
Stabilizing GANs with Soft Octave Convolutions

Ricard Durall1,2,3, Franz-Josef Pfreundt1 and Janis Keuper1,4

1Fraunhofer ITWM, Germany
2IWR, University of Heidelberg, Germany

3Fraunhofer Center Machine Learning, Germany
4Institute for Machine Learning and Analytics, Offenburg University, Germany

Keywords: Generative Adversarial Network, Octave Convolution, Stability, Regularization.

Abstract: Motivated by recently published methods using frequency decompositions of convolutions (e.g. Octave Con-
volutions), we propose a novel convolution scheme to stabilize the training and reduce the likelihood of a mode
collapse. The basic idea of our approach is to split convolutional filters into additive high and low frequency
parts, while shifting weight updates from low to high during the training. Intuitively, this method forces GANs
to learn low frequency coarse image structures before descending into fine (high frequency) details. We also
show, that the use of the proposed soft octave convolutions reduces common artifacts in the frequency domain
of generated images. Our approach is orthogonal and complementary to existing stabilization methods and
can simply be plugged into any CNN based GAN architecture. Experiments on the CelebA dataset show the
effectiveness of the proposed method.

1 INTRODUCTION

In recent years, unsupervised learning has received
a lot of attention in computer vision applications.
In particular, learning generative models from large
and diverse datasets has been a very active area
of research. Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) has risen as one
of the main techniques that produces state-of-the-art
results at generating realistic and sharp images. Un-
like other generative methods (Kingma and Welling,
2013; Oord et al., 2016) that explicitly model maxi-
mum likelihood, GAN provides an attractive alterna-
tive that allows to model the density implicitly. Ba-
sically, it consists of training a generator and dis-
criminator model in an adversarial game, such that
the generator learns to produce samples from the
data distribution. Nonetheless, despite their success,
GANs often have an unstable training behaviour of
which there is little to no theory explaining it. This
makes it extremely hard to predict plausible results
in new GAN experiments or to employ them in new
domains. Consequently, their applicability is often
drastically limited to a controlled and well-defined
environment. In the literature, we encounter many
current papers dedicated to finding heuristically sta-
ble architectures (Radford et al., 2015; Karras et al.,
2017; Brock et al., 2018; Lin et al., 2019), loss func-
tions (Mao et al., 2017; Arjovsky et al., 2017; Gulra-
jani et al., 2017) or regularization strategies (Miyato

et al., 2018; Durall et al., 2020).
All the aforementioned generative methods have a

common core building block: convolutions. In other
words, they all are based on convolutional neural net-
works (CNN). That means that their architecture con-
sist mostly of sets of stacked convolutional layers.
Recent efforts have focused on improving these layers
by reducing their inherent redundancy in density of
parameters and in the amount of channel dimension
of feature maps (Han et al., 2016; Luo et al., 2017;
Chollet, 2017; Xie et al., 2017; Ke et al., 2017; Chen
et al., 2019). These works analyse standard convolu-
tional layers and their behaviour in detail. Basically,
these layers are designed to detect local conjunctions
of features from the previous layer and mapping their
appearance to a feature map, which have always the
same spatial resolution. However, natural images can
be factorized into a low frequency signal that captures
the global layout and coarse structure, and a high fre-
quency part that captures fine details. Attracted by
the idea of having feature maps with different resolu-
tions and breaking with standard convolutional layers,
some works (Ke et al., 2017; Chen et al., 2019) have
built schemes, on top of standard CNNs architecture,
that have access to different frequency content within
the same feature map.

In this paper, we propose to replace standard con-
volutions from the architecture of GANs with novel
soft octave convolutions. This replacement will have
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almost no impact on the architecture since octave con-
volutions are orthogonal and complementary to ex-
isting methods that also focus on improving CNN
topology. We apply our model to the CelebA (Liu
et al., 2015) dataset and demonstrate that, by simply
substituting the convolutional layers, we can consis-
tently improve the performances leading to a more
stable training with less probability of mode col-
lapses. Overall, our contributions are summarized as
follows:

• We introduce a novel and generalizable convolu-
tion scheme for generative adversarial networks:
the soft octave convolution.

• Our analysis shows that, using soft octave convo-
lutions leads to more stable training runs and less
frequency domain artifacts in generated images.

• We evaluate our approach by embedding the soft
octave convolutions into different GAN architec-
tures and provide both quantitative and qualitative
results on the CelebA dataset.

