5 50 58.00 % 90.00 % 

57.5 50 54. 00 % 88.00 % 

Table 2: Performance comparison of CDP and NNMPA 
from BPR perspective on dataset 1. 

BPR 
[MHz] 

Number of 
histograms 

CDP 
(±5 %) 

NNMPA 
(±5 %) 

1 120 99.17 % 100.00 % 

2 120 95.83 % 100.00 % 

3 120 85.83 % 97.50 % 

4 120 60.00 % 85.83 % 

5 120 47.50 % 79.17 % 

Table 3: Performance comparison between CDP and 
NNMPA on dataset 2. 

DTOF 
[m] 

BPR 
[MHz] 

Number 
of 

histogram
s 

CDP 
(±5 %) 

NNMPA 
(±5 %) 

7.49 3 – 8 40 87.50 % 100.00 % 

17.35 5 – 10 40 70.00 % 77.50 % 

25.95 3 – 8 40 62.50 % 85.00 % 

 
The classification results on dataset 1 show that 

the used feed-forward neural network achieves 94.52 
% of training accuracy and 92.22 % of validation 
accuracy. After further converting the classification 
result to the ்ܦைி through the bin index, the NNMPA 

obtains 92.5 % of overall accuracy on the dataset 1, 
while the CDP obtains 77.67 % of accuracy. A 
detailed comparison is given by Table 1 and Table 2. 
In Table 1, dataset 1 is divided into 12 sub-groups 
according to the ்ܦைி. Each group has 50 histograms 
with the BPR range of 1 – 5 MHz. It can be observed 
that, the NNMPA outperforms the CDP except in the 
third sub-set, where the CDP has slightly higher 
accuracy (2%) than the NNMPA. Moreover, as the 
 ைி increases, the accuracy of CDP drops to 54.00்ܦ
%, while the performance of NNMPA is relative 
stable. This means that for distant objects (up to 57.5 
m), the detection robustness of NNMPA is higher 
than that of the CDP. In Table 2, dataset 1 is divided 
into 5 sub-groups according to the BPR. Each group 
has 120 histograms with the ்ܦைி range of 0 – 60 m. 
The result shows that, under the presence of low BPR 
(1 MHz), both methods perform well. However, the 
accuracy of CDP decreases gradually with the 
increase of the BPR. When the BPR reaches 5 MHz, 
the accuracy of CDP is reduced to 47.50 %. 
Compared with CDP, although the accuracy of 
NNMPA decreases with increasing BPR as well, its 
accuracy remains at 79.17%. In terms of dataset 1, the 
NNMPA shows its superiority in detection range and 
background light tolerance. The experiment on 
dataset 2 leads to a similar conclusion as shown in 
Table 3. An interesting fact is, that the NNMPA has 
an adaptability to the unaware data even under higher 
BPR (the training dataset has the BPR range of 1 – 5 
MHz). However, its performance on the dataset with 
the BPR range of 5 – 10 MHz has still evidently 
deteriorated.  

In summary, the features extracted by the MPE 
are sufficient to reveal the TOF information in the raw 
histogram in the experimented environments. 
Furthermore, the NNMPA outperforms the CDP 
especially for distant objects and under high 
background light. 

6 CONCLUSIONS 

This paper focuses on exploring useful information 
on TCSPC histograms in order to improve the 
robustness of ்ܦைி  prediction with restricted 
measurements and high background light. We have 
proposed a novel method called neural network based 
multi-peak analysis (NNMPA) including the multi-
peak extraction (MPE), a compact feed-forward 
neural network and the TOF recovery process. The 
criteria of feature extraction in TCSPC histograms is 
discussed and the new representation for 600 
simulated histograms and 120 histograms generated 
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by the LiDAR system “OWL” is created. The 
NNMPA on the new representation of the histogram 
is applied and its utility is proved. In contrast to the 
classical digital processing (CDP), the NNMPA 
analyzes only a small amount of data from the 
histogram and has a higher accuracy on allocating the 
coarse position ( േ	5	% ) of TOF information 
especially in harsh conditions. Although the NNMPA 
cannot improve the precision of the TOF prediction, 
it can provide reliable proposals so that high-
precision methods only need to focus on the partial 
histogram.  

The future work can be summarized in the 
following four aspects:  
1) An implementation of the proposed approach on 
LabView or on FPGAs and a runtime test for the 
distance prediction can be carried out.  
2) Instead of FNN, other machine learning 
algorithms such as SVM, decision tree, and naïve 
Bayesian theory can be applied for further 
investigation of the characteristics of extracted 
features. 
3) The proposed approach must be verified and 
analyzed on larger datasets.  
4) A feedback mechanism can be implemented to 
improve the measurement reliability. 
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