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This paper presents a new open-source testing tool capable of performing concolic execution on x86 binaries.
Using this tool, one can find out ahead of time of potential bugs that can enable threats such as process
hijacking and stack buffer overflow attacks. Although a similar tool, SAGE, already exists in literature, it is
closed-sourced and we think that using its description to implement an open-sourced version of its main novel
algorithm, Generational Search, is beneficial to both industry and research communities. This paper describes,
in more detail than previous work, how the components at the core of a concolic execution tool, such as tracers,
dynamic tainting mechanisms and SMT solvers, collaborate together to ensure code coverage. Also, it briefly
describes how reinforcement learning can be used to speed up the state of the art heuristics for prioritization
of inputs. Research opportunities and the technical difficulties that the authors observed during the current
development of the project are presented as well.

1 INTRODUCTION

Software testing is a very important concept nowa-
days from multiple perspectives. Firstly, it can save
important resources for companies because finding
bugs in the early stages of software development can
be solved faster. Secondly, from the security perspec-
tive, it can find vulnerabilities in the source code that
could potentially lead to hacking and stolen informa-
tion. Lastly, in terms of the product quality perspec-
tive and in order to better satisfy the customers it is
also important that the application must be well tested
against different scenarios.

Several strategies and tools were created to auto-
mate software testing, as discussed in Section 2. This
paper describes an open-source tool that implements
a concolic execution engine at x86 binary level, with-
out using the source code, similar to the one reported
in SAGE (Godefroid et al., 2012). To the best of our
knowledge, it is the first one at the moment of writ-
ing this paper. The motivation for re-implementing
the Generational Search strategy for concolic execu-
tion and making it open source stems from the fact
that, according to authors, SAGE has had an impor-
tant impact in finding issues of Microsoft’s software
suite over time. Note that our tool is different from
(Bucur et al., 2011) or (Chen et al., 2018) in the way
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that we are not using LLVM at all, and the user pro-
vides us with a raw binary x86 build as input, together
with the payload input address and with the execu-
tion’s starting point. This is more appropriate to a real
execution and testing process.

Contribution of this Paper. We believe that making
available such a open-source implementation could
have an important impact on both industry and re-
search community. For industry, the repository can
act as a free alternative for software testing. We think
that testing and security engineers or quality assur-
ance engineers can also benefit from such a product.
For the research community, we unlock several oppor-
tunities also detailed in Section 3.4. As an example,
in concolic execution, the backend framework has a
queue of newly generated input. This queue requires
a prioritization mechanism that is decisive in obtain-
ing better testing results (i.e., code coverage, interest-
ing braches) with less computational resources. By
making it open-source, the research community can
contribute and test new prioritization techniques that
can lead to significant results in the future. Also, we
describe the technical architecture and implementa-
tion in detail such that the community can extend the
framework on various points. We also present some
difficulties that occurred during development and our
vision to continue improving the project from vari-

529

In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 529-536

ISBN: 978-989-758-443-5

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ICSOFT 2020 - 15th International Conference on Software Technologies

ous perspectives. On top of re-implementing the pre-
viously state of the art concolic execution tool and
making it open-source, the framework adds an inno-
vation on the field of x86 binary concolic execution:
it replaces the inputs prioritization heuristic with a
complete reinforcement learning strategy that trains
agents to score the importance of states and actions
(Paduraru et al., 2020). Thus, instead of having a fixed
heuristic score for all inputs, as described in (Gode-
froid et al., 2012), our attempt is to learn the impor-
tance of changing conditions along a program execu-
tion trace by having an agent that explores an appli-
cation binary code and optimizes a decision making
policy. One of the contributions of our implementa-
tion for using reinforcement learning (RL) strategies
is the refactoring of the original execution framework
to make it friendly with RL interfaces.

The paper is structured as follows. The next sec-
tion presents some existing work. Section 3 presents
the architecture, implementation details and future
work plan for the framework. Evaluation of the tool
and methods are discussed in Section 4. Finally, con-
clusions are given in the last section.

2 RELATED WORK

The main purpose of an automatic test data genera-
tion system for program evaluation is to generate test
data that covers as many branches as possible from a
program’s source code, with the least usage of com-
putational resources, with the goal of discovering as
many subtle bugs as possible.

