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Abstract: A complete Lyapunov function determines the behaviour of a dynamical system. In particular, it splits the
phase space into the chain-recurrent set, where solutions show (almost) repetitive behaviour, and the part
exhibiting gradient-like flow where the dynamics are transient. Moreover, it reveals the stability of sets and
basins of attraction through its sublevel sets. In this paper, we combine two previous methods to compute
complete Lyapunov functions: we employ quadratic optimization with equality and inequality constraints to
compute a complete Lyapunov function candidate and we evaluate its quality by using a method that improves
approximations of complete Lyapunov function candidates through iterations.

1 INTRODUCTION

Consider a general autonomous ODE:

ẋ = f(x), where x ∈ Rn. (1)

A complete Lyapunov function (CLF) candidate is a
function V : Rn→ R which is constant or decreasing
along solutions of (1). If V is smooth, then this can
be expressed by the fact that its orbital derivative, i.e.
the derivative along solutions, is negative or zero. In
formula, this reads ∇V (x) · f(x)≤ 0.

A CLF candidate delivers information about the
qualitative behaviour of (1). The larger the area of the
phase space, where V is strictly decreasing, the more
information can be obtained from the CLF candidate.
The region in which the solution to (1) shows (almost)
repetitive behaviour, i.e. the chain-recurrent set, is
necessarily contained in the set where ∇V (x) · f(x) =
0.

The first proof of the existence of a CLFs for dy-
namical systems was given by Conley (Conley, 1978).
This proof holds for a compact metric space and it
considers each corresponding attractor-repeller pair
and constructs a function which is 1 on the repeller,
0 on the attractor and decreasing in between. Then
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these functions are summed up over all attractor-
repeller pairs. Later, Hurley generalized these ideas
to more general spaces (Hurley, 1992; Hurley, 1998).
These functions, however, are just continuous func-
tions. In (Fathi and Pageault, 2019) and (Bernard and
Suhr, 2018; Suhr and Hafstein, 2020) the existence of
smooth CLFs for ODEs on compact and noncompact
phase spaces was proved, respectively.

Computational approaches to construct CLFs have
been proposed in (Kalies et al., 2005; Ban and Kalies,
2006; Goullet et al., 2015), where the phase space was
subdivided into cells, defining a discrete-time sys-
tem given by the multivalued time-T map between
them. This multivalued map was then computed using
the computer package GAIO (Dellnitz et al., 2001).
Hence, an approximate complete Lyapunov function
was constructed using graph algorithms (Ban and
Kalies, 2006). This approach requires a high number
of cells even for low dimensions. In (Björnsson et al.,
2015), a CLF was constructed as a continuous piece-
wise affine (CPA) function on a fixed simplicial com-
plex. However, it is assumed that information about
the location of local attractors is available.

In this paper we consider two different methods,
which have previously been proposed to compute
CLF candidates. Both use collocation with radial ba-
sis functions (RBF) to parameterize a CLF candidate.
In the first method quadratic programming (Giesl
et al., 2018) is used to compute a norm-minimal so-
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lution with differential equality and inequality con-
straints. The second method solves a well-posed dis-
cretization of an ill-posed PDE (Argáez et al., 2017;
Argáez et al., 2018a; Argáez et al., 2018b; Argáez
et al., 2018c). By examining where the solution to the
discretized problem delivers a poor approximation to
the original PDE, information about the location of
the chain-recurrent set is obtained. In subsequent it-
erations the right-hand side of the PDE is modified to
include information from previous solutions and nu-
merical evidence suggests that a good estimate on the
chain-recurrent set is delivered after sufficiently many
iterations.

In this paper we will investigate the local optimal-
ity of the norm-minimal solution to the quadratic min-
imization problem from (Giesl et al., 2018). In de-
tail, we will use the norm-minimal solution as the ini-
tial value to the iterative method from (Argáez et al.,
2018c) and see how much it improves. This gives us
an indication of how optimal, in the sense of deliver-
ing a reasonable estimate on the chain-recurrent set,
the norm-minimal solution to the quadratic optimiza-
tion problem is.

