
Verifying the Application of Security Measures in IoT Software Systems
with Model Learning

Sébastien Salva and Elliot Blot
LIMOS - UMR CNRS 6158, Clermont Auvergne University, France

Keywords: Model Learning, Model Checking, Expert System, IoT Software Systems.

Abstract: Most of today’s software systems log events to record the events that have occurred in the past. Such logs are
particularly useful for auditing security over time. But, the growing sizes and lack of abstraction of the logs
make them difficult to interpret manually. This paper proposes an approach combining model learning and
model checking to help audit the security of IoT software systems. This approach takes as inputs an event
log and generic security measures described with LTL formulas. It generates one formal model for every
component of an IoT system and helps auditors make the security measures concrete in order to check if the
models satisfy them. The LTL formula instantiation is semi-automatically performed by means of an expert
system and inference rules that encode some expert knowledge, which can be applied again to the same kind
of systems with less efforts. We evaluate our approach on 3 IoT systems against 11 security measures provided
by the European ENISA institute.

1 INTRODUCTION

The Internet of Things (IoT) is a broad concept com-
prising a wide ecosystem of interconnected services
and devices, such as sensors, or industrial and health
components, connected to the Internet. As many
kinds of software are involved within the IoT con-
cept, e.g., for data collection, device cooperation, or
real-time analytic, it is not surprising to observe that
IoT systems are vulnerable to a wide range of secu-
rity attacks. After the alarming surge of cyber-attacks
on IoT systems revealed during the few past years,
organisations have started to be aware about the im-
portance of including cyber-security in their IoT solu-
tions. More and more organisations appeal to both
internal and external auditors to check the security
of their IoT-based services and to assess the related
risks. Most of these activities are time-consuming
and sometimes challenging, especially if they are per-
formed from scratch.

Some papers or documents provide guidelines to
establish a security audit process. For instance, the
European ETSI and the U.S. NIST institutes have pro-
posed methods and activities dedicated to undertake
testing and risk assessment activities (NIST, 2018;
ETSI, 2015). Others documents, e.g., the reports
of the European Union Agency for Cybersecurity
(ENISA) (ENISA, 2017), put forward security mea-

sures, good practices, and threats taxonomy. Further-
more, some approaches and tools have been proposed
to automate some steps of an audit process, and par-
ticularly the security testing stage. Some of them
adopt Model-based Testing (MbT) (Ahmad et al.,
2016; Matheu-Garcı́a et al., 2019), i.e. test cases are
derived from a (formal) model that expresses the be-
haviour of the system. Other passive approaches mon-
itor IoT systems in order to detect the violation of for-
mal properties (Siby et al., 2017). Despite the strong
benefits brought by these approaches, the efforts re-
quired for writing (formal) models usually hamper
their adoptions.

In this paper, we propose a Model-Learning-
Checking solution (shortened MLC) to this problem,
which combines model-learning to generate formal
models of IoT systems and model-checking to evalu-
ate whether security properties hold on these models.
Figure 1(a) illustrates its integration with some secu-
rity audit stages given in the NIST or ETSI security
audit frameworks. The step “Establish the context”,
which is often manually done by interpreting diverse
documents, is partly performed here by means of a
model learning algorithm, which builds, from logs,
behavioural models capturing what happens in the
IoT system. From these models, MbT approaches can
be used to test whether the IoT system is vulnerable.
While testing, more logs may be collected and models

350
Salva, S. and Blot, E.
Verifying the Application of Security Measures in IoT Software Systems with Model Learning.
DOI: 10.5220/0009872103500360
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 350-360
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(a) Integration of the MLC approach with some classical
audit stages (in grey).