One of the fundamentally known technique is fuzz
testing, in which the test data is automatically gen-
erated using random inputs. The well-known limita-
tion of fuzz testing is that it is very hard to produce
good, meaningful inputs since many of them will be
malformed, thus the important ones have a very low
probability to happen only by fuzzing.

The three main categories of fuzz testing that cur-
rently used by the community are: blackbox random
fuzzing (Sutton et al., 2007), where we use the pro-
gram under test as a black box - looking only at the in-
put and the output, whitebox random fuzzing (Gode-
froid et al., 2012), where we know what the program
is actually doing and we craft the inputs accordingly,
and grammar based fuzzing (Purdom, 1972), (Sutton
et al., 2007), where we use grammars to generate new
inputs. For blackbox fuzzing, since we view the pro-
gram as a black box, the methods used in practice
are also augmented and enhanced with other strate-
gies for better results. As an example, in (Paduraru
et al., 2017) (also part of the RIVER test suite) and
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AFL (american fuzzy lop)', genetic algorithms, and
various heuristics are used to find threats faster and to
achieve good code coverage. Grammar based fuzzing
can be viewed as a model-based testing approach, in
which, given the input grammar, the generation of
inputs can be done either randomly (Sirer and Ber-
shad, 1999), (Coppit and Lian, 2005) or exhaustively
(Ldmmel and Schulte, 2006). Autogram, mentioned
in (Hoschele and Zeller, 2016) tries to relief the user
of the tedious task of manually defining the grammar
and can learn CFGs given a set of inputs and observ-
ing the parts of the input that were used by the pro-
gram (dynamic taint analysis). Recent work concen-
trates also on learning grammars automatically, us-
ing recurrent neural networks, see (Godefroid et al.,
2017) and (Paduraru and Melemciuc, 2018).

Symbolic execution is another strategy used for
automated software testing (King, 1976). While the-
oretically it can provide more code coverage, it has
serious challenges because of the possible paths ex-
ponential growth. At the moment, there are two
approaches for implementing symbolic execution:
online symbolic execution and concolic execution.
Briefly, concolic execution works by executing the in-
put on the program under test and gathering all the
branch points met during the execution together with
their conditions. Its advantage over the online sym-
bolic execution is that, at the end of each execution,
a trace containing the branch points and their condi-
tions are obtained, thus it can be used to generate of-
fline a new set of inputs. Because of this advantage, it
is more suitable than online symbolic execution when
applied to large applications having hundreds of mil-
lions of instructions.

In the field of online symbolic execution, two of
the most common open-source used frameworks are
KLEE (Bucur et al., 2011) and S2E (Chipounov et al.,
2012). Several concolic execution engines are also
presented in the literature. Some early work is repre-
sented by DART (Godefroid et al., 2005) and CUTE
(Sen et al., 2005), which both operate on the source
code level. CRETE (Chen et al., 2018), which is
based on KLEE, operates on LLVM representation,
in contrast to RIVER, which operates at x86 level.

The most related tool that also works on x86 level
is SAGE (Godefroid et al., 2012). We follow the same
algorithms and provide an open-source implementa-
tion of it. In addition to the original work, we were
able to fill up some missing pieces of the puzzle and
come up with own ideas about the implementation of
various components, e.g., how a task can be split in
a distributed environment execution or how the taint-
ing works at byte level in collaboration with the SMT

Thttp://lcamtuf.coredump.cx/afl/
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void test_simple(const unsigned char *input)

{

int cnt=0;

if (inputl@] == 'b') cnt++;
if (input[1l] == 'a') cnt++;
if (input[2] == 'd') cnt++;
if (input([3] == '!') cnt++;

if (cnt >= 4) abort();
}

Figure 1: Example of a simple function that the user might
want to evaluate. The example is taken from SAGE paper
(Godefroid et al., 2012).

solver, thus providing a more detailed technical de-
scription for such a concolic execution tool.

Triton (Salwan and Saudel, 2015), which was
mostly used in software protection against deobfus-
cation of source code, is a dynamic binary analysis
framework containing similar components to RIVER:
a symbolic execution engine using Z3 and a dynamic
taint engine. Also, it provides Python bindings for
easier interaction, an AST representation of the pro-
gram under test, and works not only at binary x86,
but also at x86-64 and ARM32 level. An open-
source Python based example of reimplementation of
the SAGE strategy for a small code example can be
found in a Github source code example of the tool.
However, our implementation works at a lower-level
by providing C++ based access to main components
such as tainting, works with binary x86 programs, and
adds reinforcement learning capabilities in addition to
SAGE.