2 RELATED WORK

Most of the deep learning approaches in computer vi-
sion are based on standard CNNs. They have heav-
ily contributed in semantic image understanding tasks
including the aforementioned works and references
therein. In this work, we look at image generation
techniques and we briefly review the seminal work in
that direction. In particular, we focus our attention on
a set of well-known GANs and the impact of alterna-
tive convolutional layers on these models.

2.1 Generative Adversarial Networks

The goal of generative models is to match real data
distribution pdata with generated data distribution pg.
Thus, minimizing differences between two distribu-
tions is a crucial point for training generative models.
Goodfellow et al. introduced an adversarial frame-
work (GAN) (Goodfellow et al., 2014) which is capa-
ble of learning deep generative models by minimiz-
ing the Jensen-Shannon Divergence between pdata and
pg. This optimization problem can be described as a
minmax game between the generator G, which learns
how to generate samples which resemble real data,
and a discriminator D, which learns to discriminate
between real and fake data. Throughout this process,
G indirectly learns how to model pdata by taking sam-
ples z from a fixed distribution pz (e.g. Gaussian) and
forcing the generated samples G(z) to match pg. The

objective loss function is defined as

min
G

max
D

L(D,G) =Ex∼pdata [log(D(x))] +

Ez∼pz [log(1−D(G(z))].
(1)

Deep Convolutional GAN. Deep Convolutional
GAN (DCGAN) (Radford et al., 2015) is one of the
popular and successful network topology designs for
GAN that in a certain way achieves a consistently
stability during training. It is a direct extension of
the GAN described above, except that it is mainly
composed of convolution and transposed-convolution
layers without max pooling or fully connected layers
in both discriminator and generator.

Least-Squares GAN. Least-Squares GAN (LS-
GAN) (Mao et al., 2017) also tries to minimize
Pearson X2 divergence between the real and the
generated distribution. The standard GAN uses a
sigmoid cross entropy loss for the discriminator to
determine whether its input comes from pdata and pg.
Nonetheless, this loss has an important drawback.
Given a generated sample is classified as real by
the discriminator, then there would be no apparent
reason for the generator to be updated even though
the generated sample is located far from the real data
distribution. In other words, sigmoid cross entropy
loss can barely push such generated samples towards
real data distribution since its classification role
has been achieved. Motivated by this phenomenon,
LSGAN replaces a sigmoid cross entropy loss with
a least square loss, which directly penalizes fake
samples by moving them close to the real data
distribution.

Wasserstein GAN. Wasserstein GAN
(WGAN) (Arjovsky et al., 2017) suggests the
Earth-Mover (EM) distance, which is also called
the Wasserstein distance, as a measure of the dis-
crepancy between the two distributions. The benefit
of the EM distance over other metrics is that it is
a more sensible objective function when learning
distributions with the support of a low-dimensional
manifold. EM distance is continuous and differen-
tiable almost everywhere under Lipschitz condition,
which standard feed-forward neural networks satisfy.
In order to enforce such a condition, weight clipping
is used on each neural network layer. Its main idea
is to clamp the weight to a small range, so that the
Lipschitz continuity is guaranteed. Finally, since EM
distance is intractable, it is converted in to a tractable
equation via Kantorovich-Rubinstein duality with the
Lipschitz function.
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2.2 Convolutional Layers

Standard convolutional layers are designed to detect
local conjunctions of features from the previous layer
and to project their appearance to a feature map which
does not vary its spatial resolution at any time. Nev-
ertheless, in accordance with the spatial-frequency
model (Campbell and Robson, 1968; DeValois and
DeValois, 1990), natural images can be factorized into
a low frequency signal that captures the global lay-
out and coarse structure, and a high frequency sig-
nal that captures fine details. Attracted by the idea
of having feature maps with different resolution, re-
cent works tried to leverage frequency decomposi-
tions for deep learning approaches. For example, (Ke
et al., 2017; Chen et al., 2019) have built architec-
tures on top of standard CNNs, that have access to
different frequency content. (Ke et al., 2017) sug-
gested a multigrid architecture, that has the intention
of wiring cross-scale connections into network struc-
ture at the lowest level. In order to create such a topol-
ogy, every convolutional filter extends spatially within
grids (h,w), across grids multiple scales (s) within a
pyramid, and over corresponding feature channels (c).
Building in this fashion, a combination of pyramids
across the architecture (h,w,s,c).

