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Abstract: The paper proposes and studies the efficiency of the ant colony optimization (ACO) algorithms for solving 
an inverse problem in non-destructive electromagnetic testing (NDET). The inverse problem, which consists 
in finding the shape and parameters of cracks in conducting plates starting from the signal of an eddy 
current testing (ECT) probe, is formulated as a discrete optimization problem. Two of the most widely 
known ant algorithms are adapted and applied to solve the optimization problem. The influence over the 
optimization algorithms performances of some problem specific local search strategies is also analyzed. 

1 INTRODUCTION 

Eddy Current Testing (ECT) is one of the most used 
electromagnetic methods commonly employed in the 
non-destructive evaluation of conductive materials 
(Yusa et al., 2016). The ECT principle is based on 
the interaction between induced eddy currents and 
an examined conductive structure, interaction due to 
the electromagnetic induction phenomena. The 
method is applied in various application fields for 
material thickness measurements, corrosion 
evaluation, proximity measurements, and so on. 
However, at the present time the most widely spread 
area of application is the diagnosis and detection of 
discontinuities in conductive materials. Real cracks 
(such as stress corrosion cracks) usually appear in 
steam generator tubes used in pressurized water 
reactor of nuclear power plants (Yusa, 2017). 

The Non-destructive Electromagnetic Testing 
(NDET) inverse problem deals with the 
identification of crack parameters using the ECT 
measured signal (Yusa et al., 2016) (Yusa, 2017). 
The optimization problem associated with the 
inverse problem aims to minimize the difference 
between the simulated signal corresponding to a 
potential solution and the measured (real) signal. 

Since deterministic methods can not be applied 
because of multiple local minimum, heuristics based 
methods, like genetic algorithms, tabu search, 
particle swarm optimization, and so on, have 

emerged as the standard techniques for solving these 
non-convex and ill conditioned difficult inverse 
problems. 

The present paper proposes and deals with 
studying and comparing the efficiency of ant 
algorithms to solve the optimization problem 
associated with the inverse NDET problem. 

The first ant algorithm, the Ant System (AS), 
was proposed by (Dorigo et al., 1996) and was 
targeted towards hard non-determinist polynomial 
(NP) combinatorial optimization problems such as 
the Travelling Salesman Problem (TSP) (Stutzle, 
Hoos, 1997) (Dorigo et al., 1999) (Ridge, Kudenko, 
2007), Quadratic Assignment Problem (QAP) 
(Stutzle, Hoos, 1997) (Dorigo et al., 1999) or 
Multiple Knapsack Problem (MKP) (Fidanova, 
2007) (Ke et al., 2013). The algorithm simulates the 
behaviour of ants in real ant colonies when 
searching for food. The ants are social insects which 
communicate information about food sources using 
a substance called pheromone, substance secreted 
along their search path. 

During time, to improve the performances of the 
initial algorithm a significant number of solutions 
have been proposed, the most notorious ant 
algorithms being the Max-Min Ant System (MMAS) 
(Stutzle, Hoos, 1997) and the Ant Colony 
Optimization (ACO) (Dorigo et al., 1999). In the 
same time several algorithms derived from ant 
algorithms for combinatorial optimization have been 
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proposed for continuous optimization problems 
(ACOR) (Socha, Dorigo., 2008). 

To solve the inverse NDET problem two 
approaches will be studied: the first one is based on 
an ant algorithm for continuous optimization 
(ACOR) and the second is based on an algorithm 
designated to combinatorial optimization (MMAS). 

To speed up the optimization process and to 
avoid getting trapped in local minimum points some 
problem specific local search strategies are used to 
enhance the ant algorithms when solving the inverse 
NDET problem. The influence over the ant based 
algorithms performances of the local search 
frequency is also studied. 

2 THE NDET PROBLEM 

2.1 Tested Configuration 

The problem used for testing is a slightly different 
version of JSAEM (Japan Society for Applied 
Electromagnetics) benchmark #2 similar with the 
one in (Janousek et al., 2017). The non-magnetic 
conductor (Ω0) surface is scanned using pancake coil 
with a self-induction. The non-magnetic plate (40 x 
40 x 1.25 mm3) has the conductivity =106 S/m and 
contains one crack located in the region Ω1 (10 x 1 x 
1.25 mm3) divided uniformly in a grid of cells (13 x 
5 x 10) (Figure 1). The cracks are cubes described 
by 6 integer parameters, c=[ix1, ix2, iy1, iy2, iz, s], the 
indices of the first / last cells along x [length] and  y 
[width], number of cell along z [depth iz], and 
conductivity c = s % . The crack is considered as 
having a uniform conductivity, zero or a percentage 
from the plate conductivity.  

