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Abstract: In this paper, we define a state-space model with discrete latent states and a multivariate heavy-tailed observa-
tion density for applications in tracking the state of a system with observations including extreme deviations
from the median. We use a Gaussian distribution with an unknown variance parameter which has a Gamma
distribution prior depending on the state of the system to model the observation density. The key contribution
of the paper is the theoretical formulation of such a state-space model which makes use of scale mixtures
of Gaussians to yield an exact inference method. We derive the framework for estimation of the states and
how to estimate the parameters of the model. We demonstrate the performance of the model on synthetically
generated data sets.

1 INTRODUCTION

Modelling sequential data and making inference on
these systems is an essential area of research in vari-
ous fields of science and engineering. Sequential data
may arise from dynamical systems in the form of a
time series or a single dimensional spatial process
where the position of an observation is critical such
as in biological sequences. While the evolution of a
dynamical system is often described by a determin-
istic function, some systems are inherently stochastic
or the complexity of some systems may require statis-
tical arguments in which case the model of the system
evolution is stochastic.

While randomness caused by measurement noise
is involved in most systems of interest, the evolu-
tion of the dynamical system may be stationary which
simply means that some statistical properties of the
system are constant with respect to time. Such sys-
tems can be modelled by evolution functions that
are independent of time. On the other hand, non-
stationary dynamical systems present the additional
problem that the evolution mechanism of the system
also changes in time. In such systems, one solution is
to cluster the observations in terms of similar char-
acteristic behaviour in order to model the different
dynamics of the system separately. One extensively
studied model that is used for this problem is the hid-
den Markov model with a mixture of Gaussian ob-
servation likelihoods (GHMM) (Rabiner, 1990). Be-
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cause of its mathematical simplicity and its ability to
estimate any density, the GHMM can be used in vari-
ous different applications.

However, for systems that display extreme devia-
tions from its median characteristic behavior for each
state, the GHMM is limited because of its assump-
tion that observations follow a conditional Gaussian
distribution. In this work, we show how to expand
the GHMM in a concise mathematical way by intro-
ducing an additional latent scale parameter into the
GHMM which enables the dynamical modeling of
heavy-tailed observations. Algorithms for inference
of latent variables and learning the parameters of the
proposed model are presented along with their theo-
retical formulations.

The use of scale mixture of Gaussian distribu-
tions for the purpose of modelling heavy-tailed ob-
servations is presented in (Cemgil et al., 2007). Re-
cently, the extension of hidden Markov models to
include heavy-tailed observations are studied, espe-
cially in the case of Student’s t-distribution (Chatzis
et al., 2009). It has been shown that the Student’s t-
distribution HMM (SHMM) is able to identify more
persistent states in time series data (Bulla, 2011). The
use of SHMMs in classification tasks is presented in
(Zhang et al., 2013).

Hidden Markov models used in the literature with
t-distribution as the emission distribution (SHMM)
use the well-known derivation of t-distribution as a
scale mixture of the Gaussian distribution where the
variance of the Gaussian distribution is treated as a
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random variable. While this formulation allows the
expectation-maximization algorithm to be tractable,
the main simplicity of its derivation comes from the
fact that the resulting distribution has an exponen-
tial family form, which there is no reference to in the
HMM literature. In this work we explicitly show this
derivation. Furthermore, rather than introducing the
variance of the Gaussian distribution into the model
as a latent variable, previous works only use this for-
mulation for mathematical convenience. In this work,
we will treat the variance of the Gaussian distribution
as an additional latent variable in our model which al-
lows us to have a dynamically scaled model at each
time step.

2 GAUSSIAN-GAMMA HIDDEN
MARKOV MODEL

Figure 1: Probabilistic graphical model of GGHMM.

The Gaussian-Gamma hidden Markov model
(GGHMM) is a particular class of the state-space
model shown in Figure 1 where the variables x1:T are
discrete-valued while w1:T and y1:T are continuous-
valued. Additionally, observed variables are shaded
for emphasis. The model assumes that an unobserved
first-order Markov process generates observations
from a mixture distribution p(yt |xt ,wt). Hence, the
HMM can be interpreted as an extension of mixture
models where sequential information is also encoded
(Bishop, 2006).