2.3 Octave Convolutions

The original approach towards octave convolutions
has been introduced by (Chen et al., 2019). Given
the input feature tensor of a convolutional layer X ∈
Rc×h×w with channels c and spacial resolutions in
height h and width w, (Chen et al., 2019) suggested to
factorize it along channel dimension into two groups,
one for low frequencies and one for high frequencies
X = {XH,XL} (see Fig. 1 for details). The authors ar-
gued, that the subset of the feature maps that capture
spatially low frequency changes contains spatially re-
dundant information. In order to reduce the spatial
redundancy, they introduced the octave feature repre-
sentation, which corresponds to a division of the spa-
tial dimensions by 2 for some of the feature maps.

In order to control the factorization into high- and
low frequency parts, (Chen et al., 2019) introduced
the hyper-parameter α ∈ [0,1] (see Fig. 2)

XL ∈ Rαc× h
2×

w
2 and XH ∈ R(1−α)c×h×w. (2)

However, this formulation has a major drawback
in practice: α regulates the frequency decomposition
at an architectural level. Changing α causes the net-
work topology to change and thus can not be done
during training.

Figure 1: Original formulation of the octave convolution as
introduced by (Chen et al., 2019). Inputs X to convolutional
layers are separated into X = {XH,XL} along the channel
domain. Each layer then computes convolutions on high
(XH) and low (XL) frequency parts which are then recom-
bined in the output.

Figure 2: In the original octave convolution, the hyper-
parameter α sets the rate of how a fixed number of con-
volution filters is split into high and low frequency maps.
Left to right: α = 0.5,0.25,0.75. Note: since α changes the
network topology, it can not be changed during training.

One of the benefits of the new feature representa-
tion is the reduction of the spatial redundancy and
the compactness compared with the original represen-
tation. Furthermore, octave convolution enable effi-
cient communication between the high and the low
frequency component of the feature representation.

3 METHOD

In the following section, we describe our approach
which addresses the derivation and integration of the
soft octave convolution in GANs.

3.1 Soft Octave Convolution

First experiments with octave convolutions (see
Figs. 4, 5 and 6) showed that frequency factorization
appears to make GAN training more efficient and sta-
ble. However, in the same experiments we also ob-
served that it is quite hard to pick the best value for
the hyper-parameter α: While shifting towards more
lower frequent convolutions, the GAN training be-
comes more stable, while at the same time the lack of
high frequencies makes the generated images blurry.
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Figure 3: Schematic overview of the soft octave convolu-
tion. Inputs X to convolutional layers are separated into
X = {XH,XL} along the channel domain as in the origi-
nal formulation. We fix α = 0.5 and introduce ratio factors
βLXL and βHXH.

To overcome this trade off, we suggest a novel re-
formulation of the octave convolutions which allows
to change the ratio of the frequency factorization dur-
ing training: the soft octave convolution. Instead of
using a fixed factorization ration α, we introduce two
independent1 ratio factors

βLXL and βHXH. (3)

Fig. 3 shows a schematic overview of our soft oc-
tave convolutions. Setting a fixed α = 0.5, we use
the β weights to shift the ration between high and low
frequencies. This allows us to to apply different train-
ing schedules, e.g. forcing the GAN to learn the low
frequency parts of an image before the high frequent
details (see Fig. 9 for example ratio schedules). The
results in the experimental section show, that this way,
GANs with soft octave convolutions are even more
stable and produce high detail images.

3.2 Model Architecture

We use common GAN architectures and simply re-
place all standard convolutions in the generator as
well as in the discriminator with the original octave
(Chen et al., 2019) and our proposed soft octave con-
volution. Such a change has almost no consequences
on the architecture elements since it has been de-
signed in a generic way making it a plug-and-play
component. However, octave convolution has some
impact on batch normalization layers. This regular-
ization technique expects to have as input the same
amount of activations from the feature maps. Because
of the octave convolution nature, the size of feature
maps will diverge between low and high frequency
maps. To cope with this issue, two independent batch
normalizations will be deployed, one for the low and
one for the high frequency feature maps.

1In special cases βL and βH can be coupled like βL =
1−βH .

