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Abstract: Unsupervised image-to-image translation is used to transform images from a source domain to generate images
in a target domain without using source-target image pairs. Promising results have been obtained for this
problem in an adversarial setting using two independent GANs and attention mechanisms. We propose a new
method that uses a single shared discriminator between the two GANs, which improves the overall efficacy.
We assess the qualitative and quantitative results on image transfiguration, a cross-domain translation task, in
a setting where the target domain shares similar semantics to the source domain. Our results indicate that even
without adding attention mechanisms, our method performs at par with attention-based methods and generates
images of comparable quality.

1 INTRODUCTION

Generative Adversarial Networks(GANs) (Goodfel-
low et al., 2014) belong to the class of generative
models (Kingma and Welling, 2013) widely used
in various image generation and translation tasks
like computer vision and image processing (John-
son et al., 2016), (Wang et al., 2019), (Wu et al.,
2017). While the state-of-the-art methods (Huang
et al., 2018), (Liu et al., 2019), (Park et al., 2019)
in image-to-image translation tasks are significantly
good (Wang et al., 2018b), (Mejjati et al., 2018),
(Tang et al., 2019) across multi-domain and cross-
domain tasks, there is still room for improvement
in image transfiguration tasks. Most of the image-
to-image translation tasks assume the availability of
source-target image pairs (Isola et al., 2017), (Zhu
et al., 2017b) or expect the source-target pairs to have
rough alignment between them (Isola et al., 2017),
(Wang et al., 2018b). However, there are scenar-
ios where source-target image pairs are not available
or when arbitrarily selected source-target image pairs
have poor alignment between them.

While most image-to-image translation tasks in-
volve translation over the complete image, there are
cases where only an object of interest needs to be
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translated in the source and target domain. Let’s con-
sider the case of translating images of apples to or-
anges or horses to zebras. In both cases, only the
object of interest needs to be translated, without af-
fecting the rest of the image or it’s background. This
calls for the need of attention mechanisms (Kastani-
otis et al., 2018), (Qian et al., 2017), (Zhang et al.,
2018), (Talreja et al., 2019) to attend to the objects
of interest. Contrast-GAN (Liang et al., 2017) is a
work that has used object-mask annotations to guide
the translation at high-level semantic levels at the cost
of extra data. However, recent works have used atten-
tion mechanisms (Wang et al., 2017), (Mejjati et al.,
2018), (Tang et al., 2019) without using any extra data
or pretrained models. Moreover, very few works fo-
cus on image transfiguration, a cross-domain image-
to-image translation task in an unsupervised setting
without using additional networks, extra data or at-
tention mechanisms.

In this paper, we focus on the above problem by
proposing a framework that unifies the capabilities of
multiple discriminators into a shared one, which not
only improves the efficacy but also works without us-
ing extra data(object masks) or attention mechanisms.
Adversarial training of the network involves combin-
ing the labels of the domains from different tasks con-
ditioned on the input image and optimizing the ob-
jectives of the networks. We believe that there has
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not been any previous work where a dual generator
shared discriminator setup has been used for cross-
domain image-to-image translation and we are the
first to propose a novel method. We summarize the
paper contribution as follows:
1. We improve the efficacy of the GANs used for un-

supervised cross-domain image-to-image transla-
tion tasks by introducing a novel shared discrim-
inator setup. We empirically demonstrate the ef-
fectiveness of our method on image transfigura-
tion tasks and report the qualitative and quantita-
tive results on two datasets.

2. We conduct an ablation study to study the effi-
cacy of the networks, training objectives and ar-
chitectures keeping the dataset and other parame-
ters constant and report the quantitative results of
the study.