(b) Approach overview.
Figure 1: The MLC approach.

can be re-generated to capture more behaviours. In
the meantime, the models can be analysed to detect
further security issues. Usually, security properties
are expressed with formulas that are evaluated with a
model-checker. These formulas may express different
security aspects, e.g. vulnerabilities. But, as the secu-
rity testing stage may also be used to detect them, we
prefer focusing on formulas expressing whether secu-
rity measures used to protect an IoT system against
threats are correctly implemented. Usually, such for-
mulas need to be adapted for every model so that they
share an alphabet. This activity is known to be diffi-
cult and time consuming. To make this activity eas-
ier, our MLC approach helps instantiate formulas by
means of an expert system. In summary, the major
contributions presented in the paper are:

• a Model-Learning-Checking solution to help au-
dit the security of IoT systems. We use the La-
belled Transition System (LTS) to express the be-
haviours of every component of an IoT system.
We express the security measures proposed by
the ENISA institute with LTL formulas composed
of predicates. Our approach verifies whether the
LTSs satisfy these measures and returns coun-
terexamples when issues are detected. The former
may be used to interpret the results and provide
countermeasures;

• a technique to assist auditors in instantiating LTL
formulas with less effort. Intuitively, we make use
of an expert system to help complete LTS transi-
tions by injecting some predicates used to formu-
late the security measures. The expert system au-
tomates the completion, and saves time as the ex-
pert knowledge encoded in its inference rules may
be applied again to the same kind of IoT systems;

• an implementation of our MLC approach for
HTTP devices. We also formulated the ENISA
measures related to communications. These are
used to evaluate our approach on 3 IoT systems.

The paper is organized as follows: Section 2 gives
some preliminaries. Section 3 presents our MLC ap-
proach and its algorithms. The next section sum-
marises the results of experiments used to evaluate
the sensitivity and specificity of the MLC approach.
We discuss related work in Section 5. Section 6 sum-
marises our contributions and draws some perspec-
tives for future work.

2 BACKGROUND

2.1 The ENISA Security Measures

Several papers propose lists of recommendations to
improve security (Zhang et al., 2015; Khan and Salah,
2018; OWASP, 2003). Among them, the ENISA or-
ganisation issued several documents exposing guide-
lines and security measures to implement secure IoT
software systems with regard to different contexts
(smart plants, hospitals, clouds, etc.). The security
measures come from several other documents writ-
ten by different organisations or institutes, e.g., ISO,
IETF, NIST, ENISA or Microsoft. We have chosen
to focus on the paper related to security baselines
in the context of critical information infrastructures
(ENISA, 2017). This document gathers 57 security
technical measures that should be implemented and
valid on IoT systems along with the threats that are
addressed. The security measures cover a wide range
of security considerations, such as security by design,
data protection, risk analysis, etc.

2.2 The LTS Model and the Linear
Temporal Logic

We consider the LTS to model the behaviours of every
component of an IoT system. This model is defined in
terms of states and transitions labelled by label sets,
which express what happens.

Verifying the Application of Security Measures in IoT Software Systems with Model Learning

351

Definition 1 (LTS.) A Labelled Transition System
(LTS) is a 4-tuple 〈Q,q0,L,→〉 where:

• Q is a finite set of states; q0 is the initial state;
• L is a finite set of labels,
• →⊆ Q× (P(L) \ { /0})×Q is a finite set of tran-

sitions (where P(L) denotes the powerset of L. A

transition (q,L′,q′) is also denoted q L′−→ q′.

An execution trace is a finite sequence of sets of la-
bels. ε denotes the empty sequence.

Furthermore, we express security properties with
LTL formulas, which concisely formalise them with
the help of a small number of special logical opera-
tors and temporal operators (Holzmann, 2011). Given
a set of atomic propositions AP and p ∈ AP, LTL for-
mulas are constructed by using the following gram-
mar φ ::= p | (φ) | ¬φ | φ∨φ |Xφ | φUφ. Additionally,
a LTL formula can be constructed with the following
operators, each of which is defined in terms of the

previous ones: > de f
= p∨¬p, ⊥ de f

= ¬>, φ1 ∧ φ2
de f
=

¬(¬φ1∨¬φ2), Fφ
de f
= >Uφ, Gφ

de f
= ¬F(¬φ).