 

Figure 1: Conductor plate with a crack. 

 

2.2 ECT Signal Simulation 

For the simulation of the ECT signals a fast FEM-
BEM solver is used (Chen et al., 1999) (Rebican et 
al., 2006). The simulated ECT signals use a database 
generated in advance for cracks with different 
widths (Yusa et al., 2003), (Chen et al., 2006). To 
calculate the ECT signal for a crack with the FEM-
BEM a linear equations system of small dimension 
needs to be solved, corresponding to the finite 
elements composing the crack. This leads to a 
significant computational time decrease. 

The optimization problem associated to the 
NDET inverse problem has the following objective 
function: 

ሺܿሻߝ ൌ ඨ෍ ሺ∆ܼ௜ሺܿሻ െ	∆ܼ௜
௧௥௨௘ሺܿሻሻଶ
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௜ୀଵ
 (1)

where c is the vector containing the crack 
parameters, Nsc is the scanning points number, and 
Zi / Zi

true are the simulated / measured coil 
impedance variations in the i-th scanning point. 

3 ACO ALGORITHMS 

3.1 MMAS 

The MMAS is an ant colony optimization algorithm 
proposed by Stutzle and Hoos which proved its 
efficiency on combinatorial optimization problem 
such as TSP and QAP (Dorigo et al., 1999). As ACO 
optimization algorithms, MMAS is based on the 
natural phenomenon of ants forage for food. During 
their search path ants create tours (graphs) on which 
they deposit a substance called pheromone. An ant 
movement along the edges of the graph is a 
probabilistic decision based on the pheromone 
information. 

In practice MMAS is implemented as an iterative 
stochastic algorithm with the next stages: 
pheromone initialisation, tour (solution) construction 
and evaluation, local search, pheromone 
evaporation, pheromone deposit on the best global 
route, pheromone limitation, and if necessary 
pheromone reinitialization. The pseudocode of the 
algorithm is as follows: 
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;initialize pheromones table 
do 
 foreach ant of the colony 
  ;construct solution 
  ;evaluate solution 
 end for 
 ;local search 
 ;evaporate pheromones 
 ;deposit pheromone for best ant 
 ;apply correction to pheromones 

foreach pheromone value  

if pheromone < τmin 
 pheromone = τmin 
if pheromone > τmax 
 pheromone = τmax 

 end for 
;reset pheromones if necessary 

 noIterations ++ 
while 
 (noIterations < maxNoIterations) 
 and 

(optimal solution not found) 
 

Pheromone Initialization. Each pheromone from the 
pheromones table (graph) is assigned an initial value 
which equals the maximum allowed value (τmax). 
This value is usually set to 1 / (ρ Fmin) where ρ is the 
evaporation rate and Fmin is the smallest value of the 
objective function to be minimized. 

Solution Construction. The ants construct an initial 
solution starting from a random node. Starting from 
a node an ant movement can be exploitative or 
explorative. The decision is made using a random 
number and an exploration threshold, which is a 
parameter value of the algorithm. If the decision is 
exploitation then the ant computes the probabilities 
for choosing the next possible nodes in the graph 
and choses the node with the highest probability. 
The probability to choose a node j when starting 
from a node i is: 

pij= ([τij]α [ηij]β)/( ∑k [τik] α [ηik]β), (2)

where τij is the pheromone for the edge between the 
nodes i and j, k is a node which can be selected from 
the node i, and η is a heuristic information 
representing the attractiveness of the move (in case 
of TSP the length of the ij edge). 

If the decision is exploration than the computed 
probabilities are used as weights to choose the next 
node using a probabilistic method such as wheel 
selection. 

Local Search. Local search is used to improve the 
solution quality with neighbourhood strategies. Two 
different approaches can be applied: a problem 
independent heuristic (as tabu search), and secondly 
some problem specific local search strategy. 

Pheromone Evaporation. Each pheromone 
corresponding to an edge of the graph is decreased 
with the following formula: 

τij = (1 – ρ) τij, (3)

where ρ is the evaporation rate. 

Trail Update. Pheromone is deposited on all edges 
connecting the components of the solution for the 
best ant. There are the following approaches: the 
best overall solution, or the best solution at the 
current iteration and the best overall solution. The 
update formula is: 

τij = 1/F + τij, (4)

where F is the objective function value for the best 
solution (in the case of TSP the length of the tour). 

