
Software Emulation of Quantum Resistant Trusted Platform Modules

Luı́s Fiolhais, Paulo Martins and Leonel Sousa
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Keywords: Public-key Cryptography, Symmetric-key Cryptography, Post-Quantum Cryptography, Direct Anonymous
Attestation, Trust Platform Module.

Abstract: Trusted Platform Modules (TPMs) serve as the root of trust to design and implement secure systems. Con-
ceived by the Trusted Computing Group, a computer industry consortium, components complying with the
TPM 2.0 standard are stable and widely available. However, should large-scale quantum computing become
a reality, the type of cryptographic primitives adopted in the current standard will no longer be secure. For
this reason, this paper analyses the impact of adding three Post-Quantum (PQ) algorithms to a current non-
Quantum Resistant TPM through software emulation. The experimental results give insight on the kind of
implementation challenges hardware designers will face when integrating the new primitives onto the TPM,
that typically features limited hardware resources and low power consumption. In particular, it is concluded
that Kyber, NTTRU, and Dilithium can efficiently replace most of the functionality provided by Elliptic Curve
Cryptography (ECC) and Rivest-Shamir-Adleman (RSA). In contrast, current PQ Direct Anonymous Attesta-
tion (DAA) protocols are currently not compact enough to fit into a hardware TPM.

1 INTRODUCTION

The Trusted Platform Module (TPM) is a module that
builds a representation of the state of the Host ma-
chine as it boots (Arthur and Challener, 2015). Con-
cretely, as software is loaded a hash of it is concate-
nated with a hash stored in a TPM Platform Config-
uration Register (PCR), and the result is itself hashed
and then stored back in the PCR. In this manner,
the TPM can be used as the root of trust for a com-
puting platform. For instance, the hard-drive might
be encrypted with a key that is only made available
when the Host has booted to a trustworthy state. It
also features many cryptographic functionalities and
Non-Volatile (NV) storage that extend its usage to
many other applications. As an example, since its NV
memory is available to the Basic Input/Output Sys-
tem (BIOS), it might hold certificates used to ensure
that only trustworthy images are used to boot the sys-
tem. Furthermore, the TPM standard defines a pro-
tocol, called Direct Anonymous Attestation (DAA),
that allows for a TPM to authenticate itself as a gen-
uine module without disclosing its identity (Brickell
et al., 2004).

TPMs may be implemented under several
forms (Group, 2016). Hardware discrete and inte-
grated TPMs ensure security against software attacks,
with discrete TPMs offering stronger assurances

against physical attacks than integrated TPMs, as
they are implemented in a separate chip (Group,
2016; Microsoft, 2018). Software TPMs are typically
used for development and prototyping, since they en-
able faster testing, while not reducing the lifetime of
NV memories due to a high number of writes (Group,
2016). Beyond that, software TPMs may be used as
a basis for the development of firmware TPMs, that
reside on a Central Processing Unit (CPU)’s trusted
execution environment providing hardware TPM-like
functionality (Group, 2016; Microsoft, 2018), or
virtual TPMs, which hypervisors emulate for their
guests’ virtual machines (Group, 2016).

The current TPM standard relies on number-
theoretic cryptography. However, should quantum
computers become available, this type of cryptogra-
phy will no longer be secure (Shor, 1994). While
there are several branches of Post-Quantum (PQ)
cryptography (Bernstein et al., 2008), the focus herein
is on the application of lattice-based cryptography
to the TPM. Lattice-based cryptography seems to be
the only PQ branch flexible enough to support all
the functionalities required by the TPM (Bos et al.,
2017; Kassem et al., 2019; Ducas et al., 2019; Lyuba-
shevsky and Seiler, 2019). Moreover, by focusing on
operations over lattices, one is promoting the reuse of
cryptographic accelerators, and reducing the cost of
a TPM. These changes are herein applied to a soft-

Fiolhais, L., Martins, P. and Sousa, L.
Software Emulation of Quantum Resistant Trusted Platform Modules.
DOI: 10.5220/0009886004770484
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 477-484
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

477

ware TPM, and an analysis of the impact PQ resis-
tance would have on the design of hardware TPMs is
provided. Finally, this paper presents application case
studies using the Quantum Resistant (QR) TPM and
identifies future research that would enable the design
of QR TPM in a more practical way.