The structure of the paper is as follows: In Section
2 we briefly describe meshfree collocation methods
using RBF and then we give a short description of the
quadratic optimization method and the iterative PDE
method to compute CLF candidates. Then, in Sec-
tion 3 we present our new algorithm to evaluate the
norm-minimal solution to the quadratic optimization
problem using the iterative PDE method. In Section
3.2 we numerically investigate three planar systems
using our new method with two different support pa-
rameters for the radial basis functions and in Section
4 we draw conclusions from our results.

2 THE COMPUTATIONAL
METHODS

We first give a short review of collocation methods
using meshfree collocation of RBFs, before we de-
scribe the methods to compute CLF candidates using
quadratic optimization and iteratively solving PDEs.

2.1 Meshfree Collocation

Meshfree collocation with RBFs can be used to solve
generalized interpolation problems. A classical in-
terpolation problem is, given finitely many points
x1, . . . ,xN ∈Rn and corresponding values r1, . . . ,rN ∈
R, to find a function v satisfying v(x j) = r j for all
j = 1, . . . ,N.

Solving a PDE of the form LV (x) = r(x), where
L denotes a differential operator, is a generalized in-
terpolation problem as we look for a function v sat-
isfying Lv(x j) = r j for all j = 1, . . . ,N, where again
finitely many points x1, . . . ,xN ∈ Rn and values r1 =
r(x1), . . . ,rN = r(xN) ∈ R are given.

The approximating functions will belong to a
Hilbert space H, which we assume to have a repro-
ducing kernel Φ : Rn×Rn → R, given by a RBF ψ0
through Φ(x,y) := ψ0(‖x−y‖2).

In general, we seek to reconstruct the target func-
tion V ∈ H from the information r1, . . . ,rN ∈ R gen-
erated by N linearly independent functionals λ j ∈H∗,
i.e. λ j(V ) = r j holds for j = 1, . . . ,N. The optimal
(norm-minimal) reconstruction of the function V is
the solution of the problem in H:

min{‖v‖H : λ j(v) = r j,1≤ j ≤ N}. (2)

It is well known (Wendland, 2005) that the optimal
reconstruction can be represented as a linear combi-
nation of the Riesz representatives v j ∈H of the func-
tionals and that these are given by v j = λ

y
jΦ(·,y), i.e.

the functional applied to one of the arguments of the
reproducing kernel. Hence, the solution can be writ-
ten as

v(x) =
N

∑
j=1

β jλ
y
jΦ(x,y), (3)

where the coefficients β j are determined by the inter-
polation conditions λ j(v) = r j, 1≤ j ≤ N.

Consider now the PDE LV (x) = r(x), where r(x)
is a given function and L denotes the linear operator
of the orbital derivative LV (x) =V ′(x) =∇V (x) ·f(x).
We choose N pairwise distinct points x1, . . . ,xN ∈
Rn of the phase space, which are not equilibria, i.e.
f(x j) 6= 0 for all j = 1, . . . ,N, and define functionals
λ j(v) := (δx j ◦L)xv = v′(x j) = ∇v(x j) · f(x j), where δ

is Dirac’s delta distribution. The information is given
by the right-hand side r j = r(x j) for all 1 ≤ j ≤ N.
The approximation is then

v(x) =
N

∑
j=1

β j(δx j ◦L)y
Φ(x,y), (4)

where the coefficients β j ∈ R can be calculated by
solving the system Aβ = r of N linear equations.
Here, A is the N×N matrix with entries

ai j = (δxi ◦L)x(δx j ◦L)y
Φ(x,y)

= 〈λy
i Φ(·,y),λz

jΦ(·,z)〉H . (5)

The matrix A is positive definite, since the λi ∈H∗ are
linearly independent.