2 RELATED WORK

Generative Adversarial Networks. GANs are gen-
erative networks that use a trainable loss function to
adapt to the differences between the data distribu-
tions of generated images and the real images. Since
their inception (Goodfellow et al., 2014) (Radford
et al., 2015), GANs have been used in various ap-
plications from computer vision (Ma et al., 2017),
(Vondrick et al., 2016), image-to-image translation
(Taigman et al., 2016), (Tung et al., 2017), video-to-
video translation (Wang et al., 2019), (Wang et al.,
2018a), image super-resolution (Ledig et al., 2016),
etc. among others. We refer interested readers to read
more about GANs from (Creswell et al., 2018),(Jab-
bar et al., 2020), (Kurach et al., 2018) and (Wang
et al., 2020).
Image-to-Image Translation. Recent image-to-
image translation works like pix2pix (Isola et al.,
2017), pix2pixHD (Wang et al., 2018b) use condi-
tional GANs to learn a mapping from source domain
images to target domain images. While some rely on
paired source-target images, works like CycleGAN,
DualGAN, DiscoGAN (Kim et al., 2017) and (Tung
et al., 2017), (Taigman et al., 2016), (Liu and Tuzel,
2016), (Liu et al., 2017), (Bousmalis et al., 2016)
learn the mapping between the source domain and tar-
get domain without using any paired images. CoGAN
(Liu and Tuzel, 2016) also learns the joint distribution
of multi-domain images by sharing weights of gener-
ators and discriminators. UNIT (Liu et al., 2017) uses
a shared latent space framework built on CoGANs to
learn a joint distribution of different domain images
and achieves very high quality image translation re-
sults.

In an adversarial setting, image-to-image transla-
tion involves generators that learn mappings to trans-
late images from a source domain to a target do-
main and vice-versa. Furthermore, adversarial meth-
ods that involve GAN either share network weights
(Liu and Tuzel, 2016), (Talreja et al., 2019) or use
mechanisms (Yi et al., 2017), (Zhu et al., 2017a) that
involve a primal GAN and a dual GAN. A Dual-GAN
(or DualGAN) (Yi et al., 2017) setup employs two
discriminators: a primal GAN and a dual GAN, per-
forming inverse tasks of each other. Each discrimi-
nator is trained to discriminate target domain images
as positive samples and translated source domain im-
ages as negative samples. Similarly, in CycleGAN
(Zhu et al., 2017a), the primal-dual relation is regu-
larized by a forward consistency loss and backward
cycle consistency loss, which constitutes the cycle-
consistency loss. This reduces the space of possible
mappings by enforcing a strong relation across do-
mains.

Conventionally, separate task-specific generators
and discriminators are needed for image-to-image
translation, since each network deals with a different
set of real and fake images. However, StarGAN (Choi
et al., 2018) achieves multi-domain image transla-
tion using a single generator by considering each do-
main as a set of images with a common attribute (for
e.g. hair color, gender, age, etc.) and by exploit-
ing the commonalities in the datasets. Similarly, a
Dual Generator GAN(G2GAN) (Tang et al., 2019)
consists of two task-specific generators and single dis-
criminator focusing on multi-domain image-to-image
translation. However, their optimization objective
is complex, consisting of five components including
color consistency loss, MS-SSIM loss and conditional
identity preserving loss for preventing mode collapse.
While Dual Generator GAN uses a single discrimina-
tor, the underlying task is multi-domain image trans-
lation. However, in this paper we focus on the task of
cross-domain image translation using a single shared
discriminator.

3 METHODOLOGY

We briefly explain the problem formulation in subsec-
tion 3.1, proposed framework in subsection 3.2, im-
age pools in subsection 3.2.1, training stages in sub-
section 3.3 and loss functions in subsection 3.4 below.

3.1 Problem Formulation

For the image-to-image translation problem, our goal
is to learn two mapping functions, GAB : A→ B and
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GBA : B→ A, between domains A and B modelled by
generators GAB and GBA respectively. We consider
task-specific generators since the input distribution
is different for each task in cross-domain image-to-
image translation. A domain is referred to as either
source or target domain, based on its role in the trans-
lation task. The goal of the generator GAB is to trans-
late an input image a from source domain A to the
target domain, such that the generated image b∗ fol-
lows the distribution of the target domain B, pdata(B).
Likewise, the task of generator GBA is to translate an
image b ∈ B to an image a∗ such that it follows the
distribution of the target domain A, pdata(A). We
propose to provide adversarial supervision using a
novel shared discriminator, Dshared common to both
the generators without using extra networks, masks
or additional data. In this paper, we focus our method
on transfiguration tasks, which requires translation of
objects of interest while keeping other objects and the
background same. Some transfiguration tasks include
apples↔ oranges, horses↔ zebras, etc.