3 THE MLC APPROACH

We present in this section our Model-Learning-
Checking (MLC) approach, which aims at helping
audit an IoT system, denoted SUA. It takes as in-
puts an event log and generic LTL formulas com-
posed of predicates. Following the terminology used
in (Beschastnikh et al., 2015), we call these formulas
property types. These are generic properties having a
pattern-level form, which have to be instantiated be-
fore being evaluated.

Figure 1(b) illustrates the successive steps of the
MLC approach. It starts by learning models from an
event log. For every component c1 of SUA, it gener-
ates one LTS L(c1) expressing the behaviours of c1
along with one dependency graph Dg(c1) expressing
how c1 interacts with the other components of SUA.
Both help understand the architecture of SUA and its
general functioning.

The two next steps, which use these models, help
auditors verify whether every LTS satisfies the prop-
erty types. As these are generic, the LTSs and prop-
erty types do not share the same alphabet. There-
fore, the auditor should re-formulate all the property
types for every LTS. Instead, our approach tries to
ease this task as follows. Given a LTS L(c1), the
step “LTS Completion” extends the LTS semantics; it
analyses the LTS paths and injects new labels on tran-
sitions. These labels correspond to some predicates
of the property types whose variables are assigned to

Figure 2: Model learning with the CkTail approach.

concrete values. The step automates the label injec-
tion by using an expert system made up of inference
rules, which encode some expert knowledge about the
kind of system under audit. The step produces a new
LTS L′(c1). The next step “Property type instantia-
tion” covers every new LTS and automatically instan-
tiates the property types by means of the labels added
in the previous step. This step returns a set of LTL
formulas P(L′(c1)) exclusively written with atomic
propositions. We call them property instances. The
final step calls a model-checker to check whether the
LTS L′(c1) satisfies the LTL formula of P(L′(c1)).

These steps are now detailed in the following and
illustrated with an example.

3.1 Model Generation

We proposed a model learning approach called Com-
municating system kTail, shortened CkTail, to au-
tomatically learn models of communicating systems
from event logs. We summarise in this section the
functioning of CkTail, but we refer to (Salva and Blot,
2020a) for the technical details. The CkTail’s algo-
rithms rely on some assumptions, which are given be-
low:

• A1 Event Log: we consider the components of
SUA as black-boxes. We assume that each device,
server, or gateway is physically secured and that
we only have access to the network and user inter-
faces. Event logs are collected in a synchronous
environment. Furthermore, the messages include
timestamps given by a global clock for ordering
them. We consider having one event log;

• A2 Message Content: components produce mes-
sages that include parameter assignments allow-
ing to identify the source and the destination of
the message. Other parameter assignments may
be used to encode data. Besides, a message is ei-
ther identified as a request or a response.

• A3 Device Collaboration: components can run
in parallel and communicate with each other. The
components of SUA follow this strict behaviour:
they cannot run multiple instances; requests are

ICSOFT 2020 - 15th International Conference on Software Technologies

352

processed by a component on a first-come, first
served basis. Besides, every response is associ-
ated to the last request w.r.t. the request-response
exchange pattern.

The assumption A3 helps extract sessions of the sys-
tem in event logs, i.e. a temporary message inter-
change among components forming a behaviour of
the whole system from one of its initial states to one
of its final states. Usually, the use of session identi-
fication strongly facilitates the trace extraction. Un-
fortunately, we have observed that this technique is
seldom used with IoT systems.

Figure 2 illustrates the 4 steps of CkTail. The
event log is firstly formatted with tools or regular ex-
pressions into a sequence of events of the form a(α)
with a a label and α some parameter assignments.
In reference to A1, A2, an event a(α) indicates the
sources and destinations of the messages with two pa-
rameters f rom and to. The other parameter assign-
ments may capture acknowledgements or sensor data.
P denotes the parameter assignment set. Figure 3 il-
lustrates a simple example of event sequence obtained
after its first step. For simplicity, the labels directly
show whether an event encodes either a request or a
response.