If the PDE has a solution V , then the error ‖LV −
Lv‖L∞

can be estimated in terms of the so-called
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fill distance which measures how dense the points
{x1, . . . ,xN} are. In this case, v is the approximation
to V . For the construction of a classical Lyapunov
function for an equilibrium such error estimates were
derived in (Giesl, 2007; Giesl and Wendland, 2007),
see also (Narcowich et al., 2005; Wendland, 2005).

Meshfree collocation is well suited for solving
PDEs because scattered points can be added, no trian-
gulation of the phase space is necessary, the approx-
imating function is smooth and the method works in
any dimension.

In this paper, we use Wendland functions (Wend-
land, 1995; Wendland, 1998) as radial basis func-
tions through ψ0(r) := ψl,k(cr), where c > 0, k ∈
N is a smoothness parameter and l = b n

2c+ k + 1.
Wendland functions are positive definite functions
with compact support, which are polynomials on
their support; the corresponding reproducing kernel
Hilbert space is norm-equivalent to the Sobolev space
W k+(n+1)/2

2 (Rn). They are defined by recursion: for
l ∈ N, k ∈ N0 we define

ψl,0(r) = (1− r)l
+

ψl,k+1(r) =
∫ 1

r tψl,k(t)dt
(6)

for r ∈ R+
0 , where x+ = x for x ≥ 0 and x+ = 0 for

x < 0.
The parameter c > 0 controls the size of the sup-

port of the RBF, i.e. the support is a sphere of radius
c−1 in the Euclidian norm centred at the origin.

We define recursively ψi(r) = 1
r

dψi−1
dr (r) for i =

1,2 and r > 0. Note that limr→0 ψi(r) exists if the
smoothness parameter k of the Wendland function is
sufficiently large. The explicit formulas for v and its
orbital derivative are then, see (4)

v(x) =
N

∑
j=1

β j〈x j−x, f(x j)〉ψ1(‖x−x j‖2),

v′(x) =
N

∑
j=1

β j

[
−ψ1(‖x−x j‖2)〈f(x), f(x j)〉 (7)

+ψ2(‖x−x j‖2)〈x−x j, f(x)〉 · 〈x j−x, f(x j)〉
]

where 〈·, ·〉 denotes the standard scalar product in Rn.
The matrix elements of A are

ai j = ψ2(‖xi−x j‖2)〈xi−x j, f(xi)〉〈x j−xi, f(x j)〉
−ψ1(‖xi−x j‖2)〈f(xi), f(x j)〉 (8)

More detailed explanations on this construction are
given in (Giesl, 2007, Chapter 3).

2.2 CLFs via Quadratic Programming

In (Giesl et al., 2018) a novel method to compute CLF
candidates via quadratic programming was proposed.

This approach reflects the definition of a CLF candi-
date, using differential inequalities rather than equali-
ties. In particular, a CLF candidate V needs to satisfy
V ′(x) ≤ 0 because V is non-increasing. This makes
the following requirement natural:

V ′(x)
{

=−1 for x ∈ X−

≤ 0 for x ∈ X0 (9)

where X = X−∪X0 is the collocation grid,

X− = {x−M+1, . . . ,x0}, (10)

X0 = {x1, . . . ,xN} (11)

and X− must only include points in the subset of the
phase space where the flow is gradient-like.

In correspondence with general interpolation
problems delivering the norm-minimal solution as in
(2) we seek to minimize ‖V‖H with the constraints
given by (9).

Thus with the functionals λ j = δx j ◦ L for j =
−M + 1, . . . ,N we consider the optimization prob-
lem: minimize ‖v‖H

subject to λ j(v) = −1, j =−M+1, . . . ,0
λi(v) ≤ 0, i = 1, . . . ,N

(12)

where H is a reproducing kernel Hilbert space with
kernel Φ, inner product 〈·, ·〉H and norm ‖ · ‖H :=√
〈·, ·〉H . If all points x−M+1, . . . ,xN are pairwise dis-

tinct and no equilibrium points of (1), then the λi ∈H∗

are linearly independent and it was shown in (Giesl
et al., 2018) that (12) possesses a unique solution s∗.