3.2 Proposed Framework

Each translation task (A→ B and B→ A) is mapped
to a separate generator. For guided image generation,
we use conditional GANs (Mirza and Osindero, 2014)
that condition using the input images. During train-
ing, each generator learns to translate its input from
source domain to the corresponding target domain.
However, our approach differs from the conventional
setting, which treats the target domain samples as real
and translated images as fake. Instead, we exploit the
fact that the data distributions of the source and the
target domains of one translation task are the same as
that of the target and the source domains of its inverse
translation task.

In our novel formulation, the proposed shared dis-
criminator Dshared is trained to classify the generated
images into either belonging to domain A or domain
B. The translated images and random images from
the two domains are conditioned on the input images
to form the base for adversarial training using the
shared discriminator. We hypothesize that this unifi-
cation allows for domain-aware discrimination which
is crucial for tasks like transfiguration, where a spe-
cific part of the image with distinct feature sets are
to be transformed. GANs are infamous for unstable
training and prone to model oscillation. To stabilize
the model training, we leverage the power of image
pools with modifications tailored for our approach.
Once the training is complete, the generator outputs
are treated as final prediction and the discriminators
are not needed in inference stage.

Figure 1: The above image corresponds to training stage 1,
with two generators and two image pools. Here the gener-
ated images are pushed to the same image pool as that of
the translation task. Shared discriminator has been avoided
for brevity.

Figure 2: The above image corresponds to training stage 2,
with two generators and two image pools. Here the gener-
ated images are pushed to the image pool of the correspond-
ing inverse translation task. Shared discriminator has been
avoided for brevity.

3.2.1 Image Pools

Generally, the generator outputs are reused in
image-to-image translation techniques that involves
a reconstruction loss between the source image and
the reconstructed image(the resulting image after
undergoing two translations, from source domain to
the target domain and back to the source domain).
An image pool (Shrivastava et al., 2016) is generally
used to store a history of generated images to feed
the discriminator in order to reduce the model os-
cillation during adversarial training. In our method,
we associate an image pool to the generator of each
translation task, such that the translated images can be
reused as inputs to either of the generators by pushing
to one image pool or the other, i.e. image pool IAB is
associated with GAB and image pool IBA is associated
with GBA (see Fig. 1 and Fig. 2). We use this simple
tweak to improve the robustness of the generators
to deal with variety of input images. In some cases,
we also observe performance improvements, which
we discuss later in the ablation study. Since the
generated images are pushed to the image pools, each
image pool gets a static input set of source domain
images and an evolving input set of generated images
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from one generator or the other, depending upon the
training stage.

3.3 Training Stages

We consider the image-to-image translation task A↔
B by learning the translation mapping GAB : A→ B
and it’s inverse translation mapping GBA : B → A.
Throughout the training process, the inputs to the
generators GAB and GBA are from the image pools
IAB = {a′1,a′2, . . . ,a′|IAB|} and IBA = {b′1,b′2, . . . ,b′|IBA|}
respectively. The image pools are initialized by the
images of their source domains, A and B. The details
of each training stage are given below.
Training Stage 1. If we consider the initial stages
of training, the translated images appear closer in ap-
pearance to the source domain with very few target
domain features. Therefore, we interleave the trans-
lated images from the generator with the source do-
main images using the same image pool, i.e. IAB
would pool-in images a from A and b∗ from GAB(a),
and IBA would pool-in images b from B and a∗ from
GBA(b) as depicted in Fig. 1.
Training Stage 2. As training proceeds, the gener-
ators improve upon their translation capabilities and
the generated images possess more target domain fea-
tures and very few source domain features. Therefore,
each generator can take the outputs of the other gen-
erator as adversarial images, in addition to their re-
spective source domain images, i.e. IAB would pool-in
images a from A and a∗ from GBA(b), and IBA would
pool-in images b from B and b∗ from GAB(a) as de-
picted in Fig. 2. The generated images are pushed
to the image pool of the inverse translation task, to
mimic cyclic translations as done in some related
works.