Let’s assume that we have a N-state system. The
state at time t, defined as xt , has an evolution pro-
cess which is assumed to be a discrete state, discrete
time first order Markov process. Thus, we can rep-
resent this process as a categorical distribution where
the parameters of the distribution depend on the value
assumed by the previous state xt−1.

f (xt |xt−1,A) =
N

∏
i=1

N

∏
j=1

a[xt−1=i][xt= j]
i j (1)

where ai j is the ith row and jth column of a transi-
tion matrix A. The notation [P] is the Iverson bracket
where [P] equals 1 if P is true and 0 otherwise. The

initial probabilities of states at time 1 is parameterized
as a vector π, where the density is defined as p(x1|π).

An observation at time t, defined as yt , is assumed
to be conditionally independent of previous observa-
tions y1:t−1 given the current state xt and has a k-
dimensional Gaussian distribution with mean µ and
an unknown variance. We treat the variance of the ob-
servation process as a random variable and therefore
define a scaling random variable wt that has a Gamma
distribution with parameters α= β= ν

2 . Similar to the
state xt of the system, the scaling variable wt is a la-
tent variable. Furthermore, we assume that the value
of parameters of our model depends on the current
state of the system. The corresponding model can be
shown as:

wt |xt ,ν∼ Gamma
(

ν

2
,

ν

2

)
=

ν

2
( ν

2 )

Γ( ν

2 )
w

ν

2−1
t exp

(
−
(

ν

2

)
wt

) (2)

d(yt ,µ) = (yt −µ)T
Σ
−1(yt −µ) (3)

yt |xt ,wt ,µ,Σ∼ Gaussian
(

µ,
Σ

wt

)
=

√
wk

t√
(2π)k|Σ|

exp
(
− 1

2
wtd(yt ,µ)

) (4)

where Σ is considered to be a constant covariance pa-
rameter of the observation density encoding the cor-
relations between different observations and d(yt ,µ)
is a distance measure. The scale of the covariance
parameter is adjusted according to wt . When xt = i
the state dependent parameters are shown with the
subscript i as µi, Σi and νi. This parameterization is
equivalent to setting a conjugate prior on the variance
of the Gaussian distribution. Such a formulation of
the observation variable yt has the convenient prop-
erty that when we integrate over the latent scale vari-
able wt of the Gaussian distribution it becomes a gen-
eralized multivariate t-distribution which has a den-
sity shown in equation 5 where C is the normaliza-
tion constant shown in equation 6. Furthermore, the
Gaussian-Gamma distribution density define an expo-
nential family which enable efficient inference.

p(yt |xt ,µ,Σ,ν) =C
(

1+
1
ν

d(yt ,µ)
)− ν+k

2
(5)

C =
Γ( ν+k

2 )

Γ( ν

2 )ν
(k/2)π(k/2)|Σ|(1/2) (6)
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Using the model assumptions we have defined,
the joint probability distribution of the variables y1:T ,
w1:T and x1:T is defined as:

p(y1:T ,w1:T ,x1:T |θ) = p(x1|π)
T

∏
t=2

p(xt |xt−1,A)

T

∏
t=1

p(yt |wt ,xt ,µ,Σ)p(wt |xt ,ν)

(7)

where θ is the set of parameters of the model.

3 LATENT VARIABLE
INFERENCE

Our main goal is to infer the posterior probability dis-
tribution of the state of the system at each time t. As-
suming that our model sufficiently represents the sys-
tem and the true parameters of the model are known,
the posterior probability of xt can be calculated with-
out knowing the posterior distribution of wt since we
will be marginalizing it out. However, for a complete
understanding of the model and it’s requirement in pa-
rameter estimation, we will also be concerned with
the inference of the posterior distribution of wt .

We formulate the filtering and smoothing prob-
lems for the estimation of latent variables in our
model using a recursive Bayesian framework. In the
GGHMM the filtered density includes wt and shown
as p(xt ,wt |y1:t ,θ). Similarly the smoothed density is
defined as p(xt ,wt |y1:T ,θ).