A function of the form

v(x) =
N

∑
j=1

β jλ
y
jΦ(x,y)

has the following norm in H

‖v‖2
H =

〈
N

∑
i=1

βiλ
y
i Φ(·,y),

N

∑
j=1

β jλ
z
jΦ(·,z)

〉
H

=
N

∑
i, j=1

βiβ j〈λy
i Φ(·,y),λz

jΦ(·,z)〉H

=
N

∑
i, j=1

βiβ jai j

= β
T Aβ .

This can be used, cf. (Giesl et al., 2018), to show that
the solution s∗ of (12) is of the form

s∗(x) =
N

∑
j=1

β jλ
y
jΦ(x,y), (13)
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where the coefficients β j satisfy minimize βT Aβ

subject to B−β =−1 ∈ RM

and B0β ≤ 0 ∈ RN
(14)

Here, the inequality is to be read componentwise, the
matrix elements ai j are defined by (5) and the matri-
ces by

A = (ai j)i, j=−M+1,...,N ∈ R(M+N)×(M+N)

=

(
A11 A12
A21 A22

)
B− = (ai j)i=−M+1,...,0, j=−M+1,...,N ∈ RM×(M+N)

=
(

A11 A12
)

B0 = (ai j)i=1,...,N, j=−M+1,...,N ∈ RN×(M+N)

=
(

A21 A22
)
.

Since the λi are linearly independent, the matrices A,
A11 and A22 are symmetric and positive definite, i.e.
in particular AT

11 = A11 and AT
12 = A21, since they are

part of the symmetric matrix A.
Note that the optimization problem (14) is a clas-

sical quadratic optimization problem that can be effi-
ciently solved.

In our applications we choose X− = {x0} to be
one point (M = 1) and N further, pairwise distinct
points in the set X0. Recall that all points in X =
X−∪X0 are assumed not to be equilibria.

2.3 Iterative Averaging Method

In (Argáez et al., 2017; Argáez et al., 2018a; Argáez
et al., 2018b; Argáez et al., 2018c) the following ap-
proach was followed for computing CLF candidates
for the system (1): First, the ill-posed PDE

V ′(x) = ∇V (x) · f(x) =−1

was discretized using meshfree collocation. The PDE
is ill-posed because on the chain-recurrent set, includ-
ing equilibria and periodic orbits, a function fulfill-
ing the PDE cannot exist. The approximation with
meshfree collocation fixes finitely many collocation
points X ⊂Rn, and computes the norm-minimal func-
tion such that V ′(x) = ∇V (x) · f(x) is fulfilled at these
points. Thus, it delivers a solution, even if the under-
lying PDE does not have a solution. By evaluating the
solution v1 to the discretized problem and analysing
where it does not fulfill the original PDE, one obtains
an estimate of the location of the chain-recurrent set.

As collocation points X = {x1, . . . ,xN} ⊂ Rn

we use a hexagonal grid with fineness parameter
αHexa-basis ∈ R+, from which all equilibrium points
have been removed. This grid is described in detail in

(Giesl, 2007; Argáez et al., 2017) and has been shown
to deliver the optimal ratio of fill-distance and separa-
tion distance (Iske, 1998), which is desirable when
using RBF.

By iterating this method by using the average p(x)
of v′1 around x as a new right-hand side and solving
the PDE

V ′(x) = p(x),
again using meshfree collocation, we obtain a new so-
lution v2 which is a better CLF candidate than v1. In
practice one averages v′1 across an evaluation grid Yx j
around each collocation point x j ∈ X and considers
the discrete generalized minimization problem

V ′(xi) = p(xi). (15)

The evaluation grid is defined in (16), see (Argáez
et al., 2018c), where more details are available.