3.4 Loss Functions

Conventionally, a discriminator is used to distinguish
between real images from the dataset and fake images
generated by the generator. However, we avoid the
usage of the terms real images and fake images, and
use abstract binary labels True and False instead. We
assign the same labels for a domain irrespective of
the translation task or their role in the translation task,
i.e. the label assigned for the source domain images
in the forward translation is the same as that of the
target domain images in the inverse translation task.
We assign true labels for domain B images and false
labels for domain A images.
Discriminator Loss. All translated images are con-
ditioned on the their input images when subjected to
the discriminator, while optimizing the objectives of

Dshared , i.e. b∗ is conditioned on a′ and a∗ is condi-
tioned on b′. The generated images, a∗ from GAB(a′)
and b∗ from GBA(b′) are labelled the same labels
as their source domain images a and b respectively,
while subjecting to the discriminator. The shared dis-
criminator Dshared is trained with a binary cross en-
tropy loss LDshared . The goal of Dshared is to classify
the generated images into either domain A or domain
B depending upon the source domain of the transla-
tion task. In addition, we subject the shared discrimi-
nator to random domain B images labelled as true and
random domain A images labelled as false. These ran-
dom images are conditioned on input images a′ or b′

depending on the translation task or whether they are
input to generator GAB or GBA respectively. Formally,
the complete training objective of Dshared or the dis-
criminator loss function is given by,

LDshared (GAB,GBA,Dshared ,A,B, IAB, IBA) =

Eb∼pdata(b)[log(Dshared(b|a′))]+
Ea∼pdata(a)[log(1−Dshared(a|a′))]+

Ea′∼pdata(a′)[log(1−Dshared(GAB(a′)|a′))]+
Ea∼pdata(a)[log(1−Dshared(a|b′))]+

Eb∼pdata(b)[log(Dshared(b|b′))]+
Eb′∼pdata(b′)[log(Dshared(GBA(b′)|b′))]. (1)

The first three parts of Eq. 1 are conditioned on input
images a′ from image pool IAB and represent the trans-
lation A→ B, while the latter parts are conditioned on
the input images b′ from image pool IBA and represent
the translation B→ A.
Generator Loss. We enforce a reconstruction loss
between the generator’s input and it’s output involv-
ing only one image translation, in contrast to con-
ventional pixel reconstruction objectives that involves
translations over both directions. We choose a loss
function that can preserve the median values, so that
the objects of interest are translated without translat-
ing other objects in the image or the background. This
motivates the use of L1 pixel reconstruction loss be-
tween the input and output of each generator with ad-
ditional help from adversarial training. The adversar-
ial goal of each generator is to fool the shared dis-
criminator into identifying generated images as be-
longing to the target domain images, i.e. GAB tries
to map b∗ as belonging to B while GBA tries to map
a∗ as belonging to A. The adversarial losses overrule
the reconstruction loss over the membership score of
the generated image, which results in the source im-
ages to take target domain features. We can express
the full objective of GAB as the sum of Eq. 2, which
corresponds to the adversarial loss and Eq. 3, which
corresponds to the L1 reconstruction loss. Similarly,
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we can express the full objective of GBA as the sum
of Eq. 4, which corresponds to the adversarial loss
and Eq. 5, which corresponds to the L1 reconstruction
loss.