2 RELATION TO PRIOR WORK

Most proposals for PQ cryptography fall under four
categories: hash, multivariate, code or lattice-based
cryptography. Of these, hash and multivariate-
based cryptography only support signatures (Bern-
stein et al., 2008). The use of hash-based signa-
tures has been considered in initial developments to-
wards a PQ TPM (Fuchs, 2018). Since a TPM in-
herently requires hashing for PCR extensions, hash-
based signing might take advantage of accelerators
devoted to PCR extensions. However, the resulting
signatures are significantly larger than code or lattice-
based signatures (Aumasson et al., 2019; Ducas et al.,
2019). As the TPM also requires public-key encryp-
tion, developing primitives around these latter types
of cryptography might enable the same level of sys-
tem sharing, leading to more efficient signing for the
same overall hardware cost. Moreover, (Fuchs, 2018)
did not support PQ DAA, since it further relied on
code-based cryptography. In contrast, the herein pro-
posed construction is based on lattice-based primi-
tives, that support signatures, public-key encryption
and DAA (Ducas et al., 2019; Bos et al., 2018;
Kassem et al., 2019; Lyubashevsky and Seiler, 2019).

3 TPM EMULATOR

The open-source implementations provided by IBM
and Microsoft of the Software TPM (SW-TPM) (IBM
et al., a) and the TPM Software Stack (TSS) (IBM
et al., b) were used as a basis for the design of the
proposed TPM.

Fig. 1 shows the basic architecture of the SW-
TPM as provided by current open-source implemen-
tations, where the Transmission Control Protocol
(TCP) interface emulates the TPM Command Trans-
mission Interface (TCTI) layer found in the physi-
cal TPM. The base architecture is composed of: a
cryptographic processor wherein a secure Random
Number Generator (RNG), Rivest-Shamir-Adleman
(RSA) and Elliptic-curve Cryptography (ECC) cryp-
tographic primitives, and a hashing engine are avail-
able; a small persistent memory module (64kB) to
store TPM’s state; and a versatile memory to keep

TC
P

I/O
 L

ay
er

Cryptographic Processor

Random Number Generator

RSA and ECC Key Generator

SHA-1 and SHA-2 Hash Generator

Asymmetric Key Encryption/Decryption and
Signature Engine

Symmetric Key Encryption/Decryption Engine

Persistent Memory

Endorsement Key

Storage Root Key
(SRK)

Versatile Memory

Platform
Configuration

Registers (PCR)

Attestation Identity
Keys (AIK)

Figure 1: Original SW-TPM Architecture.

TCP Command Socket

Read Command

ExecuteCommand()

CommandDispatcher()

TPM2_Command()

Input
Command

Command
Response

Check Authorization
Session for Command

and its validity

Unmarshal input data if
any and validate it

Execute requested
Command Write results

Marshal Data Results

Build response

Write Results

Figure 2: Function flowgraph executed by the SW-TPM
when a valid command is received.

short-lived data. The SW-TPM can be configured
with different math, hash, and symmetric backend en-
gines. The configuration described herein uses the
OpenSSL engine.

With the exception of the modules that rely on
OpenSSL, the emulator makes no use of the heap,
storing the versatile and persistent memory in the
bss program segment. This is done to approximate
the emulation of the TPM to its physical counterpart.
This also facilitates porting the code to HW-SW co-
designs, wherein controlling logic is executed on the
main processor, and cryptographic operations are of-
floaded to Domain Specific Accelerators (DSAs).

Through the emulated TCTI layer, a client is able
to interface with a SW-TPM using the commands pro-
vided in the TSS. Fig. 2 shows a callgraph of the chain
of functions executed when a command is received.
Once the SW-TPM receives a command it will deseri-
alize the request and validate it, check the command’s
authorization if any, deserialize the data and validate
its contents, and then issue the command to its rele-
vant endpoint. After the completion of the command,
the SW-TPM builds a response to the client by per-
forming the same operations in reverse order and se-
rializing the response data where needed.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

478

4 QR ALGORITHMS
IMPLEMENTATION IN
SW-TPM

Four new QR algorithms and a new hashing algo-
rithm were added to the base implementation de-
scribed in the previous section: Kyber and NT-
TRU, for asymmetric key-exchange and encryp-
tion/decryption (Bos et al., 2018; Lyubashevsky and
Seiler, 2019); Dilithium, for data signatures (Ducas
et al., 2019); Lattice-Based Direct Anonymous Attes-
tation (L-DAA) for anonymous attestation (Kassem
et al., 2019); and SHA3 (NIST, 2015). All imple-
mentations described in this section were designed so
that they can be adopted and implemented in the cur-
rent TPM’s architecture. The implementation follows
the guidelines reported in (FutureTPM, 2019).