Yx j =

{
x j±

r · k ·αHexa-basis · f̂(x j)

m
: k ∈ {1, . . . ,m}

}
,

(16)

where r ∈ (0,1) and m represent the amount of evalu-
ation points per collocation point.

This method is studied in detail in (Argáez et al.,
2017; Argáez et al., 2018a; Argáez et al., 2018b;
Argáez et al., 2018c) and we do not go into details
here. Just a few comments on the implementation:

First, it is advantageous to consider replacing the
system (1) by the ODE (17)

ẋ = f̂(x), where f̂(x) =
f(x)√

δ2 +‖f(x)‖2
(17)

with a small parameter δ > 0. This new ODE has
the same solutions as (1), but a more uniform speed.
This was shown to reduce the over-estimation of the
chain-recurrent set, i.e. the “noise” in the approxima-
tion. Further, as we show in Table 1, the condition
numbers of the matrix A in the generalized minimiza-
tion problem are several orders of magnitude lower
than when using (1).

Second, there are several choices of evaluation
grids possible. We use an evaluation grid aligned
along the flow at each collocation point for the iter-
ations (16), see (Argáez et al., 2018a).

Further, as we require ∇V (x) · f(x)≤ 0 we replace
p(x j) by zero if the average of v′i around x j is positive.

Third, to avoid the solutions vi to converge to the
zero function with growing i, we normalize the right-
hand side (15) over the iterations, i.e. ∑

N
i=1 p(xi) =

const.
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3 EVALUATION METHOD

We first use the quadratic optimization method from
(Giesl et al., 2018) as described in Section 2.2 to com-
pute a CLF candidate v1. Then we apply the averaging
iterations, starting with this v1, as described in Section
2.3.

3.1 General Algorithm

Our general algorithm to compute CLFs can be sum-
marized as follows:

1. Create the set of collocation points X− =
{x−M+1, . . . ,x0}, X0 = {x1, . . . ,xN}, and set X :=
X0 ∪X−. Solve the quadratic optimization prob-
lem (14), obtaining vi with i = 1.

2. To determine the right-hand side of V ′(x j) =
p(x j) for the next iteration define

r̃ j =

 1
|Yx j |

∑
y∈Yx j

v′i(y)


−

where x− = x if x < 0 and x− = 0 otherwise. Here
Yx j is the evaluation grid corresponding to the col-
location point x j and |Yx j | is its cardinality. Set
p(x j) = Cr̃ j, where C = 1 if i = 1 and other-
wise C > 0 is a normalization constant such that
∑

N
j=−M+1 p(x j) is equal to the same sum from the

last iteration.

3. Solve the generalized interpolation problem

V ′(x j) = p(x j),

as described in Section 2.1 to obtain a solution
vi+1.

4. Set i→ i+1 and repeat steps 2. and 3. until some
predefined criterion is reached.

The convergence of this algorithm is considered to
have been reached when a given number of iterations
have been performed or when a sufficiently good ap-
proximation to the CLF is achieved. To obtain an es-
timate of the location of the chain-recurrent set from
a solution vi we evaluate it on a fine Cartesian grid.
The set

{x : v′i(x)≥−γ},
where γ ≤ 0 is some predefined parameter, is the ap-
proximation obtained from vi.

It is known from (Argáez et al., 2017; Argáez
et al., 2018a; Argáez et al., 2018b; Argáez et al.,
2018c) that if we run the algorithm above with v1 as a
solution to the ill-posed PDE V ′(x) =−1, and not the
solution to the quadratic optimization problem (14),
this will result in a sequence of solutions vi that give

successively better approximations of the location of
the chain-recurrent set. The question we investigate
in the next section is the following: if we start with v1
as the solution to the quadratic optimization problem
(14) from (Giesl et al., 2018), then does the approx-
imation of the location of the chain-recurrent set im-
prove, or is the solution v1 optimal in the sense, that
it cannot be improved by using averaging iterations.