The second step “Trace Extraction” segments the
event sequence with an algorithm that tries to recog-
nise sessions by means of the previous assumptions.
In the meantime, this algorithm detects dependen-
cies among the components of SUA. We have de-
fined the notion of component dependency by means
of three expressions formulating when a component
relies on another one. Intuitively, the two first expres-
sions illustrate that a component c1 depends on an-
other component c2 when c1 queries c2 with a request
or by means of successive nested requests of the form
req1(f rom := c1, to := c)req2(f rom := c, to := c2).
The last expression deals with data dependency. We
say that c1 depends on c2 if c2 has sent an event
a1(α1) with some data, if there is a unique chain of
events a1(α1) . . .ak(αk) from c2 sharing this data and
if ak(αk) is a request whose destination is c1.

The third step “Dependency graph Generation”
builds one dependency graph Dg(ci) for every compo-
nent ci ∈C of SUA. These show in a simple way how
the components interact together or help identify cen-
tral components that might have a strong negative im-
pact on SUA when they integrate faults or are vulnera-
ble to security attacks. Figure 3 illustrates the models
generated by CkTail from the event sequence. CkTail
detects that SUA is made up of three components and
builds three dependency graphs. For instance, as the
event sequence includes a request from the compo-
nent c1 to c2, CkTail builds a dependency graph for

c1 showing that c1 depends on c2.
The last step “LTS Generation” of CkTail builds

one LTS, denoted L(ci) for every component ci par-
ticipating in the communications of SUA. The LTS
are reduced by calling the kTail algorithm (Biermann
and Feldman, 1972), which merges the (equivalent)
states having the same k-future, i.e. the same event
sequences having the maximum length k. Figure 3
illustrates the 3 LTSs generated from the event se-
quence used in this example. The LTS transitions are
labelled by sets composed of one event of the form
a(α), which is either an input or an output. For in-
stance the event Req3(from:=c2to:=c3, switch:=on)
in the initial event sequence, has been doubled with
an output !Req3 and an input ?Req3. The former is
labelled on the transition q4 → q5 of the LTS L(c2)
to express that an output !Req3 is sent by the compo-
nent c2; the latter is labelled on the transition q0→ q1
of L(c3) to express that c3 expects to receive the in-
put ?Req3.

3.2 Property Type

A property type formulates a general feature that is in-
dependent of the type of system under audit. A prop-
erty type is a specialised LTL formula that captures
the temporal relationships between predicates. A
predicate is either an expression of one or more vari-
ables defined on some specific domains, or nullary
predicate, that is, an atomic proposition.

Definition 2 (Property Type.)
• Pred denotes a set of predicates of the form p

(nullary predicate) or p(x1, . . . ,xk) with x1, . . . ,xk
some variables that belong to the set X;

• The domain of a predicate variable x ∈ X is de-
noted Dom(x);

• A property type Φ is a LTL formula built up from
predicates in Pred. P denotes the set of property
types.

As property types are composed of predicates, they
should be instantiated before being given to a model-
checker. The instantiation of a property type is called
a property instance. It has the same LTL structure as
its property type, but the predicate variables are as-
signed to values to form propositions.

Definition 3 (Property Instance.) A property in-
stance φ of the property type Φ is a LTL formula
resulting from the instantiation of the predicates of
Φ.

Verifying the Application of Security Measures in IoT Software Systems with Model Learning

353

Figure 3: Example of model generation with CkTail.

The function that instantiates a property type to
one property instance, i.e. which associates each vari-
able of the predicates to a value, is called a binding:

Definition 4 (Property Binding.) Let X ′ be a finite
set of variables {x1, . . . , xk} ⊆ X. A binding is a func-
tion b : X ′ → Dom(X ′), with Dom(X ′) = Dom(x1)×
·· ·×Dom(xk).

We recommend writing property types by firstly
formulating general security concepts with predi-
cates, and by applying or composing the LTL pat-
terns given in (Dwyer et al., 1999) on those pred-
icates. These patterns help structure LTL formulas
with precise and correct statements that model com-
mon situations, e.g., the absence of events, or cause-
effect relationships.