LGAB(GAB,Dshared , IAB) =

Ea′∼pdata(a′)[log(Dshared(GAB(a′)))]. (2)

LGAB
pixel(GAB, IAB) =

Ea′∼pdata(a′)[‖GAB(a′)−a′‖1]. (3)

LGBA(GBA,Dshared , IBA) =

Eb′∼pdata(b′)[log(1−Dshared(GBA(b′)))]. (4)

LGBA
pixel(GBA, IBA) =

Eb′∼pdata(b′)[‖GBA(b′)−b′‖1]. (5)

4 IMPLEMENTATION

We trained the tasks on 128x128 size images as well
as on 256x256 size images. For training, the train-
ing images were resized to 1.125 times and were ran-
domly cropped to the required size. The batch size
for all our experiments was 4. Smaller batch sizes en-
able training with larger image sizes. Also, the image
pools could be stored in the main memory or cuda de-
vice memory. We experimented with the Adam opti-
mizer as well as RMSProp, and found that Adam gives
better performance for most of our experiments. We
used a learning rate of 0.0001 with the Adam opti-
mizer with betas of 0.5 and 0.999. We used the adver-
sarial loss for membership score with the vanilla GAN
or binary cross entropy with logit loss. We used a
lambda of 10.0 for the adversarial losses and a lambda
in [100.0, 200.0] for the reconstruction loss.

4.1 Architecture

We use identical network architecture for both the
generators throughout an experiment. We conduct ex-
periments with the Resnet (He et al., 2015) architec-
ture as well as Unet (Ronneberger et al., 2015) archi-
tecture. While using the Unet architecture, the gener-
ator has the same number of downsampling layers and
upsampling layers with a bottleneck in between and
skip connections connecting the downsampling and
upsampling layers. Our proposed method doesn’t use
noise vectors as in the pix2pix implementation(Isola
et al., 2017). Also, using dropout doesn’t affect the
performance of our method when implemented with
the Unet architecture. In the Resnet architecture, the
skip connections exist between Resnet blocks. The
discriminator’s architecture used in our experiments
is PatchGAN (Zhu et al., 2017a).

Table 1: Effect of network architectures (Ronneberger et al.,
2015) and (He et al., 2015) on translation tasks horse↔ ze-
bra and apples↔ oranges. The results are compared using
FID and KID scores.

FID Horse Zebra Apples Oranges
Unet 211.76 ± 3.65 119.99 ± 14.01 164.87 ± 4.20 172.30 ± 2.33
Resnet 210.37 ± 5.10 97.47 ± 7.85 168.86 ± 3.20 172.30 ± 2.33
KID Horse Zebra Apples Oranges
Unet 0.063± 0.002 0.046±0.003 0.051 ± 0.003 0.044± 0.002
Resnet 0.058 ± 0.002 0.030 ± 0.002 0.052 ± 0.002 0.044 ± 0.002

Figure 3: Comparison of test images generated by different
methods (Zhu et al., 2017a), (Wang et al., 2017), (Kim et al.,
2017), (Liu et al., 2017), (Yi et al., 2017), (Mejjati et al.,
2018), (Tang et al., 2019) (left to right) on zebra to horse
task. Leftmost column shows the input, rightmost column
shows results from our method.

Figure 4: Comparison of test images generated by different
methods (Zhu et al., 2017a), (Wang et al., 2017), (Kim et al.,
2017), (Liu et al., 2017), (Yi et al., 2017), (Mejjati et al.,
2018), (Tang et al., 2019) (left to right) on horse to zebra
task. Leftmost column shows the input, rightmost column
shows results from our method.

5 EXPERIMENTS AND
EVALUATION

5.1 Datasets

We used apples to oranges dataset and horse to ze-
bra dataset which were originally used in CycleGAN
(Zhu et al., 2017a). These images are available from
Imagenet with a training set size of each class hav-
ing 939 (horse), 1177 (zebra), 996 (apple), and 1020
(orange) images.
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Table 2: FID scores between generated samples and target
samples for horse to zebra translation task on methods (Liu
et al., 2017), (Zhu et al., 2017a), (Yang et al., 2018), (Tang
et al., 2019) (from top to bottom). For this metric, lower is
better.

Method Horse→ Zebra
UNIT 241.13
CycleGAN 109.36
SAT (Before Attention) 98.90
SAT (After Attention) 128.32
AttentionGAN 68.55
Ours 92.91

5.2 Evaluation Metric

We use the Frechet Inception Distance(FID) (Heusel
et al., 2017) and Kernel Inception Distance(KID)
(Bińkowski et al., 2018) preferably over metrics like
Inception score. For both metrics, lower scores im-
ply similarities in features between the compared sets
of images. However, both metrics are adversely af-
fected by the presence of adversarial noise and hal-
lucinated features in the generated images that these
metrics do not correlate to the judgement by human
perception. This suggests that either metrics aren’t
better than each other, and better scores doesn’t al-
ways imply better translation results. Hence, we con-
sider those FID and KID scores from our experiments
which are positively correlated.