3.2 Results

We consider three different planar systems from the
literature and in all the examples we use a hexag-
onal grid with fineness parameter αHexa-basis ∈ R+ as
collocation grid X = X0, from which all equilibrium
points have been removed. In all the cases X− con-
sists of only one point x0. Furthermore, we use ψ6,4
as Wendland function and two different support pa-
rameters, c = 1 and c = 0.1. Further, for determin-
ing the approximation to the chain-recurrent set we
used a Cartesian grid hZ2 with h = 0.03 in all com-
putations and we set the parameter γ = 0. Finally, we
compared the chain-recurrent set obtained from the
solution v1 to the quadratic optimization problem (14)
from (Giesl et al., 2018) (iteration 1) with v10, i.e. the
CLF candidate obtained from the algorithm in Section
3.1 after 10 iterations.

For each system we plot the CLF candidates v1
and v10, their orbital derivatives, and the approxima-
tion of the chain-recurrent set obtained from the CLF
candidate.

3.2.1 Two Orbits

We consider system (1) with right-hand side

f(x,y) =
(
−x(x2 + y2−1/4)(x2 + y2−1)− y
−y(x2 + y2−1/4)(x2 + y2−1)+ x

)
,

(18)
which has an asymptotically stable equilibrium at the
origin, an asymptotically stable periodic orbit with ra-
dius 1, and a repelling periodic orbit with radius 1/2.

The collocation points were set in (−1.5,1.5)×
(−1.5,1.5) ⊂ R2 and we used αHexa-basis = 0.018,
which gives 32,064 collocation points. An extra
point, x0 = (0.1,0) is added to fulfill the condition
v′(x0) =−1 during the quadratic optimization.

Figure 1 shows the plots for v1 and figure 2 shows
the plots for v10. Both figures used c = 1 for system
(18). Likewise, figure 3 shows the plots for v1 and
figure 4 shows the plots for v10. Both figures used
c = 0.1 for system (18).
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Figure 1: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(18). First iteration, i.e., quadratic optimization. The nor-
malized method was used with c = 1 and δ2 = 10−8.

3.2.2 Homoclinic Orbit

We consider system (1) with right-hand side f(x,y) =(
x(1− x2− y2)− y((x−1)2 +(x2 + y2−1)2)
y(1− x2− y2)+ x((x−1)2 +(x2 + y2−1)2)

)
.

(19)
This system has an unstable focus at the origin and
an asymptotically stable homoclinic orbit at a circle
centred at the origin and with radius 1.

The collocation points were set in (−1.5,1.5)×
(−1.5,1.5)⊂ R2 with αHexa-basis = 0.018, which gives
32,064 collocation points. An extra point, x0 =
(0.1846,0) is added to fulfill the condition v′(x0) =
−1 during the quadratic optimization.

Figure 2: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(18). Tenth iteration, i.e., iterative method solving the PDE
to the values of the average values of the orbital derivatives
around the corresponding collocation points. The normal-
ized method was used with c = 1 and δ2 = 10−8.

3.2.3 Van der Pol Oscillator System

We consider system (1) with right-hand side

f(x,y) =
(

y
(1− x2)y− x

)
. (20)

System (20) is the two-dimensional form of the Van
der Pol oscillator. This describes the behaviour of
a non-conservative oscillator reacting to a non-linear
damping. The origin is an unstable focus, and the sys-
tem has an asymptotically stable periodic orbit.

The collocation points were set in (−4,4) ×
(−4,4) ⊂ R2 with αHexa-basis = 0.05, which gives
29,440 collocation points. An extra point, x0 =
(0.1,0) is added to fulfill the condition V ′(x0) = −1
during the quadratic optimization.

Figure 5 shows the plots for v1 and figure 6 shows
the plots for v10. Both figures used c = 1 for system
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Figure 3: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(18). First iteration, i.e., quadratic optimization. The nor-
malized method was used with c = 0.1 and δ2 = 10−8.