3 RIVER FRAMEWORK FOR
CONCOLIC EXECUTION

The framework is available for evaluation at
http://river.cs.unibuc.ro

It currently offers an automatic installer for Linux
users and many-core execution options. We are cur-
rently working on making it available as a VM im-
age that has RIVER preinstalled and an online ser-
vice that provides concolic execution on demand. In
this section, we provide an overview containing a user
guide, a high-level technical description of how we do
taint analysis and how we use an SMT solver to get
new different execution branches. Finally, we present
some future plans based on the opportunities observed
during the development.

extern "C" {
DLL_PUBLIC unsigned char payloadBuffer[MAX_PAYLOAD_BUF];
DLL_PUBLIC int Payload() {
test_simple(payloadBuffer);
return 0;

}

Figure 2: Example of user declaration of input payload
buffer and application entry point. These two symbol names
will be searched by RIVER to feed new data input tests.

3.1 Overview and Usage

For easier exemplification purposes, we use the same
test function as in SAGE (Godefroid et al., 2012) -
Fig. 1.

Assuming that this is the code that the user wants
to test and get full code coverage for it through con-
colic execution, the following steps must be done on
the user side:

1. On top of the user’s existing source code, add a
symbol named payloadBuffer (which must be a
data buffer). This will be used by RIVER to send
input to the user’s tested application.

2. Add a function symbol named Payload, which
marks the entry point of the application under test.

3. Build the program for x86.

4. Run the tool with a command, optionally speci-
fying a starting seed input (in the exemplification,
the input seed is “good”) and the number of pro-
cesses that can be used.

The code for the first two steps can be seen in Fig. 2.
The user receives live feedback through an interface
about the execution status, plus folders on disk with
inputs that caused issues grouped by category, such
as: SIGBUS, SIGSEGYV, SIGTERM, not classified,
SIGABRT, and SIGFPE. For this simple example, the
abort will be hit in less than 1 millisecond and the
input buffer containing string “bad!” will be added to
the SIGABRT folder.

3.2 Architecture and Implementation
Overview

Details about RIVER architecture were presented in
previous work (Stoenescu et al., 2017). Note that the
previous version of the tool did not support Concolic
Execution, which we introduce now as RiverConc.
We kept using Z3 (De Moura and Bjgrner, 2008) as
SMT solver for solving branches’ conditions. We
also implemented a novel reinforcement learning al-
gorithm in order to optimize the search. For this pa-
per, we sketch the description only for the main com-
ponents that help our presentation purposes:
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1. SimpleTracer - executes a program with a given
input and returns a trace, represented by a list of basic
blocks encountered during execution. A basic block is
a continuous set of assembler instructions ending with
a jump. For instance, the first basic block in Fig. 4
starts at address ea7 and ends at ebc with a conditional
jump.

2. AnnotatedTracerZ3 - similar to the one above.
The difference between them is that this execution
uses dynamic taint analysis and returns as output the
73 serialized jump conditions for each branch in the
trace that caused the move from the current basic
block to the next. By using dynamic taint analysis,
the conditions always involve combinations of bytes
indices from the payloadBuffer sent to the program.
It is easy then to ask Z3 solver to give an input (i.e.,
bytes values for the affected input part) that inverses
the original jump condition value.

Since for debugging purposes we kept using a textual
output, we are able to show the output of this com-
ponent in Fig. 3 based on executing the input pay-
load “good” over the example function given in Fig. 1.
The disassembly of this program is also presented in
Fig. 4.