Pheromone Correction. In the case of MMAS, to 
avoid the algorithm stagnation the pheromones are 
limited to an interval [τmin τmax]. The minimum and 
maximum values of the pheromones are usually 
chosen as: 

τmin = 1/2n, τmax = 1 / (ρ Fmin), (5)

where Fmin is smallesr objective function value 
(smallest length of tour for TSP) and n is the 
problem size (number of cities for TSP). 

Reinitialise Pheromones. Pheromone table can be 
reinitialised if the algorithm stagnates and does not 
improve the overall best after an imposed number of 
iteration. The pheromone values are set to their 
initial values τmax. 

3.2 ACOR 

Proposed in (Socha, Dorigo., 2008) the ACOR 
algorithm is an extension of ant based optimization 
algorithms for continuous optimization problems.  

ACOR is a population based algorithm which 
stores the pheromones table as a solutions archive 
(6). The solutions are ordered using their fitness 
values in ascending order (f(sk) < f(sk+1)), where f: Rn 
–> R is the objective function to be minimized. Each 
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solution has an associated weight ω corresponding 
to its fitness value (ωk > ω k+1). 

(6)

Solution Construction. The construction of a new 
solution starts from a solution l from the archive. 
The lth solution can be chosen using a wheel 
selection mechanism. The selection probability for 
the lth solution is: 

pl= ωl / ∑k ωk. (7)

After choosing the start solution, an ant constructs a 
new solution in n steps. At each step i the ant 
calculates a value for the corresponding optimization 
variable using only information about the ith 
dimension. 

The new solutions are constructed using the 
solution archive by calculating the parameters of the 
Gaussian kernels Gk (the number of the Gaussian 
kernels is equal with the number of variables of the 
optimization problem n). More details about 
calculating the parameters of the Gaussian kernels 
can be found in (Socha, Dorigo., 2008). 

After constructing a set of solutions the 
algorithm evaluates them, add them to the solution 
archive, sorts the solutions archive according to the 
fitness values, calculates weights and Gaussian 
kernels, and in the end removes the worst solutions 
by keeping the solutions archive size to a specified 
number. 

3.3 Ant Algorithms Approach for the 
NDET Inverse Problem 

The ant algorithms used for the inversion process 
have to be customized for this type of NDET 
problems. The ACO for continuous domains, such as 
ACOR, store their pheromone table as a solution 
archive and can simply be adapted to the discrete 
optimization problem by rounding the coordinates 
values before the evaluation of the objective 
function. 

The ant algorithms for combinatorial 

optimization, such as MMAS and ACO, need 
specific design modification to be used for the 
NDET inverse problem. 

The first design issue is to map the inverse 
problem on a graph. This paper proposes the use of a 
layered graph. Each layer in a graph corresponds to 
a variable of the optimization function (a parameter 
of the crack) and its vertices (the nodes) are given by 
the number of possible values of the discrete 
variable. The edges (the arcs) between the nodes of 
different layers have assigned pheromone levels and 
represent a possibility of choice: for example, an 
edge between a node i from a layer x and a node j 
from another layer y means that when constructing a 
candidate solution after the parameter x has been 
assigned a value i the parameter y might receive a 
value j. 

The second design issue is related to the tour 
construction (candidate solution). At each step, in 
order to move from a vertex to another an ant has to 
compute a probability distribution (2). If in the case 
of TSP the attractiveness was represented by the 
distance between the two cities in our case the 
proposed solution is to be the best value of the 
objective function which was previously obtained 
with that combination of parameter values.  

The maximum and minimum values for the 
MMAS pheromone levels will include the best value 
of the objective function obtained at the current step 
(instead of the length of the tour) and the number of 
vertices in the graph. To avoid extreme cases the 
objective function will be normalized and have a 
minimum non-zero value. 

The last issue is the local search methodology. 
The proposed local search methods are NDET 
problem specific, and they aim to avoid local 
minima and increase the speed of convergence of the 
inversion algorithm. 

4 LOCAL SEARCH STRATEGY 

Initially proposed in (Duca et al., 2014) and used in 
conjunction with PSO (Particle Swarm 
Optimization) (Kennedy, Eberhart, 1995) based 
algorithms, and also successfully applied in (Duca et 
al., 2014, 2) in conjunction with advanced PSO 
algorithms (Sun et al., 2004) (Clerc, 2012) (Altinoz 
et al., 2015), the local search methods are applied 
after a number of iterations performed by the 
optimization procedure. The local search strategy 
generates 16 potential solutions starting from the 
solution with the best fitness. A test point is 
generated changing one parameter of the starting 
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point using expansion, contraction or displacement. 