3.3 Insights on the Frequency Domain

So far, we motivated the use of (soft) octave convo-
lutions by the intuition, that the training process of
GANs will become more stable if we force the net-
works to focus on the coarse (low frequency) im-
age structures in early stages of the training, before
adding (high frequent) image details later on. While
our experiments confirm this assumption (see Fig. 7),
we follow the recent findings in (Durall et al., 2020)
for the theoretical analysis of this effect. It has been
shown in (Durall et al., 2020), that most up-sampling
and up-convolution units, which are commonly used
in GAN generators, are violating the sampling theo-
rem. Hence, convolutional filters in the generator are
prune to produce massive high frequency artifacts in
the output images which can be detected by the dis-
criminator and thus resulting in unstable training runs.
While (Durall et al., 2020) propose to use larger con-
volutional filters and an extra regularization in order
to fix this problem, soft octave convolutions allow us
to regulate the spectrum of the output images directly.
Fig. 10 shows the frequency spectrum of images gen-
erated by GANs with soft octave convolutions in com-
parison with the vanilla case.

4 EXPERIMENTS

In this section, we present results for a series of ex-
periments evaluating the effectiveness and efficiency
of proposed soft octave convolutions. We first give a
detailed introduction of the experimental setup. Then,
we discuss the results on several different GAN archi-
tectures, and finally we explore different configura-
tions modifying the weight of low and high frequency
feature maps accordingly. Source code is available on
Github2.

4.1 Experimental Settings

We train all architectures on the CelebFaces At-
tributes (CelebA) dataset (Liu et al., 2015). It con-
sists of 202,599 celebrity face images with variations
in facial attributes. In training, we crop and resize the
initially 178x218 pixel image to 128x128 pixels. All
experiments presented in this paper have been con-
ducted on a single NVIDIA GeForce GTX 1080 GPU,
without applying any post-processing. Our evaluation
metric is Fréchet Inception Distance (FID) (Heusel
et al., 2017), which uses the Inception-v3 network

2Source code: https://github.com/cc-hpc-
itwm/Stabilizing-GANs-with-Octave-Convolutions
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(a) DCGAN baseline. (b) LSGAN baseline. (c) WGAN baseline.

Figure 4: Each figure shows the FID evolution during the training using a certain GAN implementation and its standard octave
convolution variant with α = 0.5.

Figure 5: The figure shows the FID evolution together with some random generated examples using a standard DCGAN and
its original octave (α = 0.5) implementation (DCGAN OCT).

pre-trained on ImageNet to extract features from an
intermediate layer. Then, we model the distribution
of these features using a multivariate Gaussian distri-
bution with mean µ and covariance Σ. This procedure
is conducted for both real images x and generated im-
ages z, and it can be written as

FID(x,z) = ||µx−µz||22 +Tr(Σx +Σz−2(ΣxΣz)
1
2 ).

(4)

Lower FID is better, corresponding to more sim-
ilar real and generated samples as measured by the
distance between their feature distributions.

4.2 Training

In this subsection, we investigate the impact of re-
placing the standard convolution with octave convo-
lution. We conduct a series of studies using well-
known GAN baselines which we have not optimized
towards the dataset since the main objective here is
to verify the impact of the new convolutional scheme
and not to defeat state-of-the-art score results. In par-
ticular, we constrain our experiments to three types
of GANs: DCGAN, LSGAN and WGAN. All com-
parisons between the baseline methods and the pro-
posals have the same training and testing setting. We
use an Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.5, β2 = 0.999 during training in all the cases.
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(a) DCGAN baseline. (b) LSGAN baseline.

(c) WGAN baseline.
Figure 6: The figures show three independent baselines used in the experiments. Each case contains several samples across
two dimensions components: the horizontal and the vertical. The first refers to the type of convolution implemented (original
octave or vanilla convolution), and the second represents the stage of the training (epoch) in the particular baseline.

We set the batch size to 64 and run the experiments
for 50 epochs. We update the generator after every
discriminator update, and the learning rate used in the

implementation is 0.0002.

Standard Octave Convolution. First, we conduct a
set of experiments to validate the effect of the origi-
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(a) DCGAN baseline. (b) LSGAN baseline. (c) WGAN baseline.

Figure 7: FID evolution during the training using different GAN implementation and their octave variants. The suffixes stand
for the following: OCT octave convolution with α = 0.5 (vanilla configuration), LOW octave convolution with α = 0.99,
RAMP soft octave convolution with α = 0.5 and βs as in 9a, and COMBI soft octave convolution with α = 0.5 and βs as in 9b.

nal octave convolution. Therefore, we set the α to 0.5.
We begin with using the baseline models and compute
the FID after each iteration. Then, we repeat the same
procedure but this time we train using the octave con-
volution on the models. Our results in Fig. 4 show
that in all three baselines, the octave model generates
images of better or similar quality compared to the
previous training. Moreover, we can observe the im-
provement of stability during training for the octave
implementation.