3.1 Filtering

Let’s assume that the posterior distribution of the state
xt−1 at time t−1 is known. Using the state evolution
equation f (xt |xt−1,A) we can obtain a prior distribu-
tion on the state xt .

p(xt |y1:t−1,θ) =

∑
xt−1

f (xt |xt−1,A)p(xt−1|y1:t−1,θ) (8)

The joint posterior distribution on the latent vari-
ables xt and wt is shown in equation 9.

p(xt ,wt |y1:t ,θ) =
1

p(yt |y1:t−1,θ)
∗

p(yt |wt ,xt ,µ,Σ)p(wt |xt ,ν)p(xt |y1:t−1,θ)

(9)

Notice that the denominator p(yt |y1:t−1,θ) is ob-
tained by marginalizing xt and wt out from the nom-
inator in equation 9. At this point, we can obtain
the posterior distribution of xt by using the convenient
property of integrating out wt in order to obtain the
density of t-distribution.

p(xt |y1:t ,θ) =
p(yt |xt ,µ,Σ,ν)p(xt |y1:t−1,θ)

p(yt |y1:t−1,θ)
(10)

where the density p(yt |xt ,µ,Σ,ν) is the generalized t-
distribution shown in equation 5. Notice that using
the chain rule, the posterior distribution of the latent
variables can be factorized as shown in equation 11.

p(xt ,wt |y1:t ,θ) = p(xt |y1:t ,θ)p(wt |xt ,y1:t ,θ) (11)

Using the factorization shown in equation 11, the
filtered posterior distribution of wt can be obtained
using equation 12.

p(wt |xt ,y1:t ,θ) =
1

p(xt ,yt |y1:t−1,θ)
∗

p(yt |wt ,xt ,µ,Σ)p(wt |xt ,ν)p(xt |y1:t−1,θ)

(12)

where the joint density p(xt ,yt |y1:t−1,θ) is equiv-
alent to the nominator of equation 10. With
some rearrangement of parameters, the joint density
p(wt |xt ,y1:t ,θ) actually defines an exponential family
in equation 12. This property enables us to have some
very efficient algorithms.

p(wt |xt ,y1:t ,θ) =
w

νi−2+k
2

t exp
(
− 1

2 d(yt ,µ)wt

)

Γ( νi+k
2 )

(
1
2 d(yt ,µ)+ νi

2

)− νi+k
2

(13)

3.1.1 Moments of the Latent Scaling Variable

Since we will be needing to calculate some functions
of wt in the parameter learning section, let’s analyze
the posterior distribution of wt shown in equation 13.
Firstly, notice that the only information we have about
wt is through the observation of yt and the estimate of
xt . Any observation other than yt does not have any
influence over our estimates of wt . While we expect
that consecutive wt values do not vary significantly
in real data sets, the GGHMM model does not take
this dependence into account in order to simplify the
mathematical formulation of the model. This assump-
tion mathematically means that we cannot improve
our estimate of the posterior distribution by using a
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smoothing procedure and p(wt |xt = i,y1:t ,θ) is equal
to p(wt |xt = i,y1:T ,θ). We will comment on this lim-
itation of our model in section 6.

Let’s now calculate the moments of the sufficient
statistics of wt defined by equation 13. For expo-
nential families, we define the functions t(x), η(θ)
and a(η). We have 2-dimensional sufficient statistics
shown as:

t1(wt) =−wt

t2(wt) = log(wt)
(14)

The parameters η(θ) corresponding to these suffi-
cient statistics are:

η1(θ) =
[1

2
d(yt ,µ)+

νi

2

]
η2(θ) =

(
νi−2+ k

2

) (15)

Most importantly the log-normalizer function
a(η) is defined as:

a(η) = log
[(1

2
d(yt ,µ)+

νi

2

)−( νi+k
2 )

Γ(
νi + k

2
)

]
= log

[
η
−(η2+1)
1 Γ(η2 +1)

] (16)

Now, using the log-normalizer function, we can
calculate the first moments of the sufficient statistics
−wt and log(wt).

∂

∂η1
a(η) =

Γ(η2 +1)(−1)(η2 +1)η−(η2+2)
1

η
−(η2+1)
1 Γ(η2 +1)

= (−1)(η2 +1)η−1
1

= E(−wt)

(17)

We can transform the parameters η1 and η2 into
their θ forms in order to obtain an expression for the
expectation of wt .