Since both Kyber and Dilithium use SHA3 as Key
Derivation Functions (KDFs), this new hash scheme
was firstly implemented. Hashes are important across
all cryptographic schemes. The most common usage
of hashing schemes is in the PCR module. PCRs
primarily hold data about the machine’s boot state,
in an hashed format. As such, they were expanded
with the new SHA3 variants. Besides the standard
cryptographic functions, the SHA3 standard also pro-
vides Extendable Output Functions (XOF) labeled as
SHAKE; SHAKEs are cryptographic hash functions
able to output an arbitrary number of pseudo-random
bytes. Since the main goal is to emulate a future hard-
ware TPM, there needs to be a limit imposed on the
size of the XOF output, commensurate with hardware
implementations. Kyber and Dilithium make use on
average of 547B from an XOF (Gueron and Schlieker,
2016). The TPM uses a buffer equal to the maxi-
mum size of all supported hash algorithms, where the
largest hash output by the standard commands is 64B
from SHA512 (or SHA3-512). The standard TPM ar-
chitecture supports a maximum buffer size of 2kB.
This buffer size is used for sending messages to be en-
crypted through symmetric or asymmetric algorithms,
sequence updates and performing Message Authen-
tication Codes (MACs) to name a few. The chosen
buffer size for XOFs must strike a balance between
the current use case (Kyber and Dilithium) and future
use cases, e.g., using the TPM as a DSA for rejec-
tion sampling when building pseudo-random secret
data, or when performing a TPM backed mutually au-
thenticated Key Exchange (KEX). Therefore, in order
to reuse the maximum buffer struct already available
while attempting forward-compatibility for the use-
cases previously referred, the upper bound of an XOF
was set to 1kB.

The integration of Kyber (Bos et al., 2018),

NTTRU (Lyubashevsky and Seiler, 2019), and
Dilithium (Ducas et al., 2019) implementations reuse
the reference implementation provided by their au-
thors. Even though there are optimized implementa-
tions available using vector instructions, these have
not been used because current physical TPMs do
not have access to those resources (Bos et al., 2018;
Ducas et al., 2019).

For the most part Kyber and Dilithium follow
the TSS’s command specification, having been in-
cluded in the TPM 2.0 standardized functions for key
creation, signature creation and verification, and en-
cryption and decryption functions. In addition, Ky-
ber and NTTRU possess two other methods for key-
exchange (encapsulation and decapsulation) which
are not standardized in the TPM specification. There-
fore, two new commands were added for the sole
purpose of performing the Kyber and NTTRU en-
capsulation (CC KYBER Enc and CC NTTRU Enc) and
decapsulation (CC KYBER Dec and CC NTTRU Dec).
Further, to be on par with RSA and ECC sup-
port, two other commands were added for Ky-
ber encryption (CC KYBER Encrypt) and decryption
(CC KYBER Decrypt).

For the L-DAA (Kassem et al., 2019) implemen-
tation, different challenges arise in comparison to the
previous algorithms. Even though the TPM specifica-
tion offers standard commands for anonymous attes-
tation, the L-DAA algorithm generates data responses
three orders of magnitude larger than the default at-
testation algorithm. This limitation prevents the new
L-DAA algorithm from using the default commands.
Hence, and to avoid transferring MBs of data (or GBs
using the highest considered security parameter set)
in a single command transaction, the TSS was ex-
tended with new commands, namely: CC LDAA Join
to perform the join operation; CC LDAA SignProceed
to authorize the TPM to proceed with the signa-
ture; CC LDAA CommitTokenLink to calculate the to-
ken link, the error polynomial, and the basename
polynomial to be used during the commitment proce-
dures; CC LDAA SignCommit{1, 2, 3} to perform
commitments; and CC LDAA SignProof to reply to
the challenges sent by the host.

