Towards Fully Automated Inspection of Large Components with UAVs: Offline Path Planning

Constantin Wanninger, Raphael Katschinsky, Alwin Hoffmann, Martin Schörner, Wolfgang Reif


Automation mechanisms are increasingly established in the field of visual inspections. UAVs can be used for particularly large components, such as those used in ship production and for critical infrastructures. This paper concentrates on the problem of visual inspection in the field of perspective-dependent route planning. It is shown how the requirements for such a system can be implemented and elaborated. Furthermore we investigate how sensor positions can be calculated offline, based on optical and geometrical requirements and how a trajectory can be planned which contains the found sensor positions for each given area on the component. It is shown how the systems architecture can be designed in order to be able to adapt it to different requirements for the planning of sensor positions and trajectory. The implementation was tested in a simulation environment, evaluated using a benchmark data set and it was shown how above-average results can be achieved on this data set.


Paper Citation