 

Figure 2: Negative displacement on OX for the crack c = 
[6, 13, 1, 3, 4, 3]. 

The contraction / expansion can be performed 
along the length (OX), width (OY) or depth (OZ), 
but also conductivity. The contraction / expansion 
operations generate 12 testing points, because the 
operations can be applied in two different ways for 
the length and width, changing ix1/iy1 or ix2/iy2. 
The displacement can be performed for OX or for 
OY axis but not for OZ (the crack always starts from 
the plate surface). The displacement operation 
generates four new testing points. Figure 2 shows a 
negative displacement on OX performed on a crack 
described by the parameters [6, 13, 1, 3, 4, 3]. 

5 RESULTS 

In this paper, the inverse NDET problem is solved 
using six different schemes: three MMAS schemes 
(MMAS, MMAS with high frequency local search 
MMAS-LS-hf, MMAS with low frequency local 
search MMAS-LS-lf) and three ACOR schemes 
(ACOR, ACOR with high frequency local search 
ACOR-LS-hf, ACOR with low frequency local 
search ACOR-LS-lf). For the schemes with high 
frequency the local search is applied on the best 
solution after each iteration of the algorithm, while 
for the schemes with low frequency the local search 
is applied after 80 evaluations of the objective 
function (equivalent with 16 iterations for the ACOR 
and 40 iterations for MMAS). 

To compare the efficiency of the employed 
schemes six inner defects (ID, the crack is on the 
same side with the coil) are considered: four with 
zero conductivity (ID1-ID4) and two with non-zero 
conductivity (ID5-ID6, crack conductivity is 3% and 
2% of the plate conductivity). The values of the 
crack parameters are given in Table 1. For example, 
ID4 has the length of 5.39mm (7cells x 0.77mm), 
the width of 0.4mm (2cells x 0.2mm), the depth of 

40% from the plate thickness (iz=4), and zero 
conductivity (s=0).  

Table 1: Cracks used for testing. 

 
Crack 

Crack parameters 
ix1 ix2 iy1 iy2 iz s 

ID1 4 10 2 4 5 0 
ID2 5 9 1 5 3 0 
ID3 3 11 2 3 2 0 
ID4 4 10 3 4 4 0 
ID5 4 10 2 4 5 3 
ID6 3 11 2 3 2 2 

 

To make a relevant statistical study, 30 
numerical simulations (tests) were performed for 
each crack reconstruction. After a previous tuning 
the most suitable ACOR parameters were: archive 
size 40, number of ants 5, locality of the search 
process 0.01, convergence speed 0.85. The MMAS 
parameters were chosen as suggested in (Ridge, 
Kudenko, 2007): number of ants 2, alpha pheromone 
term 4, distance heuristic term beta 3, exploration / 
exploitation threshold 0.75, pheromone update 
frequency for best so far 1, random chosen start 
variable for solution construction, limits of trail 
pheromone 0.01 and 2, number of iterations without 
improvement (which resets the pheromone table) 10. 

The optimization algorithms were stopped when 
the exact solution was found (the objective function 
is zero) or the algorithm completed a maximum 
number of 1000 objective function (OF) evaluations.  

Table 2 (see Appendix) presents the numerical 
results of the reconstructions as the minimum, the 
maximum, the average value and the standard 
deviation of the objective function for the best 
solution for each of the 30 tests, and the number of 
tests in which the exact parameters of the crack were 
found (the exact fit). 

The performances obtained with the ACOR 
based algorithms outperform the ones with the 
MMAS for all the six tested cracks. The local search 
strategy improves the converge speed for both 
algorithms. The inversion schemes when the local 
search is applied with lower frequency performed 
significantly better than the schemes with high 
frequency, providing better average values and 
higher number of exact findings. The exceptions are 
in the case of ID6 and partially ID3 (for ACOR 
algorithms) and ID3 (for the MMAS algorithms).  

The improvements and superiority of the 
algorithms with local search can also be seen from 
mean-best evolution during the optimization process 
(Figures 3-8). Besides the fact that statistical mean 
values are smaller, the LS-lf algorithms are more 

2 nxnn

n

1
2

z

1
2

yn

1
added cells eliminated cells

ACO Algorithms to Solve an Electromagnetic Discrete Optimization Problem

119



 

stable having a smoother evolution for the cracks ID 
1/2/4/5, while the LS-hf algorithms perform better 
for the cracks ID 3/6. 

 

Figure 3: Mean-best OF value variation for test ID1. 