(19). Likewise, figure 7 shows the plots for v1 and
figure 8 shows the plots for v10. Both figures used
c = 0.1 for system (19).

Figure 9 shows the plots for v1 and figure 10
shows the plots for v10. Both figures used c = 1 for
system (20). Likewise, figure 11 shows the plots for
v1 and figure 12 shows the plots for v10. Both figures
used c = 0.1 for system (20).

3.3 Discussion of the Results

Let us discuss the results from our examples (18), (19)
and (20). Systems (19) and (20) do not show any im-
provement in the localization of the chain-recurrent
set when using iterations as seen in figures 5,6,7,8,9,
10, 11 and 12. System (18) shows slight improve-
ments, but only for c = 1. This clearly indicates that
the solution v1 to the quadratic optimization prob-
lem (14) from (Giesl et al., 2018) cannot be improved

Figure 4: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(18). Tenth iteration, i.e., iterative method solving the PDE
to the values of the average values of the orbital derivatives
around the corresponding collocation points. The normal-
ized method was used with c = 0.1 and δ2 = 10−8.

by averaging iterations. We conclude that the norm-
minimization of the quadratic optimization problem
delivers a locally optimal solution, in the sense, that
averaging iterations do not improve the estimate of
the chain-recurrent set. Indeed, the estimates become
worse in most cases and, indeed, the approximation
form v1 is quite good.

However, as solving the quadratic optimization
problem is much more computationally demanding
than solving a system of linear equations and iterat-
ing, one might try to obtain a solution v1 using only
a few collocation points and then iterate on a denser
grid. We will investigate this in the future.

Even if in this paper we have presented all our re-
sults with the normalized method, it is very informa-
tive to have a look at the condition numbers of the
matrices involved in the examples, i.e. the matrix A
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Figure 5: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(19). First iteration, i.e., quadratic optimization. The nor-
malized method was used with c = 1 and δ2 = 10−8.

from the collocation with and without the normalized
method.

Table 1: Condition number for the collocation matrices
computed for all systems under different values of c. Using
the system ODE directly on the left and normalized using
(17) on the right.

Condition number
Not normalized Normalized as (17)
c=1 c=0.1 c=1 c=0.1

ODE (18) 1013 1017 108 1012

ODE (19) 1015 1019 108 1012

ODE (20) 1011 1015 106 1011

As it can be seen collocation matrices computed with
a Wendland function with support parameter c = 0.1
have much higher condition numbers, but this is to be
expected as there is more overlap of supports, the ma-
trix is less sparse, and the computed CLF candidate
is in general of much higher quality. The more inter-
esting observation is that using the normalization (17)
of the right-hand side of the ODE to obtain a system

Figure 6: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(19). Tenth iteration, i.e., iterative method solving the PDE
to the values of the average values of the orbital derivatives
around the corresponding collocation points. The normal-
ized method was used with c = 1 and δ2 = 10−8.

with a more uniform speed of traversing of trajecto-
ries delivers matrices with condition numbers that are
several orders of magnitude lower.

4 CONCLUSIONS

We investigated whether a complete Lyapunov func-
tion candidate computed by quadratic optimization
problem as in (Giesl et al., 2018) could be improved
by applying averaging iterations from (Argáez et al.,
2017; Argáez et al., 2018a; Argáez et al., 2018b;
Argáez et al., 2018c), which have been shown to de-
liver successively better approximations when start-
ing with an approximation to the ill-posed problem
V ′(x) =−1. The result is that the complete Lyapunov
function candidate obtained by quadratic optimization
is locally optimal in the sense, that it cannot be im-
proved by these iterations.
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Figure 7: Above: Complete Lyapunov function. Middle:
Orbital derivative. Bottom: Chain-recurrent set. System
(19). First iteration, i.e., quadratic optimization. The nor-
malized method was used with c = 0.1 and δ2 = 10−8.
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