As the LTSs generated by CkTail express commu-
nications among the components of SUA, we formu-
lated the 11 security measures provided by the ENISA
organisation related to communications, which cover
the following domains: Authentication, Privacy, Se-
cure and Trusted Communications, Access Control,
Secure Interfaces and Network Services, Secure In-
put and Output Handling, Trust and Integrity Manage-
ment. Due to lack of room, these are given in (Salva
and Blot, 2020b). We defined the unary and nullary
predicates given in Table 1. All the unary predicates
have variables that can be assigned to values in C∪P
with C the component set of SUA and P the parameter
assignments given in the messages.

For instance, the ENISA measure GP-TM-24 rec-
ommends encrypting authentication credentials. This
measure is formulated as: G((loginAttempt(c) ∧
credential(x)) → encrypted(x)), which intuitively
means that every time a component attempts to log in

Table 1: Predicates defined from the 11 ENISA measures
related to communications.

Predicate Short Description
begin beginning of a new session
end end of a session
f rom(c) message came from c
to(c) message sent to c
Request message is a request
Response message is a response
input message is an input
out put message is an output
getUpdate(x) response including an update file
cmdSearch-
Update

the component received the order to search for
an update

sensitive(x) data x includes sensitive data
credential(x) data x includes credentials
encrypted(x) data x is encrypted
searchU pdate component request for an update
loginAttempt(c) authentication attempt with c
authenticated(c) successful authentication with c
loginFail(c) failed authentication with c
lockout(c) c is locked due to repetitive authentication fail-

ures
password-
Recovery

component uses a password recovery mecha-
nism

blackListed-
Word

message includes black listed words

validResponse correct response with correct status
errorResponse response containing an error message
Unavailable component that received the request is unavail-

able
XSS(x) data x includes an XSS attack
SQLin jection(x) data x includes an SQL injection attack

to another component c by using credentials x, x must
be encrypted. The measure GP-TM-53, which sug-
gests that error messages must not expose sensitive
information, can be written with G((errorResponse∨

ICSOFT 2020 - 15th International Conference on Software Technologies

354

¬validResponse)→ (¬(blackListedWord). This for-
mula intuitively means that every HTTP response
composed of an error message or having a status
higher than 299 must not include blacklisted words. If
we apply the binding {c→ c1,x→ login := toto} on
the first property type, we obtain the property instance
G((loginAttempt(c1)∧credential(login := toto))→
encrypted(login := toto)).

3.3 LTS Completion

As stated previously, our approach aims at checking
whether a LTS L(c1) describing the behaviours of a
component c1 of SUA satisfies property types. This
activity is relevant on condition that the LTS alphabet
shares some predicates of the property types. At the
beginning of this step, this requirement is not met as
our property types are generic. This step helps audi-
tors complete LTSs by injecting some predicates of
Pred on LTS transitions. As a LTS encodes concrete
behaviours, this step actually adds instantiated pred-
icates or propositions, i.e. predicates of Pred whose
variables are assigned to concrete values found in the
LTS events. Injecting propositions comes down to
analysing/interpreting LTS transitions or paths and to
add propositions on transitions to extend the LTS se-
mantics. Our approach uses an expert system, made
up of inference rules, to automate the proposition in-
jection and to save time by allowing to reuse the rules
on several IoT systems.

We represent inference rules with this format:
When conditions on facts Then actions on facts (for-
mat taken by the Drools inference engine (”Red-Hat-
Software”, 2020)). The facts, which belong to the
knowledge base of the expert system, are here the
transitions of →L(c1). To ensure that the transition
completion is performed in a finite time and in a de-
terministic way, the inference rules have to meet these
hypotheses:

• (finite complexity:) a rule can only be applied a
limited number of times on the same knowledge
base,

• (soundness:) the inference rules are Modus Po-
nens (simple implications that lead to sound facts
if the original facts are true).