Test: f61la9e97 - Taken f6la9eb2, NotTaken f6la9eae. Was taken ? Yes
10

2 f6la9e97 f6la9ef2
(= (bvnot (ite (= @0 #x62) #bl #b0)) $f61a9e97)

Test: f6la9eb2 - Taken f6la9ec3, NotTaken f6la9ebf. Was taken ? Yes
11

1 f61la9eb2

(= (bvnot (ite (= @1 #x61) #bl #b0)) $f6la9eb2)

Test: f6la9ec3 - Taken f6la9ed4, NotTaken f6la9edd. Was taken ? Yes
12

1 f6la9ec3

(= (bvnot (ite (= @2 #x64) #bl #bo)) $f6ladec3)

Test: f6la9ed4 - Taken f6la9ee5, NotTaken f6la9eel. Was taken ? Yes
13

1 f6la9ed4

(= (bvnot (ite (= @3 #x21) #bl #b0)) $f6laded4)

Figure 3: Example of a textual debugging output result by
evaluating “good” payload input against the function shown
in Fig. 1, whose dissassembled code is shown in Fig. 4.

Note that in the tested function code, there are four
branches (marked with red lines in Fig. 4) thus, the
output contains four branch descriptions as output. In
each branch (beginning with “Test” in the textual out-
put), the first line contains in order: the address of the
tested jump instruction in the binary, the basic block
addresses to go if the branch is taken or not taken, and
a boolean representing whether the jump was taken or
not with the current input given. Note that because the
user code is loaded inside RIVER process at runtime,
the disassembly code’s addresses are offset in the out-
put. The second line contains the number of bytes
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indices used by the jump condition from the initial
payload input buffer, along with the indices of those
bytes. The last line is important since it shows the Z3
textual output condition needed for each branch point
to take the same value as in the input given. If we
would like the program to take a different path than
before, Z3 solver can be asked to give values for the
negated condition. Each condition is based on the ini-
tial input payload buffer indices. Note for example
the @1 symbol in the second test, suggesting that the
condition there is over the byte index 1 from the input
buffer.

00000ea7 <test_simple>:

ea’: 55 push  S%ebp

ea8: 89 e5 mov %esp,%ebp

eaa: 83 ec 18 sub $0x18,%esp

ead: c7 45 f4 00 00 00 00 movl  $0x0,-0xc(%ebp)

eba: 8b 45 08 mov 0x8(%ebp) ,%eax

eb7: of b6 00 movzbl (%eax),%eax

eba: 3c 62 cmp $0x62,%al

ebc: 75 04 ji ec2 <test_simple+0x1b>
ebe: 83 45 f4 01 addl  $0x1,-0xc(%ebp)

ec2: 8b 45 08 mov 0x8(%ebp) ,%eax

ec5: 83 c0 01 add $0x1,%eax

ec8: of b6 00 movzbl (%eax),%eax

ech: 3c 61 cmp $0x61,%al

ecd: 75 04 jL ed3 <test_simple+@0x2c>
ecf: 83 45 f4 01 addl  $0x1,-0xc(%ebp)

ed3: 8b 45 08 mov 0x8(%ebp) ,%eax

ed6: 83 c0 02 add $0x2,%eax

ed9: of b6 00 movzbl (%eax),%eax

edc: 3c 64 cmp $0x64,%al

ede: 75 04 jne ee4 <test_simple+0x3d>
ee0d: 83 45 f4 01 addl  $0x1,-0xc(%ebp)

eed: 8b 45 08 mov 0x8(%ebp) ,%eax

ee7: 83 c0 03 add $0x3,%eax

eea: of b6 00 movzbl (%eax),%eax

eed: 3c 21 cmp $0x21,%al

eef: 75 04 Jjne  ef5 <test_simple+0xde>
efl: 83 45 f4 01 addl  $0x1,-0xc(%ebp)

ef5: 83 7d f4 03 cmpl  $0x3,-0xc(%ebp)

ef9: 7e 10 jle  fob <test_simple+0x64>
efb: 83 ec 0c sub $0xc,%esp

efe: 68 de of 00 00 push  $0xfde

fo3: e8 fc ff ff ff call f04 <test_simple+0x5d>
fos: 83 c4 10 add $0x10,%esp

fob: 90 nop

foc: c9 leave

fod: c3 ret

Figure 4: Disassembly code for the function under test in
Fig. 1. The lines marked with red underlines are jump con-
ditions ending basic blocks.