∂

∂η1
a(η) = (−1)

(
νi + k

2

)[1
2

d(yt ,µ)+
νi

2

]−1

= E(−wt)

(18)

Since the expectation operator scales linearly
when multiplied by a constant factor, we find that:

E(wt) =
(

νi + k
2

)[1
2

d(yt ,µ)+
νi

2

]−1
(19)

Similarly, let’s find the first moment of log(wt):

∂

∂η2
a(η) = ψ0(η1)− ln(η1) (20)

where the function ψ0(z) is the digamma function
which describes the derivative of the Gamma function
Γ(z) through the identity:

Γ
′(z) = Γ(z)ψ0(z) (21)

We can transform the parameters η1 and η2 into
their θ forms in order to obtain an expression for the
expectation of log(wt).

∂

∂η2
a(η) = ψ0(η1)− ln(η1)

= ψ0

(
νi + k

2

)
− ln

(
1
2

d(yt ,µ)+
νi

2

)
(22)

E
(

log(wt)
)
= ψ0

(
νi + k

2

)
− ln

(1
2

d(yt ,µ)+
νi

2

)
(23)

3.2 Smoothing

In this section, our goal is to obtain a smoothed esti-
mate of the latent variables x1:T which utilizes the full
information available at time T . As we have men-
tioned, the smoothed posterior density of wt is equal
to the filtered posterior since we do not have any se-
quential dependence between consecutive wt values.
The smoothed estimate we aim to calculate in this sec-
tion is defined as p(xt |y1:T ,θ).

Notice that similar to our considerations in an
HMM, we can use the filtered estimates p(xt =
i,y1:t |θ) together with a density p(yt+1:T |xt = i,θ) in
order to calculate the joint probability density of the
model:

p(xt ,y1:T |θ) = p(xt ,y1:t |θ)p(yt+1:T |xt ,θ) (24)

which can be normalized by using the incomplete data
likelihood p(y1:T |θ) in order to obtain the smoothed
estimate p(xt |y1:T ,θ).

Assuming we know p(yt+1:T |xt ,θ), we can find a
joint distribution p(yt:T |xt−1,θ) by initially using the
emission density p(yt |xt ,µ,Σ,ν) of the multivariate t-
distribution in order to find the likelihood of yt:T for
each state xt . We call this operation the update step
since it involves the addition of an observation yt to a
known joint probability distribution.

p(yt:T |xt ,θ) = p(yt |xt ,µ,Σ,ν)p(yt+1:T |xt ,θ) (25)
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The next step is to estimate the likelihood of yt:T
given that we only know state xt−1. This estimate
can be obtained by a marginalization procedure and
is called postdiction since it involves the estimation
of the likelihood of a state with information from the
future.

p(yt:T |xt−1,θ) = ∑
xt

p(yt:T |xt ,θ) f (xt |xt−1,A) (26)

4 PARAMETER LEARNING

We formulate a maximum likelihood estimation pro-
cedure for our model based on the expectation-
maximization algorithm. The well known Baum-
Welch algorithm is derived for the hidden Markov
model which has the same state transition structure
as our model. Thus, we build upon this algorithm to
derive update equations for the model parameters µ, Σ

and ν, and note that π and A are same the same as in
the Baum-Welch algorithm (Bilmes, 2000). The max-
imum likelihood estimation problem can be stated as:

θ
∗ = argmax

θ

log p(y1:T |θ) (27)

The expectation maximization algorithm is a
method of maximizing equation 27 in an itera-
tive manner. Using Jensen’s inequality we can find
a lower bound to the incomplete data likelihood
p(y1:T |θ) and maximize this lower bound at each iter-
ation. The lower bound turns out to be in the form of
an expectation over the posterior distribution of the
latent variables x1:T and w1:T , p(x1:T ,w1:T |y1:T ,θ),
which is shown in equation 28.

log p(y1:T |θ)≥ E
[

log
p(y1:T ,x1:T ,w1:T |θ)
p(x1:T ,w1:T |y1:T ,θ)

]
(28)

Let’s define the estimated parameters at each iter-
ation with a superscript k, shown as θ(k). For compu-
tational efficiency, the posterior distribution over the
latent variables are calculated with the set of parame-
ters θ(k). The details of this derivation is similar to the
considerations in the Baum-Welch algorithm which
are shown in detail in (Bilmes, 2000). In summary, it
is based on the chain rule of probability applied to the
posterior distribution of the latent variables.