Table 3: KID × 100 ± std. × 100 compared for different
methods (Kim et al., 2017), (Wang et al., 2017), (Yi et al.,
2017), (Liu et al., 2017), (Zhu et al., 2017a), (Mejjati et al.,
2018), (Tang et al., 2019)(from left to right). Abbreviations:
(H)orse, (Z)ebra (A)pple, (O)range.

Method H→ Z Z→ H A→ O O→ A
DiscoGAN 13.68 ± 0.28 16.60 ± 0.50 18.34 ± 0.75 21.56 ± 0.80
RA 10.16 ± 0.12 10.97 ± 0.26 12.75 ± 0.49 13.84 ± 0.78
DualGAN 10.38 ± 0.31 12.86 ± 0.50 13.04 ± 0.72 12.42 ± 0.88
UNIT 11.22 ± 0.24 13.63 ± 0.34 11.68 ± 0.43 11.76 ± 0.51
CycleGAN 10.25 ± 0.25 11.44 ± 0.38 8.48 ± 0.53 9.82 ± 0.51
UAIT 6.93 ± 0.27 8.87 ± 0.26 6.44 ± 0.69 5.32 ± 0.48
AttentionGAN 2.03 ± 0.64 6.48 ± 0.51 10.03 ± 0.66 4.38 ± 0.42
Ours 3.00 ± 0.20 5.80 ±0.20 4.40 ± 0.20 5.10 ± 0.30

5.3 Experiments

We compute the KID score over 100 iterations and re-
turn its mean, while the FID scores are computed over
10 iterations and the mean value is returned. We com-
pute the KID scores and FID scores on the test data
using the generator models from the same checkpoint.
We trained the tasks on 128x128 size images as well
as on 256x256 size images and tested both category of
models on 256x256 test images. We refer (Tang et al.,
2019) to compile the experimental results in the qual-
itative comparisons and metric scores in Table 3 and
2. We report the performance comparison of different
architectures on translation tasks horse ↔ zebra and
apples↔ oranges, measured in FID and KID scores

in Table 1. We report the FID scores on horse→ zebra
translation task in Table 2. KID scores are compared
over the horses↔ zebras task and apples↔ oranges
task in Table 3. The results of qualitative comparisons
includes the comparison of translated images from ze-
bras→ horses task in Fig. 3, horses→ zebras task in
Fig. 4, oranges→ apples task in Fig. 5, and apples→
oranges task in Fig. 6.

Figure 5: Comparison of test images generated by different
methods (Zhu et al., 2017a), (Wang et al., 2017), (Kim et al.,
2017), (Liu et al., 2017), (Yi et al., 2017), (Mejjati et al.,
2018), (Tang et al., 2019) (left to right) on oranges to apples
task. Leftmost column shows the input, rightmost column
shows results from our method.

Figure 6: Comparison of test images generated by different
methods (Zhu et al., 2017a), (Wang et al., 2017), (Kim et al.,
2017), (Liu et al., 2017), (Yi et al., 2017), (Mejjati et al.,
2018), (Tang et al., 2019) (left to right) on apples to oranges
task. Leftmost column shows the input, rightmost column
shows results from our method.

6 RESULTS AND DISCUSSION

The results from Table 1 suggest that there is a slight
gain in the performance by using dropout with the
Resnet network architecture for the horse → zebra
task, while the same is more or less not true for ap-
ples→ oranges task. We hypothesize that this obser-
vation could be due to the simplicity of the apples→
oranges task while the former task is more complex.
The results from Table 3 and Table 2 suggest that our
method is at par to existing image translation methods
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where some related methods have an upper hand due
to the underlying attention mechanisms.