We devised 28 inference rules, which are available in
(Salva and Blot, 2020b). These can be categorised has
follows:

• Structural information: two rules are used to add
the propositions “begin” and “end”, which de-
scribe the beginning and end of sessions in LTS
paths;

rule "validResponse"

when

$t : Transition(isReq() == false,

isOk())

then

$t.addLabel("validResponse");

end

rule "authentication"

when

$t1: Transition(isRequest(), contains("

login"), contains("password"))

$t2: Transition(isResponse(),isOK(),

sourceState = $t1.targetState)

then

$t1.addLabel("loginAttempt("+

compoSender($t1) + ")");

$t2.addLabel("authenticated("+

compoSender($t1) + ")");

end

Figure 4: Inference rule examples.

• Nature of the events: 9 rules add information
about the nature of the events of L(c1). Given a

transition q1
{a(α)}−−−−→ q2, some rules analyse the pa-

rameter assignments in α and complete the transi-
tion with new propositions expressing that a(α)
is a request or a response, an input or an out-
put, the component which sent a(α), etc. Other
rules analyse α to interpret if the message is an
error response (analysis of the values in α to de-
tect words like “error” or analysis of HTTP status,
etc.). The first rule of Figure 4 adds the proposi-
tion validResponse if the transition is a response
whose HTTP status is between 200 and 299. The
status control is performed by the method isOk();

• Security information: the other rules add infor-
mation related to security on LTS transitions. For
instance, we devised a rule that checks whether
the message content is encrypted. Other rules
analyse the LTS paths to try recognise specific
patterns (transition sequences containing specific
words), e.g., authentication attempts, successful
or failed authentications. Intuitively, these rules
try to detect these patterns in the LTS paths. For
instance, the second rule of Figure 4 detects a cor-
rect authentication. It adds the proposition “logi-
nAttempt(c)” on the transition labelled by the cre-
dentials and “authenticated(c)” on the transition
whose event encodes a correct authentication with
the external component c.

Once the expert system has completed the LTS
L(c1), we obtain a new LTS denoted L′(c1). Now,
the auditors have to inspect L′(c1) to assess the cor-

Verifying the Application of Security Measures in IoT Software Systems with Model Learning

355

Figure 5: Example of LTS completion. New propositions
(begin, end, credential, sensitive, validResponse, etc.) are
injected on transitions.

rectness of the LTS completion. On the one hand,
some propositions may be missing on account of
missing or incomplete rules. To help detect the miss-
ing propositions, this step returns the predicates of
Pred that are not used for every LTS completion. On
the other hand, some propositions might be wrong on
account of misinterpretations, e.g., an incorrect recog-
nition that messages are encrypted.

Figure 5 illustrates the LTS L′(c1) completed by
this step from the LTS L(c1) of Figure 3. The transi-
tions of L′(c1) are still labelled by the events of the
original LTS, but several new propositions are avail-
able. For instance, the expert system has detected in
the transition q0 → q1 that login and password are
sensitive data, used as credentials.

3.4 Property Type Instantiation

Given a LTS L′(c1), this step aims at instantiating
the property types of P to obtain a set of property in-
stances that can be evaluated on the paths of L′(c1).
We denote P(L′(c1)) this set of property instances.
Intuitively, a property type Φ is instantiated with bind-
ings, which assign values to all of its predicate vari-
ables. We compute these bindings from the values of
the instantiated predicates added by the expert system
previously.