In order to simplify the update equations we de-
fine the posterior probability distribution of xt , p(xt =

i|y1:T ,θ
(k)), as γ

(k)
t (i), which is consistent with the lit-

erature. The update equations for µi and Σi are shown
below:

µ(k+1)
i =

∑
T
t=1 γ

(k)
t (i)〈wt,i〉yt

∑
T
t=1 γ

(k)
t (i)〈wt,i〉

(29)

Σi
(k+1)=

∑
T
t=1 γ

(k)
t (i)〈wt,i〉(yt −µ(k+1)

i )(yt −µ(k+1)
i )T

∑
T
t=1 γ

(k)
t (i)〈wt,i〉

(30)

where we denote the posterior expected value of wt,i
as 〈wt,i〉 for brevity. Notice that we have shown the
calculation of this expectation is relatively simple be-
cause of the exponential family form of the posterior
distribution of wt,i shown in 3.1.1. Therefore, equa-
tions 29 and 30 have similar analogs in Baum-Welch
update equations, and their calculation is straightfor-
ward.

Unfortunately, the update equation for νi does not
have a simple form similar to equations 29 and 30
because of the presence of the Gamma function Γ(z)
in the gamma distribution p(wt |xt = i,ν). We have
to introduce the digamma function ψ0(z) which is
defined as the logarithmic derivative of the gamma
function. Let’s define the posterior distribution of wt ,
p(wt |xt = i,y1:T ,θ

(k)), as κ
(k)
t . Taking the derivative

of the expectation shown in equation 28 with respect
to νi and setting it equal to zero yields:

0 = log
(

νi

2

)
+1−ψ0

(
νi

2

)
+K (31)

where K denotes a constant with respect to νi and can
be shown as:

K =
∑

T
t=1 γ

(k)
t (i)

∫
∞

0 dwt κ
(k)
t
(
log(wt,i)−wt,i

)
∑

T
t=1 γ

(k)
t (i)

(32)

Notice that the nominator of the equation above
includes the expected value of log(wt) and wt which
we previously calculated in section 3.1.1.

In order to find a value ν
(k+1)
i , we propose to

find the root of the equation 31 by using the bisec-
tion (binary search) method. We prefer this method
over other root finding algorithms such as the New-
ton–Raphson method because it enables us to con-
strain the space of possible νi values to be in (1,∞).
This is important for the robustness of the parameter
estimation process since the student’s t-distribution is
only defined for ν > 0 and its mean is defined for
ν > 1. When the mean of the emission density is not
defined, all other parameters diverge. An alternative
method of approximating the value of ν

(k+1)
i is shown

in (Shoham, 2002).
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5 EXPERIMENTS

In this section, we test the performance of our pro-
posed Gaussian-Gamma hidden Markov model with
synthetically generated data since that is the only case
we can know the actual realizations of the latent vari-
ables. Problems involving real data in the context
where we assume the presence of latent variables gen-
erally requires the construction of objective functions
which heavily influence the performance of such a
model and is out of scope of this work.

We present the theoretical capabilities of our
model by evaluating its performance on state identifi-
cation for synthetically generated multivariate heavy-
tailed time series data and compare it to a Gaussian
hidden Markov model. The synthetic data genera-
tion process of a multivariate heavy-tailed time series
involves a state-space model with an identical struc-
ture to the GGHMM. The parameters of the model
are randomly generated in each realization of the ex-
periment with a 2-dimensional latent Markovian state
space. Our aim is to understand the effects of max-
imum training epochs used for each realization and
dimensionality of the observation space on the state
identification task using smoothed estimates of the la-
tent states.

5.1 Evaluation Criteria

There are various evaluation criteria for classification
and clustering tasks such as accuracy, precision and
recall. However, we need to consider the underlying
decision making problem in order to select an appro-
priate metric. While our main goal is to identify the
state at each time t, since we assume that states are
persistent in a dynamical system, the difficulty of this
task arise from state change-points.