The condition translated from Z3 is equivalent to:

if payloadBuffer[1] == x61
then jump condition = TRUE
else jump condition = FALSE

(note that x61 is the hex ASCII code for the 'a’ char-
acter, so the test corresponds exactly to the second if
condition in the tested user function). Solving for the
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negated condition for any of the four tests and leaving
the rest intact would potentially get a new path in the
application. For example, in the first test (as seen in
Fig. 3) using the initial input seed “good”, the jump
condition will be taken because byte 0 (@0) does not
have value x62 ('b’, as ASCII). Looking at Fig. 4, the
first jump (jne) means that if the compare condition is
not true, then it will go to the next condition block (if
statement in the original source code). If the condi-
tion is changed and Z3 solver is asked to give a value
for byte index O such that the condition is inversed and
it will give value x62. With the new payload content
(“bood’), the first jump will not be taken next time,
and the counter instruction (at address ebe) will be
executed. After some iterations that modified the con-
ditions, the “bad!’ content is obtained and the abort
instruction will be executed.

The branching conditions that depend on the input
buffer will eventually be added to the Z3 conditions.
The mechanism behind variables tracking is the dy-
namic taint analysis component implemented inside
RIVER explained better in (Paduraru et al., 2019).

3. RiverConc - this new component orchestrates the
concolic execution process. The system acts as a cen-
tralized distributed system, and the processes will be
used for spawning tracer components of type Simple-
Tracer and AnnotatedTracerZ3. The AnnotatedTrac-
erZ3 component takes significantly more time and
usually, we tend to spawn more processes in order to
get the results faster. The “master” process will be a
“RiverConc” process, while tracer processes will be
“slaves”. The communication is done using sockets,
with components exchanging binary data messages.

RiverConc uses the same algorithm explained in
(Godefroid et al., 2012), named Generational Search.
As mentioned in that paper, their search over input
solution space is adapted for applications with very
deep paths and large input spaces. The algorithm
adapted to our components and architecture is shown
in Listings 1 and 2. Note that the variable “bound”
is used to avoid redundancy in the search, while the
heuristic that scores inputs in the priority queue tries
to promote block coverage maximization: it basically
counts how many unseen blocks the evaluated input
has generated. Intuitively, as the input successfully
generates new code blocks, it can go further and dis-
cover some other new ones.

Limitations. Because some standard or operating
system functions produce divergences (i.e., if the
same input is executed multiple times against the
same program it can give different results), we eval-
uated these and replaced their code at initialization
time in RIVER environment with empty stubs. This is
called in the literature imperfect symbolic execution.

Listing 1: The main search function that generates new in-
puts implemented in RiverConc component. It is called
with the initial input seed specified by user, or a random
input if no starting seed is specified.

SearchInputs (initiallnput):

initialInput.bound = 0

// A priority queue of inputs holding on each item

// the score and the concrete input buffer.

PQInputs = {(0, initiallnput)}

Res = execute initiallnput using a SimpleTracer process
if Res has issues: output(Res)

while (PQInputs.empty () == false):
input = PQInputs.pop()
/! Execute the input and get the branch conditions.
/! For each branch, we can get a new child as shown
// in the Expand function’s pseudocode
nextlnputs = Expand(input)
foreach newlnput in nextInputs:
Res = execute newlnput using a SimpleTracer process
if Res has issues: output(Res)
score = ScoreHeuristic (newInput)
PQInputs.push((score, newlnput))

Listing 2: The Expand function pseudocode using the An-
notatedTracerZ3 process to get symbolic conditions for
each of the jump conditions met during the execution of the
program with the given input.

Expand (input):

childInputs = []

// Get the Z3 conditions for each jump (branch) encountered
/! during execution. In our example, PC contains four entries
// one for each of the branch points.

PC = Run an AnnotatedTracerZ3 process with input

!/l Take each condition index and inverse only that one,
// keeping the prefix with the same jump value
for i in range(input.bound, PC.length):
/1 Solution will contain the input byte indices and their
/! values , which need to be changed to inverse the i’th
// jump condition
Solution = Z3Solver (
PC[0..i—1] == same jump value as before and
PC[i]== inversed jump value)
if Solution == null: continue
newlnput = overwrite Solution over input
/] no sense to inverse conditions again before i’th branch,
/l i.e., prevent backtracking.
newInput.bound = i
childInputs .append (newlInput)

return childInputs

3.3 RiverConc with Reinforcement
Learning Techniques

This subsection describes how our open-source con-
colic execution engine uses RL techniques to opti-
mize the number of calls to the SMT solver for testing
the target specified by the user. The interested party
can read (Paduraru et al., 2020) for more theoretical
information on the used methods and their evaluation.