Supporting this L-DAA implementation and its
associated data sizes required extensive modifications
to the SW-TPM in order to reduce transfers of data
to the order of MBs. Furthermore, there are two
scenarios where the L-DAA implementation pushes
the memory boundaries of the current TPM architec-
ture. The first scenario occurs when storing the L-
DAA state in persistent memory so that an L-DAA
session can be recovered across reboots. Each ses-
sion state requires storing an additional 32MB in the

Software Emulation of Quantum Resistant Trusted Platform Modules

479

persistent memory. In order to avoid further aggravat-
ing the memory constraints, the current implementa-
tion only supports one L-DAA session at a time. The
second scenario occurs when processing the second
and third commitments of the L-DAA signature. Dur-
ing this computation, a polynomial matrix must be
shared between the TPM and the host, requiring GBs
of memory, which the TPM can not sustain. Thus,
the shared polynomial matrix is dynamically gener-
ated inside the TPM from a seed determined by the
host.

Even though it is possible to change the persistent
memory to an off-chip denser memory, and thus allow
the TPM to withstand more than one L-DAA session
at a time, the shared matrix poses greater architectural
challenges. The matrix shared between the host and
the TPM is known and constant at the beginning of
the first commitment stage. The regeneration of the
shared matrix imposes a high performance and power
penalty, but so would its possible caching lead to a
large area and memory overhead. Thus, matrix re-
generation remains the only solution that the current
TPM architecture can handle with the aforementioned
memory increase.

The new proposed architecture with the addition
of PQ algorithms is featured in Fig. 3.

TC
P

I/O
 L

ay
er

Cryptographic Processor

Random Number Generator

RSA and ECC Key
Generator

SHA-1 and SHA-2 Hash Generator

Asymmetric Key Encryption/Decryption and
Signature Engine

Symmetric Key Encryption/Decryption Engine

Persistent Memory

Endorsement Key

Storage Root Key
(SRK)

Versatile Memory

Platform
Configuration

Registers (PCR)

Attestation Identity
Keys (AIK)

L-DAA Signature
Protocol State

SHA-3 Hash Generator

Kyber, Dilithium, NTTRU
and L-DAA Key

Generator

IBM SwTPM QR SwTPM BothLegend:

Figure 3: Proposed QR SW-TPM Architecture.

5 EXPERIMENTAL RESULTS

The baseline configuration used in performing the
data size tests, in Tab. 1, and the execution time
tests, in Tab. 2, is as follows. The ASCII string
“My super secret. Please don’t share.\n” is used
for encryption and signature; signed messages use
the SHA3-256 hash; and all keys are created as
non-primary with the fixed TPM and parent prop-
erties. All the measured times result from tak-
ing the median over one hundred runs running on

an Intel i5-5257U. The used TSS commands are:
CC Create for key creation; CC Sign for data sig-
nature; CC VerifySignature for signature verifica-
tion; CC {KYBER, RSA} Encrypt and CC {KYBER,
RSA} Decrypt for Kyber and RSA encryption
and decryption; and CC {KYBER, NTTRU} Enc and
CC {KYBER, NTTRU} Dec for Kyber and NTTRU en-
capsulation and decapsulation. All test were executed
on the authors’ fork of the SW-TPM (Fiolhais et al.,
2020a) and the corresponding TSS (Fiolhais et al.,
2020b).

Kyber (Bos et al., 2018), NTTRU (Lyubashevsky
and Seiler, 2019), and Dilithium (Ducas et al., 2019)
have been successfully implemented, replacing most
RSA and ECC functionality. Comparing the key
creation execution time, the QR algorithms show
a speedup over RSA of 1.23x and a small slow-
down of 0.95x in relation to ECC, specifically Ky-
ber and Dilithium. Regarding signature and en-
cryption/decryption execution times, the PQ schemes
show commensurate execution times in comparison
to their traditional counterparts. The largest discrep-
ancy occurs in the decapsulation command using an
ECC key. Since the ECC decapsulation requires more
than one TSS command to perform, there is an ac-
crued overhead in the total timing measurements from
command issue and reception. Using the same Ap-
plication Programming Interface (API) across all al-
gorithms (same number of commands) would most
likely result in commensurate results. However, if the
application constraints allow it, the addition of a vec-
tor unit would provide speedups of 3x to the lattice-
based algorithms in the QR TPM (Bos et al., 2017).
Even though both schemes use larger public and pri-
vate keys, they still fit into the current architecture
with no modifications.