Fig. 5 depicts again the comparison between the
vanilla DCGAN with the octave version. However,
this time the plot includes an arbitrary set of samples
which clearly show that these curves correlate well
with the visual quality of the generated samples.
Even more detailed and extended qualitative eval-
uations are presented in Fig. 6, where numerous
samples from all the baselines are displayed. Note
that vanilla DCGAN and LSGAN start to suffer from
mode collapse from epoch 25 forward. Thus, we
choose epoch 20 to do a fair qualitative comparison
as it seems to be the optimal training epoch. We also
show the final results (epoch 50), which support the
stability claim held in this work.

Soft Octave Convolutions. In this second part of the
experiments, we conduct an analysis of the impact of
the low and high frequency feature maps. In order
to verify how sensitive GANs are to these modifica-
tions, we start running a test for the three baselines,
where we set α to 0.993 (see Fig. 8). By doing so,
we get rid of all the high frequency maps, and as it is
expected, the training shows constant stability since
low frequencies do not contain big jumps or varia-
tions. On the other hand, surprisingly the score re-

3We cannot set α to 1 because of implementation issues.
Nevertheless, the difference should be negligible.

Figure 8: The figure compares two set of random generated
images using DCGAN with octave convolution but differ-
ent αs. (Top) Implemented with α = 0.5. (Bottom) Imple-
mented with α = 0.99. The bigger the α is, the less amount
of high frequency components are present.

sults are not dramatically worse than vanilla baselines
(see Fig 7). Indeed, it is interesting to notice that both
share a similar FID score evolution.

From the previous results, we notice the impor-
tance of hyper-parameter α. However, it is a well-
known NP-hard problem to find the best topology in
deep neural networks and in fact, it is an area of active
research by itself (Elsken et al., 2018; Liu et al., 2018;
Xie et al., 2019). As a consequence, we avoid to mod-
ify directly the topology by changing α. Driven by
these observations, finally, we conduct a new series
of experiments based on two new hyper-parameters
βL and βH. Indeed, they can be seen as an exten-
sion of α because they will modify the feature maps
too. Nonetheless, βs do not modify the amount of
feature maps, but their weight. In Fig. 9 are plotted
two different strategies followed in the work. We first
implement a ramp scheme (see Fig. 9a). The intu-
ition behind is that low frequency signals that cap-
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(a) Ramp. (b) Combination.
Figure 9: These plots show the weight βs curve used in
ramp (a) and in combination (b) scheme.

ture the global layout and coarse structure are learnt
at the beginning, and after a certain time the high fre-
quency parts that capture fine details, start to appear
and gain more importance. Trying to capture such
a behaviour, we deploy the ramp evolution. Nonethe-
less, this strategy might be too harsh as the role played
by the low and high frequencies is too insignificant at
certain training stages (see Fig. 7). As a result, we
introduce a second weighting strategy called combi-
nation (see Fig. 9b), which tries to be a trade-off be-
tween frequency components offering an optimized
combination. In Fig. 7 are shown the three baselines
and their octave variants.

4.3 Stability and Effects in the
Frequency Domain

Finally, in this subsection we analyse the impact of
the soft octave convolution in the frequency domain.
In Fig. 10, we compare the standard convolution with
the COMBI soft octave convolution. On the one hand,
we have the FID curves that describe the stability
during training. As we have seen in previous sec-
tions, our approach guarantees a much more stable be-
haviour without having any break. On the other hand,
inspired by (Durall et al., 2019; Durall et al., 2020),
we take the outputs from the different methods and
we compute their spectral components after the train-
ing is over. This experiment allows to confirm the
effect that our method has on the spectrum domain,
being able to correct the artifacts that standards con-
volutions have in the high frequency band. In other
words, soft octave convolution pushes the frequency
components towards the real one.

5 CONCLUSIONS

In this work, we tackle the common problem of GAN
training stability. We propose a novel yet simple con-
voluitonal layer coined as soft octave convolution.
Intuitively, our approach forces GANs to learn low
frequency coarse image structures before descending
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Figure 10: These plots depict the comparison between stan-
dard convolution and soft octave convolution in terms of
stability and frequency domain.

into fine (high frequency) details. As a result, we
achieve both a stable training and a reduction of com-
mon artifacts present in the high frequency domain of
generated images. Furthermore, we show how this
method is orthogonal and complementary to exist-
ing methods and leads to generate images of better
or equal quality suppressing the mode collapse prob-
lem. We believe the line of this work opens interest-
ing avenues for feature research, including exploring
Bayesian optimizations.
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