On comparing the qualitative results for zebras→
horses in Fig.3, in the second row we can notice that
the text color and the background are preserved only
in the translated images from UAIT (Mejjati et al.,
2018), AttentionGAN (Tang et al., 2019) and our
method. Also, our method has comparable results to
(Mejjati et al., 2018) and (Tang et al., 2019), which
uses attention mechanisms. While CycleGAN does
a great job in translating all zebra images to horse
images, the background color and tint are affected in
some of the images and is severe than ours.

On comparing the qualitative results for horses
→ zebras in Fig. 4, we notice that residual attention
based method (Wang et al., 2017) generates convinc-
ing translation results, while there is a green tint in all
the translated images which makes it unfavourable.
Similarly, UNIT (Liu et al., 2017) also has artifacts
in the background that makes the appearance just
acceptable. Our method falls behind UAIT (Mej-
jati et al., 2018) and AttentionGAN results (Tang
et al., 2019) but appears better than CycleGAN re-
sults, which has undesirable background tint in many
images. Note that the translation quality drastically
dropped for DualGAN (Yi et al., 2017), with slightly
better results from DiscoGAN (Kim et al., 2017).

On comparing the qualitative results for oranges
→ apples in Fig. 5, we notice that our translation
results are at par with UAIT (Mejjati et al., 2018)
and AttentionGAN (Tang et al., 2019), which uses
attention mechanisms. CycleGAN also follows our
results except that it fails in some of the images
with unwanted background translations. DualGAN,
DiscoGAN, UNIT and residual attention (Wang et al.,
2017) fails on a task much easier than the horses ↔
zebras task.

On comparing the qualitative results for apples→
oranges in Fig. 6, we notice that our method consis-
tently keeps the quality upto the mark of attention
guided methods (Mejjati et al., 2018), (Tang et al.,
2019). While CycleGAN is able to translate convinc-
ingly, it is affected by a strong tint in some of the im-
ages. The translation results from UNIT and residual
attention method appear similar to that of DualGAN
and DiscoGAN, despite the use of attention mecha-
nisms.

Table 4: Ablation study results on baseline, variant1,
variant2, variant3 and variant4 (from left to right) evaluated
using FID scores. The study included training on 128x128
size images and testing on 256x256 size images.

FID Dshared Dshared1 No Image pool No stage-1 No Stage-2
Horse 207.93 ± 6.26 218.74 ± 4.69 216.10 ± 7.659 221.04 ± 5.005 224.02 ± 6.056
Zebra 92.91 ± 6.58 100.90 ± 7.495 136.63 ± 10.444 139.77 ± 10.643 119.39 ± 7.025

Ablation Study. We perform an ablation study to
isolate the effects and understand the effectiveness
of various components of our method using FID and
KID metric over horse ↔ zebra task comparing the
baseline to different variants. We consider the original
shared discriminator setup, Dshared to be the baseline
for comparing the variants. The quantitative results
of the ablation study are available in Table 4 and 5 for
images trained on 128x128 size images and tested on
256x256 size images and in Table 6 and 7 for images
both trained and tested on 256x256 size images.

First, we modify the objective of the shared dis-
criminator in a variant Dshared1 to see if all six com-
ponents are really necessary. Out of the six compo-
nents of the shared discriminator objective, four of
them involves random source or target domain im-
ages conditioned on either a′ or b′. It may seem log-
ical to remove two random image components of one
translation task or the other to make the shared dis-
criminator objective compact, since they differ only
in the conditioned part, i.e. a′ or b′. To verify that,
we deal with each domain only once and as target
domain in the variant Dshared1 . The source domain
images conditioned on the input images are not sub-
jected to the shared discriminator and avoided in the
objective assuming that the same domain images as
target domain and labels will suffice. In other words,
for the image translation task A→B, we consider only
random target domain images b from B with true la-
bels conditioned on the input images a′ to the shared
discriminator. Analogously, for the image transla-
tion task B→ A, we consider only random target do-
main images a from A, conditioned on the input im-
ages b′ with false labels to the shared discriminator.
The generator’s goal and objectives are unaltered in
this variant. The results in Table 4, 5, 6 and 7 from

Table 5: Ablation study results on baseline, variant1,
variant2, variant3 and variant4 (from left to right) evaluated
using KID scores. The study included training on 128x128
size images and testing on 256x256 size images.