The L-DAA algorithm implementation is the out-
lier among the four implemented PQ algorithms.
While the memory limitation issues exposed by L-
DAA have been addressed, the persistent memory had
to be increased from 64kB to 35MB, the versatile
memory had to be increased from 154kB to 512MB,
and the TCP I/O buffers had to be increased from
1MB to 128MB.

In order to set a baseline comparison between the
L-DAA and the EC-DAA schemes, instead of com-
paring the final hashed signature, the comparison is
solely set on the commit generation by the TPM. The
generation of each commit used the TSS commands
ldaa signcommit[1|2|3] for the L-DAA scheme
and the commit command for the EC-DAA scheme.
The comparison between the L-DAA scheme and the
EC-DAA scheme is not favorable. The size of the
commitment generated by the L-DAA is six orders of

SECRYPT 2020 - 17th International Conference on Security and Cryptography

480

Table 1: Key, Signature, Commit and Encryption sizes (in kB) comparison between the non-PQ and PQ algorithms. The
selected security mode for each PQ scheme follows the recommendations in the original publications (Bos et al., 2018; Ducas
et al., 2019; Kassem et al., 2019; Lyubashevsky and Seiler, 2019).

RSA
(2048 bits)

ECC
(nistp256) EC-DAA Kyber768 Dilithium

(III) L-DAA NTTRU

Public Key 0.29 0.14 0.14 1.10 1.50 25.00 1.25
Private Key 0.27 0.10 0.10 2.50 3.60 24.00 2.50
Signature /

Commit 0.26 0.08 0.25 — 2.70 624 ×103 —

Encryption 0.26 — — 1.20 — — —
Encapsulation — — — 1.09 — — 1.25

Table 2: Execution Time (in ms) comparison between the non-PQ and PQ algorithms. The selected security mode for each
PQ scheme follows the recommendations in the original publications (Bos et al., 2018; Ducas et al., 2019; Kassem et al.,
2019; Lyubashevsky and Seiler, 2019).

RSA
(2048 bits)

ECC
(nistp256) EC-DAA Kyber768 Dilithium

(III) L-DAA NTTRU

Key Creation 226 166 166 169 170 374 166
Signature /

Commit 176 179 168 — 185 7.2 ×106 —

Verify
Signature 173 176 — — 175 — —

Encryption 173 — — 173 — — —
Decryption 172 — — 172 — — —

Encapsulation — 166 — 169 — — 170
Decapsulation — 337 — 165 — — 169

magnitude larger (Tab. 1) than the EC-DAA scheme.
And the L-DAA is 43,000 times slower than the EC-
DAA scheme (Tab. 2).

6 PROTOCOL CASE STUDY:
FAST ID ONLINE

Fast ID Online (FIDO) is a set of technology-agnostic
security specifications for strong authentication. The
FIDO specifications support the Universal Authen-
tication Framework (UAF) and Universal 2nd Fac-
tor (U2F) frameworks. While the former strives to
achieve strong authentication without password, the
latter strengthens password use by tying authentica-
tion to physical tokens. U2F has been growing in pop-
ularity since it is an open authentication standard that
enables internet users to securely access a large num-
ber of online services with one single security key in-
stantly and with no drivers or client software needed.
In this section, the inclusion of the TPM in a U2F so-
lution is considered. The user’s FIDO-enabled device
creates a new key pair, and the public key is shared
with the online service and associated with the user’s
account. The service can then authenticate the user by

Table 3: Token sealing unsealing timing results (in ms) us-
ing Dilithium (k=3), RSA (2048 bits) and ECC (nistp256).
Note that the timings take into account the execution of
some commands more than once.

Operation Dilithium RSA ECC
CC StartAuthSession 168 170 167
CC PCR Read 169 169 169
CC PolicyPCR 168 168 168
CC Unseal 167 171 168
CC EncryptDecrypt 500 20 20

requesting that the registered device signs a challenge
with the private key.

The use-case scenario analyzes the enrolment of
a device in a secure setting. This might correspond
to the setting-up of the device by the IT department
of a company. The key used to authenticate the de-
vice against other company services is generated and
sealed on the TPM to the current machine state. This
ensures that, after an employee is given the TPM-
backed device, should it ever be compromised, the
device will no longer be able to connect to other com-
pany services. In practice, authentication will be tied
to the employee’s password and the correct function-
ing of the device, significantly reducing the possibil-
ity of any attack within the company’s network.