Our idea with RiverConc is to improve the exist-
ing score heuristic by learning an estimation method
using reinforcement learning in order to estimate the
score of different actions, using the SMT sparsely.
We do this because we want to speed up the process
by reducing uninteresting inputs. Ideally, the estima-
tion method should sort the available options by im-
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portance as close to reality as possible. This could
lead to obtaining the same results faster by evaluating
symbolically a smaller subset of branch points (e.g.,
detection of inputs that cause issues, code coverage).
In our implementation, we use Deep RL techniques
(van Hasselt et al., 2015), by using a network that es-
timates Q(state,action). The state is represented by
a sequence of branch points resulted by running the
AnnotatedTracerZ3 component against a given input.
At each branch point it can understand from the out-
put in which module and offset the branch decision
occured, what is the Z3 condition for that branch, and
if the jump was taken or not with the given input (Eq.
1). Then, Z3 can be asked to solve the condition and
give a new input that reverses any of the branch deci-
sion taken by the application with the initial input.

State = {Branch,'}l.zi(ue”(&m)7l (D
Branch; = {ModulelD, Offset,Z3 _cond, taken} (2)

The action is represented by the index of the
branch condition to be inversed. Thus, the network
estimates how important it is to inverse any of the
branch decisions in the current state. If it is good
enough, then many of the unpromising changes are
pruned and the Z3 solver will be sparingly called. The
training process is organized in episodes, which can
end either if a maximum number of iteration has been
reached, or if there are no more inputs in the queue
to estimate and process further. At the beginning of
each episode, the seed is being randomized or chosen
randomly from a set of user given set of seeds. The re-
ward function can be adjusted by the user depending
on the test targets. For example, if the target is to get
better code coverage, one can count how many new
different blocks of x86 instructions were obtained by
starting from a given state and performing a given ac-
tion (i.e., choosing a certain branch point condition in
the current state and inversing it to get a new input).
More sample reward functions can be found in (Padu-
raru et al., 2020).

3.4 Future Plans, Lessons Learned and
Research Opportunities

One of the most important things, in order to find rea-
sonable code coverage in a short time, is to imple-
ment efficient input prioritization strategies. We use
the same greedy strategy and prioritization formula
as given in the SAGE paper (described above). Our
plan is to investigate better strategies, especially those
based on both classic AI methods and RL. We would
like to focus on improving the time and finding a rela-
tionship about how to find a better mapping from the
x86 code to the decision making process.
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We also plan to move from the many-core im-
plementation to a completely distributed environment
using the state-of-the-art framework Apache Spark.
This is motivated by at least three facts:

e nowadays, both industry and research have access
to large distributed computational clusters;

e concolic execution is very resource demanding
and parallelization on a single computer with
many cores cannot scale very well for applications
with deep paths and large inputs;

e it is difficult and error-prone to ensure resilience
using sockets communications in such environ-
ments, since the slave processes can crash con-
stantly due to bugs in the original source code.

Through profiling, we noticed that the Z3 solver was
the bottleneck for the RiverConc component. While
using reinforcement learning techniques can partially
solve this problem, a topic of interest for our team
in the short future is to reuse some of KLEE’s opti-
mization strategies, i.e., use a decorator pattern and
optimize Z3 queries (e.g., the solver will be executed
as the last resort if the expression is not already in the
cache or is not redundant in the given context).

Also, we plan to experiment with more heuristics
in order to increase the tool coverage. In particu-
lar, we will investigate how the reversible operations
in our executions as implemented in the RIVER tool
(Stoenescu et al., 2017) can be used in conjunction
with heuristics that make use of state restoration, such
as RFD (river formation dynamics) (Rabanal et al.,
2017).

4 EVALUATION

So far, the evaluation of our solution was done using
three applications: an XML parser?, JSON parser’,
and HTTP parser*. On top of their code, we added
only the symbols declared in Section 3.1 to inject the
payload buffer and mark the entry code of the binary
resulted after building the solution. The experiments
described below were done on a 6-Core Intel i7 pro-
cessor with 16 GB RAM and an Nvidia RTX 2070
video card, on Ubuntu 16.04.