KID Dshared Dshared1 No Image pool No stage-1 No Stage-2
Horse 0.065 ± 0.003 0.084 ± 0.002 0.088 ± 0.002 0.085 ± 0.002 0.107 ± 0.002
Zebra 0.036 ± 0.002 0.047 ± 0.003 0.063 ± 0.003 0.067 ± 0.003 0.050 ± 0.002

Table 6: Ablation study results on baseline, variant1,
variant2, variant3 and variant4 (from left to right) trained
and tested on 256x256 sizes and evaluated using FID scores.

FID Dshared Dshared1 No Image pool No stage-1 No Stage-2
Horse 212.81 ± 4.835 221.66 ± 6.185 213.64 ± 4.357 216.28 ± 4.884 217.67 ± 6.864
Zebra 92.72 ± 9.915 148.95 ± 4.470 96.16 ± 5.251 118.63 ± 9.380 113.30 ± 11.212

Table 7: Ablation study results on baseline, variant1,
variant2, variant3 and variant4 (from left to right) trained
and tested on 256x256 sizes and evaluated using KID
scores.

KID Dshared Dshared1 No Image pool No stage-1 No Stage-2
Horse 0.069 ± 0.002 0.090 ± 0.002 0.070 ± 0.002 0.072 ± 0.002 0.077 ± 0.002
Zebra 0.030 ± 0.002 0.076± 0.004 0.036 ± 0.003 0.047 ± 0.003 0.045 ± 0.003
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the ablation study for Dshared1 (or variant1) indicate
that irrespective of the image sizes used for train-
ing, the performance of the shared discriminator setup
drops on removing the components of Dshared’s objec-
tives. Both FID and KID values have gone higher for
Dshared1 , which is not desirable for good image trans-
lation results.

The second variant that we consider is a shared
discriminator setup without the image pool, i.e. the
translated images are not reused as inputs to any of
the generators. While the results in Table 6 and 7 sug-
gest that using image pool doesn’t improve the per-
formance of our method, the results in Table 4 and
5 suggest that there is considerable drop in perfor-
mance when the image pool is not used while train-
ing on smaller images and testing the model on larger
images. We hypothesize that the generators become
more robust when trained with additional translated
images with the help of image pools.

The third variant that we consider is a shared dis-
criminator setup without the training stage-1, i.e. the
translated images are pushed to the image pool of the
inverse translation task, throughout the training pro-
cess. Similarly, the fourth variant that we consider is a
shared discriminator setup without the training stage-
2, i.e. the translated images are pushed back to the
image pool of the same translation task throughout
the training process. The results in Table 6 suggest
that FID values are not really affected for variant3
and variant4, while Table 7 suggests that the KID
values increase (or performance drops) for variant3
and variant4 when either training stage-1 or stage-2
is used throughout the training process. Similarly, the
results from Table 4 and 5 for variant3 and variant4
indicates that the performance drops on using only
one of the training stages. We hypothesize that simply
reusing translated images with an image pool doesn’t
improve the performance and can result in a drop in
performance.

7 SUMMARY

In this paper, we propose a framework for image
transfiguration, a cross-domain image-to-image trans-
lation task improving the efficacy using a shared dis-
criminator in an unsupervised setting. We also intro-
duce a novel application of image pools to keep the
generators more robust in the process. The qualita-
tive and quantitative results, using metrics like FID
and KID, suggest that our method, even without us-
ing masks or attention mechanisms, is at par with
attention-based methods. For particular tasks, where
the source domain shares similar semantics with the

target domain, our method performs better than pre-
vious methods. Also, we observe that metrics like
KID and FID are insufficient to evaluate the quality
of translated images. They are also vulnerable to ad-
versarial noise and hallucinated features, hampering a
fair comparison of image translation methods. Future
work could use attention mechanisms to further im-
prove the results and better comparison metrics that
correlate to human perception.
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