Software Emulation of Quantum Resistant Trusted Platform Modules

481

The TPM sealing process is a multi-step opera-
tion. Firstly, an audit session is initiated, which builds
a digest of a series of TPM commands. As part of this
session, the PCRs are read, such that the final audit
digest is representative of the computer state. A key
is then created, passing the aforementioned digest as
a policy that must be satisfied for the key to be used.
The key creation operation takes as input the blob one
wants to seal. The blob is encrypted by the created
key whilst outside the TPM. Since the TPM imple-
mentation limits the size of the sealed blobs to 128B,
it was decided to seal a randomly generated Advanced
Encryption Standard (AES) key that is used to en-
crypt signing key material used for authentication in
the context of FIDO. The sealed block can later be
accessed by creating a new audit session, reading the
PCRs values, and performing a call to the unseal oper-
ation associated with this session. As long as the ma-
chine is in a trustworthy state, the PCRs will contain
the same values, and the unsealing will be successful.

The execution timings of the TPM main oper-
ations for accessing the FIDO credentials, for au-
thentication processes based on Dilithium, RSA and
ECC, have been experimentally evaluated and are re-
ported in Tab. 3. The main difference in the execu-
tion timings pertains the CC EncryptDecrypt com-
mand. This results from the fact that the signing keys
are encrypted under an AES key that is sealed to the
computer state. The TPM implementation encrypts
at most 1kB of data at a time. While for both RSA
and ECC a small amount of data has to be decrypted,
Dilithium’s key material is large, and three calls to
CC EncryptDecrypt are required to completely de-
crypt it. Nevertheless, the execution time necessary
to access the Dilithium key is still small enough, and
may, for instance, be executed at the same time as
the user is typing their password. This gives strong
incentives towards the integration of the FutureTPM
into FIDO, as it provides for quantum resistance with
no noticeable degradation in performance.

7 APPLICATION CASE STUDY:
TPM-BACKED QR-TLS

To further test the Kyber and Dilithium implemen-
tations in a real world scenario, a light Transport
Layer Security (TLS) 1.3 test application was created
backed by the proposed QR-TPM. The TLS proto-
col is widely used to set up an encrypted communi-
cation channel between a server and a client wherein
both endpoints can freely share sensitive data. From
a high-level perspective, a TLS 1.3 connection setup
starts by performing a Key Encapsulation Mechanism

(KEM), so that both parties generate the same sym-
metric key to be used the in the secure tunnel. Once
the shared secret has been calculated, the client and
the server start communicating solely through secret-
key cryptography. Then the client checks the validity
of the server’s certificate. Upon a successful confir-
mation both endpoints can start communicating in the
secure channel.

Providing a high-level interface to an application
requires updating OpenSSL with support for new Ky-
ber and Dilithium bindings. In addition, the requests
for the QR algorithms need to be forwarded to the
TPM, which OpenSSL allows by changing the un-
derlying cryptographic engine. Once the engine is
swapped, there needs to be a middleware between
OpenSSL and the TPM to interpret and route re-
quests. In this instance, Intel’s TSS implementa-
tion was used (Intel and Contributors, 2020). Note
that, due to limitations in Intel’s TSS, the ephemeral
key generation and KEM are performed in OpenSSL,
whereas signature verification and generation are per-
formed in the QR TPM. The final API layers are put
together as in Fig. 4.

OpenSSL

Intel TSS

TPM

User

Hardware or Emulator

MIddleware

Figure 4: API stack used to build a QR TLS.

To test this application two scenarios were de-
vised, one using standard state-of-the-art encryption
and another using QR encryption, both supported
the proposed SW-TPM as a cryptographic engine.
The state-of-the-art scenario uses an RSA (2048 bits)
certificate and an ephemeral Elliptic curve Diffie-
Hellman (ECDH) (nistp256) key. This configuration
meets the TLS 1.3 requirements and is widely used
in servers and browsers. The QR configuration uses a
Dilithium (III) certificate and an ephemeral Kyber768
key.