 

Figure 4: Mean-best OF value variation for test ID2. 

 

Figure 5: Mean-best OF value variation for test ID3. 

 

Figure 6: Mean-best OF value variation for test ID4. 

 

Figure 7: Mean-best OF value variation for test ID5. 

 

Figure 8: Mean-best OF value variation for test ID6. 
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6 CONCLUSIONS 

The paper studied the efficiency of ant based 
algorithms used for the reconstruction of cracks 
starting from the ECT signals supplied by a probe. 
Two type of ant algorithms have been adapted and 
analysed, ACOR for continuous domains and 
MMAS for discrete optimization problems. The 
paper also analysed the efficiency of the ant 
algorithms in conjunction with some problem 
specific local search methods aiming to enhance the 
inversion process. 

The schemes based on ACOR provide better 
performances (higher number of exact findings and 
smaller average and standard values for the objective 
function) than the proposed MMAS schemes, for 
both conductive and non-conductive cracks. 

The ant algorithms enhanced with local search 
strategies proved to be, by far, the best approach for 
solving the inverse problem. The schemes enhanced 
with local search significantly improve the 
performances of both type of algorithms, ACOR and 
MMAS, for cracks with zero or non-zero 
conductivity. In terms of frequency, a lower 
frequency use of the local search strategies seems to 
be preferable to a high frequency, which seems to 
lead to a premature convergence for most of the test 
cases. 
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APPENDIX 

Table 2: Objective function values and standard deviation for the NDET problem.  

(Bold RED is the best algorithm option for a crack, bold GREEN is the best MMAS option for a crack) 

Crack / Algorithm 
Min-best 
OF value 
(× E-02)

Exact fit 
(OF=0) 

Max - best 
OF value 
(× E-02)

Mean - best 
OF value 
(× E-02) 

Standard 
deviation 
(× E-02) 

ID1 

ACOR 0 8 /30 10.87 5.35 3.57 
ACOR-LS–hf 0 8 /30 10.87 5.11 3.37 
ACOR-LS–lf 0 9 /30 13.41 4.71 3.39 

MMAS 0 1 /30 45.31 24.68 10.95 
MMAS-LS–hf 6.4 0 /30 49.08 22.56 10.29 
MMAS-LS–lf 0 4 /30 49.08 19.51 11.43 

ID2 

ACOR 0 21 /30 6.22 1.40 2.36 
ACOR-LS–hf 0 20 /30 15.40 2.62 4.45 
ACOR-LS–lf 0 22 /30 5.35 1.12 2.16 

MMAS 8.12 0 /30 25.62 17.96 5.00 
MMAS-LS–hf 14.98 0 /30 36.89 18.88 6.42 
MMAS-LS–lf 0 4 /30 19.43 9.64 6.28 

ID3 

ACOR 0 18 /30 7.23 2.25 2.99 
ACOR-LS–hf 0 19 /30 7.22 1.68 2.39 
ACOR-LS–lf 0 20 /30 7.22 1.73 2.64 

MMAS 0 4 /30 11.43 7.36 3.28 
MMAS-LS–hf 0 14 /30 16.09 3.92 4.17 
MMAS-LS–lf 0 5 /30 9.64 5.50 2.78 

ID4 

ACOR 0 20 /30 10.40 2.65 4.01 
ACOR-LS–hf 0 21 /30 16.16 3.19 5.09 
ACOR-LS–lf 0 29 /30 10.39 0.35 1.90 

MMAS 0 2 /30 25.02 15.84 5.83 
MMAS-LS–hf 0 2 /30 29.51 15.00 5.96 
MMAS-LS–lf 0 5 /30 19.57 10.56 5.93 

ID5 

ACOR 0 23 /30 10.64 1.63 3.09 
ACOR-LS–hf 0 20 /30 19.25 3.41 5.54 
ACOR-LS–lf 0 28 /30 7.46 0.34 1.43 

MMAS 10.64 0 /30 43.22 21.62 6.80 
MMAS-LS–hf 7.46 0 /30 24.09 21.57 3.37 
MMAS-LS–lf 0 1 /30 24.09 16.49 6.55 

ID6 

ACOR 0 23 /30 5.08 1.08 2.06 
ACOR-LS–hf 0 28 /30 5.10 0.34 1.29 
ACOR-LS–lf 0 26 /30 5.05 0.67 1.74 

MMAS 0 1 /30 13.08 8.02 3.34 
MMAS-LS–hf 0 5 /30 12.08 6.26 4.03 
MMAS-LS–lf 0 9 /30 5.10 3.34 2.35 
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