Let’s discuss the potential effectiveness of each
evaluation metric in order to understand their signifi-
cance. Accuracy, defined in equation ??, measures the
correctness of all state identifications. This measure
does not reflect the persistent nature of our dynamical
system since correctly guessing that there wasn’t any
change in the system is not as informative as detecting
a change.

(33)Accuracy =
∑True Positive+∑True Negative

∑Total Population

Instead of focusing on identifying every state, let’s
direct our attention to how well we can identify a
specific state. This change in our focus leads us to
the precision and recall metrics which are defined
in equations 34 and 35, respectively. Precision is a

measure of the correctness of our positively identi-
fied states and recall is a measure of how correct we
were actually able to identify a specific state in reality.
These two metrics are a better measure of the perfor-
mance of our models considering that states of a sys-
tem are not equally informative such as in the case of
identifying malignant and benign biological activities.
Thus, we select the state with higher overall standard
deviations as the relevant state to be identified, since
we assume that critical states have higher uncertainty.
We report the corresponding precision and recall val-
ues for each realization of the experiment.

Precision =
∑True Positive

∑True Positive+∑False Positive
(34)

Recall =
∑True Positive

∑Condition Positive
(35)

Since we do not want our models to be dependent
on a specific data set, we generate multiple different
realization of the experiments with randomly gener-
ated data sets and compare the models based on an
equally weighted average performance on these dif-
ferent realizations. The results report the mean and
standard deviation in each evaluation criteria.

5.2 Performance Statistics of
Experiments

The performance of both models highly depend on
the random data generation mechanism. Particularly,
having a heavy-tailed distribution only matters in the
case where the theoretical probability distribution of
each state intersects. This fact is actually quite intu-
itive when we consider the one-dimensional observa-
tion space case. If the two states have mutually exclu-
sive probability distributions it would be easy to dis-
tinguish between the two. The problem gets progres-
sively more difficult as their sample space intersect.
Thus, we constrain the mean behavior of both states
to be close in terms of some dispersion metric. This
corresponds to a unique problem where the regimes of
the process have very similar average behavior while
the covariance structure and the extreme events de-
fine their difference. In order to reflect the persistence
of each state while still keeping the structure of data
relatively random, the diagonal terms in the transition
matrix are constrained to be aii ≥ 0.8. We explore the
performance of each model according to this case and
a particular realization of the synthetically generated
data is shown in Figure 2 where different states are
shaded.
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Figure 2: Example realization of experiments.

Table 1: Performance statistics of equally trained models.

GGHMM GHMM
Mean Std Mean Std

Accuracy 0.849 0.150 0.907 0.145
Precision 0.782 0.126 0.831 0.171

Recall 0.727 0.131 0.911 0.207

Initially, we have recorded the results of 100 dif-
ferent realizations of the experiment where both of the
models are trained for a maximum of 20 epochs. The
observation space is 3-dimensional and each realiza-
tion has a length of 500. The results are presented
in Table 1. We see that the GHMM has a signifi-
cantly better performance in terms of mean accuracy
and standard deviation in accuracy throughout the re-
alizations. The same result carries over to their perfor-
mance in terms of precision and recall. Thus, under
the current conditions the GHMM is a better choice.

We arguably need to train the GGHMM model
with more maximum training epochs in order have
comparable performance statistics because of its in-
creased complexity. It is likely that the parameters did
not converge to a set which maximizes the likelihood
of the incomplete data set in 20 epochs. The con-
vergence properties of the EM algorithm for the case
of Gaussian emissions are studied in (Xu and Jordan,
1996). Since the GHMM is relatively simpler when
compared to the GGHMM, we conclude that under
constrained compute power the GHMM displays bet-
ter results.

Table 2: Performance statistics of unconstrained training
epoch realizations.

GGHMM GHMM
Mean Std Mean Std

Accuracy 0.957 0.063 0.901 0.139
Precision 0.953 0.099 0.868 0.241

Recall 0.948 0.116 0.896 0.218

Let’s investigate the effects of maximum training
epochs in the performance statistics of both models.
We have recorded the results of 100 different realiza-
tion of the experiment where the GGHMM is trained
until its results converge according to a threshold dif-
ference between each iteration and the GHMM is
trained for a maximum of 20 epochs. The results are
shown in Table 2. Since we left the maximum train-
ing epochs for the GHMM unchanged, we expect that
the mean and standard deviation in performance mea-
sures are not significantly different from the first set
of 100 realizations. Results show that we can make a
significant improvement for the GGHMM by increas-
ing the maximum training epochs. The GGHMM has
a better performance in every metric compared to both
the GHMM for these realizations and the GGHMM
for the previous 100 realizations. Furthermore, con-
vergence in the GGHMM is reached in 80 epochs on
average.