All tests were executed using the OpenSSL
s server and s client commands to build a server
and a client, where the client would request the server
for its index.html. Using the state-of-the-art con-
figuration a session setup takes 430 ms, whereas the
QR configuration takes 290 ms. These results are the
median of one thousand runs for each configuration.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

482

8 DISCUSSION

Experimental results suggest that the benefits of
adding Kyber, NTTRU, and Dilithium to an hardware
TPM far outweigh their cost from a security and re-
sources perspective. In addition to their execution
times and memory requirements having similar costs
to traditional cryptography, the implementation of a
single vector unit brings performance improvements
to both schemes. In contrast, the current L-DAA pro-
posal (Kassem et al., 2019) can not be feasibly imple-
mented or used in a physical TPM.

The implementation of QR algorithms highlight
how insufficiently equipped the current TPM archi-
tecture is when using lattice-based algorithms. The
addition of a vector unit would net a 3x speedup to
most lattice-based primitives. Alternatively, the addi-
tion of DSAs for polynomial arithmetic would greatly
benefit the TPM. There is rich literature in this field
which could be leveraged (Sinha Roy et al., 2019; Ri-
azi et al., 2020).

However, the addition of QR schemes to the TPM
should not be regarded as an all or nothing scenario.
Rather, the proposed schemes should be carefully
chosen and slowly rolled into the TPM architecture.
Three great candidates are: Kyber, Dilithium, and NT-
TRU. Since they all share the same underlying arith-
metic, the addition of one streamlines the addition of
the remainder or future lattice-based proposals. Fur-
ther, from the protocol and application case studies,
it can be concluded that Kyber and Dilithium can be
deployed with marginal impact to the user.

The high memory usage of the L-DAA can be
interpreted as the immaturity of the algorithm and
should not be considered as a motive to disregard
lattice-based attestation. More generally, this should
not be seen as a deterrent to the usage of other QR
cryptographic schemes. One may, for instance, use
QR encryption along with traditional DAA signatures
for authentication. In the event that a quantum com-
puter is developed in future years, the cryptograms
exchanged with Kyber now will remain secure, while
attestation keys can easily be revoked.

9 CONCLUSION AND FUTURE
WORK

This first paper exploring the integration of QR prim-
itives in the TPM shows that one can do so while
maintaining much of the same infrastructure of TPM
2.0, for instance regarding the generation of keys and
the generation and verification of digital signatures.
However, when algorithms significantly exceed the

sizes of pre-allocated buffers and message sizes of
current architectures, their implementation may be
too expensive for physical platforms. From the pre-
sented analysis, both in synthetic testing, and proto-
col and application use cases, it is ascertained that the
Kyber, NTTRU, and Dilithium implementations can
replace most of the functionality provided by the non-
QR ECC and RSA algorithms, while offering higher
security at the cost of a small increase in memory
footprint. In contrast, the addition of the considered
L-DAA scheme drastically increases the resources
necessary for the functioning of the TPM, limiting
its application to virtual or firmware TPMs of high-
performance computing architectures. Since one of
the major obstacles in future-proofing the TPM is re-
lated to efficiently achieving QR DAA, next versions
of the SW library will consider other recent develop-
ments in this domain, such as (Chen et al., 2019).

ACKNOWLEDGEMENTS

This research was supported by European Union’s
Horizon 2020 research and innovation programme
under grant agreement No. 779391 (FutureTPM), and
by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with references UIDB/50021/2020
and FCT Grant No. SFRH/BD/145477/2019.

The authors would like to thank Athanasios Gian-
netsos and Sofianna Menesidou for their insights and
for providing the TPM protocol code on Sec.6.

REFERENCES

Arthur, W. and Challener, D. (2015). A Practical Guide to
TPM 2.0: Using the Trusted Platform Module in the
New Age of Security. Apress, Berkely, CA, USA, 1st
edition.

Aumasson, J.-P., Bernstein, D. J., Dobraunig, C.,
Eichlseder, M., Fluhrer, S., Gazdag, S.-L., Hulsing,
A., Kampanakis, P., Kolbl, S., Lange, T., Laurid-
sen, M. M., Mendel, F., Niederhagen, R., Rechberger,
C., Rijneveld, J., and Schwabe, P. (2019). Sphincs+
– submission to the 2nd round of the nist post-
quantum project. https://sphincs.org/data/sphincs+
-round2-specification.pdf.

Bernstein, D. J., Buchmann, J., and Dahmen, E. (2008).
Post Quantum Cryptography. Springer Publishing
Company, Incorporated, 1st edition.