Zhttp://xmlsoft.org
3https://github.com/nlohmann/json
“https://github.com/nodejs/http-parser



4.1 Evaluation using the Same
Heuristics Described in (Godefroid
et al., 2012)

We focused on the coverage metric keeping a database
of input tests: how many different basic blocks of a
program were evaluated using all the available tests
generated by the tool and how much time did we
spend to get to that coverage. Time is an important
criterion, because the software must be tested contin-
uously; if the testing process is slow, it might not scale
with the speed of development. The number of dif-
ferent basic blocks was obtained using Simpletracer,
after spending intervals of 30 minutes, 1h, 2h, and 3h
of generating new inputs in two ways:

e Using the tool presented in this paper - the River
concolic executor (RiverConc component)

e Previous work combining dynamic taint analysis
with fuzz based on genetic algorithms (Paduraru
et al., 2019) (with performances similar to AFL)
on all three applications under test.

At each interval we stored in different folders the
inputs generated by each tool, then we run Simple-
Tracer to tell how many basic blocks were obtained
on each individual application, time interval, and
method used. The comparative results are presented
in Tables 1, 2, 3.

Table 1: The number of basic blocks touched in comparison
between the two methods on the XML parser application.
Model 30m | 1h 2h 3h
River fuzzing | 621 | 765 | 783 | 815
RiverConc 291 | 402 | 809 | 863

Table 2: The number of basic blocks touched in comparison
between the two methods on the HTTP parser application.
Model 30m | 1h | 2h | 3h
River fuzzing | 73 | 89 | 97 | 111
RiverConc 28 | 52 | 88 | 109

Table 3: The number of basic blocks touched in comparison
between the two methods on the JSON parser application.
Model 30m | 1h | 2h | 3h
River fuzzing | 50 | 79 | 94 | 97

RiverConc 32 | 61 |90 | 104

The results show that the concolic execution tool
has the potential to get more coverage if left running
for longer. This is somewhat expected because tracing
an application symbolically demands more computa-
tional effort. But the tradeoff is that for some of the
branches, the SMT solver will give the right condition
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instead of rolling the dice until it gets in.

We plan to evaluate the new tool as soon as pos-
sible on other popular benchmarks, such as (Dolan-
Gavitt et al., 2016). Also, after we migrated to a mas-
sively distributed environment, we plan to test the per-
formance and analyze different distribution strategies.

4.2 Evaluation using RL Strategies

Firstly, we are interested to see how efficient the esti-
mation function is after training a model for 24h. We
test if such a model can obtain faster a certain level of
code coverage in comparison with the version with-
out RL. In this case, we let both methods running un-
til they reached 100 basic block on both the HTTP
and JSON parser. The comparative times are shown
in Table 4. The results show that the trained RL based
model is able to get to the same code coverage results
faster than the previous method (34% faster for HTTP
parser and 29% faster for JSON parser). Even if the
model was pre-trained for 24h, this still matters be-
cause it can be used as a better starting point and can
be reused between code changes.

Table 4: Comparative time to reach 100 different block code
coverage on the two tested applications.

Model HTTP parser | JSON parser
RiverConc 2h:10m 2h:53m
RiverConcRL 1h:37m 2h:14m

As a secondary test, we want to check how effi-
cient is a trained model between small code changes.
Thus, we considered three different consecutive code
submits (with small code fixed, between 10-50 lines
modified) averaging the time needed to reach again
100 basic blocks. The RiverConcRL method was
trained on the base code, then evaluation was done
using the binary application built at the next code sub-
mit on the application’s repository. Results are shown
in Table 5. These results suggest that the estima-
tion models can be re-used between consecutive code
changes efficiently.

Table 5: Averaged comparative time to reach again 100 dif-
ferent block code coverage on the two tested applications,
using three different consecutive code submits.

Model HTTP parser | JSON parser
RiverConc 1h:56m 2h:47m
RiverConcRL 1h:31m 2h:15m
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S CONCLUSIONS

We presented an open-source framework for concolic
execution of programs at binary level. The paper de-
scribed its architecture, implementation details and
our perspective for future work ideas. We hope that
this will help the community and industry to test their
strategies for concolic execution easier than before
and also that we will get contributions, support, and
feedback on our source code repository. By having
the first framework that is able to do concolic execu-
tion for x86 binaries, we were able to optimize the
number of SMT queries using RL strategies. New
research opportunities and ideas that occurred during
development were also presented.
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