However, considering that a single epoch of train-
ing in GGHMM is significantly longer than a single
epoch in GHMM because of the increased complex-
ity of the calculations, both models may have their
advantages. For most problems, the training time of
the model is another important selection metric be-
cause of time constraints. While the GGHMM is able
to display better performance, it is at the cost of sig-
nificantly more training time. The assessment of how
this fact affects the choice between the two models
is dependent on the problem and the priorities of the
researcher.

Table 3: Performance statistics in 5-dimensional observa-
tion space.

GGHMM GHMM
Mean Std Mean Std

Accuracy 0.957 0.073 0.867 0.156
Precision 0.941 0.100 0.893 0.179

Recall 0.961 0.057 0.880 0.227

Next, we investigate the effects of the dimen-
sionality of the observation space. Thus, we have
recorded the results of 100 different realizations of
the experiment with a 2-dimensional latent Marko-
vian state-space, a 5-dimensional observation space
and each realization has a length of 500. As we have
established in the previous 200 realizations of the ex-
periment, a better performance is recorded for the
GGHMM when we let the model train until conver-
gence. Since the average epochs for GGHMM was
found to be 80 for convergence, we use this value as
an upper bound to constrain the experiment. There-
fore, we train the GHMM and GGHMM for a maxi-
mum of 20 and 80 training epochs, respectively. The
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results are shown in Table 3. Notice that we can-
not show any improvement in the performance for
the GHMM while the performance of the GGHMM
is similarly good compared to the 3 dimensional case.
Thus, we conclude that the dimensions of the obser-
vation space does not have a significant effect on the
performance for these realizations.

Overall, we are able to show that the GGHMM
performs better than the GHMM under specific cir-
cumstances. While both models have their advan-
tages, there may be some benefit in using a GGHMM
for the identification of states of a system with ex-
tereme deviations over the GHMM. On the other
hand, the increased training time for the GGHMM
also needs to be considered when deploying such a
model in production.

6 CONCLUSION

In this work, we have introduced an extension to the
hidden Markov model in order to identify the states
of a non-stationary dynamical system with observa-
tions that have heavy-tailed distributions. Such sys-
tems pose a significant challenge to researchers in
computational fields and even incremental advance-
ments may be highly lucrative.

Our proposed model, the Gaussian-Gamma hid-
den Markov model, can be considered as a variant
of the hidden Markov model where we increase the
complexity of the model in order to accommodate our
prior knowledge on heavy-tailed distributions. The
increased complexity of our model can be efficiently
handled by formulating the observation density as an
exponential family. Our model can potentially be
used to model various non-stationary dynamic sys-
tems with multiple regimes and heavy-tailed distri-
butions and is capable of representing heteroscedastic
processes within each state and is highly flexible. Fur-
thermore, the model is mostly analytically tractable
aside from requiring an auxiliary root finding algo-
rithm. This allows it to be trained relatively quickly
compared to the state-of-the-art deep neural networks
and requires much less data in order to be trained.

We have shown the application of GGHMM in
state identification for synthetically generated data.
Results show that the GGHMM has a performance
comparable with the GHMM in the state identifica-
tion task. In terms of improvements to the GGHMM,
one obvious way of improvement can come from ex-
plicitly modelling the dependencies between the se-
quential latent scale variables. However, since this
would introduce intractable calculations we have left
it as a future research.

Another source of improvement may be to also
learn the number latent states in the system. Such
models use the hierarchical Dirichlet process as their
latent representation of the state transition system
(Teh et al., 2006). For an unknown number of states,
the intuition that the states are persistent can be mod-
elled using the work in (Fox et al., 2007). For more
efficient learning in such models, practical considera-
tions are presented in (Ulker et al., 2011).
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