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J. M., Schwabe, P., Seiler, G., and Stehlé,
D. (2017). Crystals – kyber: a cca-secure module-
lattice-based kem. Cryptology ePrint Archive, Report
2017/634. https://eprint.iacr.org/2017/634.

Software Emulation of Quantum Resistant Trusted Platform Modules

483

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J. M., Schwabe, P., Seiler, G., and Stehle,
D. (2018). CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-Based KEM. In 2018 IEEE European
Symposium on Security and Privacy (EuroS P), pages
353–367.

Brickell, E., Camenisch, J., and Chen, L. (2004). Direct
anonymous attestation. Cryptology ePrint Archive,
Report 2004/205. https://eprint.iacr.org/2004/205.

Chen, L., El Kassem, N., Lehmann, A., and Lyubashevsky,
V. (2019). A Framework for Efficient Lattice-Based
DAA. In Proceedings of the 1st Workshop on Cyber-
Security Arms Race (CYSARM).

Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schwabe, P., Seiler, G., and Stehlé, D.
(2019). Dilithium - Submission to the NIST post-
quantum project. https://pq-crystals.org/dilithium/
data/dilithium-specification-round2.pdf. [Online; ac-
cessed 5-September-2019].

Fiolhais, L., Martins, P., and Sousa, L. (2020a). Software
TPM. https://github.com/FutureTPM/sw-tpm.

Fiolhais, L., Martins, P., and Sousa, L. (2020b). Software
TSS. https://github.com/FutureTPM/tss.

Fuchs, A. (2018). PQC TSS and PQC TPM - a pro-
totype. 1st FutureTPM Workshop on Quantum-
Resistant Crypto Algorithms. https://futuretpm.eu/
1st-futuretpm-workshop.

FutureTPM (2019). D5.1 first version of imple-
mentation. https://futuretpm.eu/downloads/
FutureTPM-D5.1-FutureTPM-1st version of
implementation-PU-M18.pdf.

Group, T. C. (2016). Trusted Platform Module
(TPM) 2.0: A BRIEF INTRODUCTION.
Technical report, Trusted Computing Group.
https://www.trustedcomputinggroup.org/wp-content/
uploads/TPM-2.0-A-Brief-Introduction.pdf.

Gueron, S. and Schlieker, F. (2016). Speeding up r-lwe post-
quantum key exchange. Cryptology ePrint Archive,
Report 2016/467. https://eprint.iacr.org/2016/467.

IBM, Microsoft, and Contributors. IBM’s Software TPM
2.0. https://sourceforge.net/projects/ibmswtpm2/.
[Online; accessed 16-March-2020].

IBM, Microsoft, and Contributors. IBM’s TPM 2.0 TSS.
https://sourceforge.net/projects/ibmtpm20tss/. [On-
line; accessed 16-March-2020].

Intel and Contributors (2020). OSS implementation of the
TCG TPM2 Software Stack (TSS2). https://github.
com/tpm2-software/tpm2-tss. [Online; accessed 16-
March-2020].

Kassem, N. E., Chen, L., Bansarkhani, R. E., Kaafarani,
A. E., Camenisch, J., Hough, P., Martins, P., and
Sousa, L. (2019). More efficient, provably-secure di-
rect anonymous attestation from lattices. Future Gen-
eration Computer Systems, 99:425 – 458.

Lyubashevsky, V. and Seiler, G. (2019). Nttru: Truly fast
ntru using ntt. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019, Issue 3:180–
201.

Microsoft (2018). TPM recommendations. https:

//docs.microsoft.com/en-us/windows/security/
information-protection/tpm/tpm-recommendations.

NIST (2015). SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. https://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. [Online;
accessed 5-September-2019].

Riazi, M., Laine, K., Pelton, B., and Dai, W. (2020). Heax:
An architecture for computing on encrypted data. In
ASPLOS ’20: Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems.

Shor, P. W. (1994). Algorithms for quantum computation:
discrete logarithms and factoring. In Proceedings of
the 35th Annual Symposium on Foundations of Com-
puter Science, pages 124–134.

Sinha Roy, S., Turan, F., Jarvinen, K., Vercauteren, F.,
and Verbauwhede, I. (2019). Fpga-based high-
performance parallel architecture for homomorphic
computing on encrypted data. In 2019 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 387–398.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

484