This step is implemented by Algorithm 1, which
takes as inputs a LTS L′(c1), the property type set
P and returns P(L′(c1)). The algorithms starts by
building the special domain Dom(deps), which gath-
ers the dependent components of c1. This domain is
computed by covering the dependency graph Dg(c1)
of c1. The special variable deps is used with some
property types encoding the notion of dependency
among components. Then, Algorithm 1 instantiates
every property Φ of P one after another. It cov-
ers each label of the transitions q1

L−→ q2 of L′(c1)

(lines 4-7). If a label P(v1, . . . ,vk) corresponds to an
instantiation of a predicate P(x1, . . . ,xk) used in Φ,
then the values assigned to the variables x1, . . . ,xk,
are added to the sets Dom(x1), . . . ,Dom(xk). The
variables x1, . . .xn are added to a variable set X ′,
which gathers the variables that are assigned to val-
ues. Once all the labels are covered, the algorithm
checks whether all the predicate variables of Φ can be
assigned to values (line 8). If this is false, a warn-
ing explaining that Φ cannot be instantiated is re-
turned. This kind of warning is used to once more
help auditors control that there is no missing instan-
tiated predicate. Otherwise, the algorithm computes
all the possible bindings of DX ′ with D the Cartesian
product D = Dom(x1)×·· ·×Dom(xn). And it repet-
itively instantiates Φ for each binding of DX ′ to pro-
duce the property instance φ, which is finally added to
P(L′(c1)).

Let ’s illustrate this step with the LTS L′(c1) of
Figure 5 and the property type G((loginAttempt(c)∧
credential(x)) → encrypted(x)) derived from the
ENISA measure GP-TM-24. By covering the labels
of L′(c1), we obtain Dom(c) = {c2} and Dom(x) =
{login := toto, password := 1234}. Two bindings
can be constructed along with two property instances.

Algorithm 1: Property Type Instantiation.
input : LTS L′(c1), property type set P

output: Property instance set P(L′(c1))
1 Compute Dom(deps) from Dg(c1);
2 X ′ := /0;
3 foreach Φ ∈P do
4 foreach l ∈ L with s1

L−→ s2 ∈→L′(c1) do
5 if l = P(v1, . . . ,vk) and P(x1, . . . ,xk) is a predicate of Φ

then
6 Dom(xi) = Dom(xi)∪{vi}(1≤ i≤ k);
7 X ′ := X ′ ∪{x1, . . . ,xk};

8 if X ′ is not equal to the set of predicate variables of Φ then
9 return a warning;

10 else
11 D := Dom(x1)×·· ·×Dom(xn) with X ′ = {x1, . . . ,xn};
12 foreach binding b ∈ DX ′ do
13 φ := b(Φ);
14 P(L′(c1)) =P(L′(c1))∪{φ};

3.5 Property Instance Verification

Given a LTS L′(c1), and a property instance set
P(L′(c1)), the last step calls a model-checker to
check whether L′(c1) satisfies the property instances
of P(L′(c1)). If the model-checker finds a coun-
terexample path that violates a property instance φ,
our approach reports to the user that the related se-

ICSOFT 2020 - 15th International Conference on Software Technologies

356

Figure 6: Example of results with the ENISA measure GP-
TM-24. The LTS does not satisfy a property instance related
to GP-TM-24 because the login is not encrypted.

curity measure is not valid. The counterexample is
also returned as it may be analysed to elaborate rec-
ommended actions. A counterexample is particularly
useful when a security measure was incorrectly ap-
plied during the development of the IoT system. The
counterexample should help understand why a com-
ponent c1 does not meet the measure and should help
localise a problem in the LTS L′(c1).

Figure 6 shows a example of result returned by
the model-checker NuSMV (Cimatti et al., 2002) af-
ter having evaluated if the LTS L′(c1) satisfies the a
property instance related to the ENISA measure GP-
TM-24. The interpretation of the counter-example
helps deduce that the login should have been en-
crypted. Such counter-examples may be used to de-
velop an audit report, which should include recom-
mendations or treatments to security issues.

4 PRELIMINARY EVALUATION

Our approach is implemented as a tool chain, which
gathers the model learning tool CkTail, and a tool
called SMVmaker, which completes LTSs by means
of an expert system, instantiates property types and
calls the NuSMV model-checker. The tools, examples
of property types and traces are available in (Salva
and Blot, 2020b). With this implementation, we con-
ducted some experiments on three use-cases of IoT
systems in order to evaluate the sensitivity and the
specificity of our MLC approach, that is its capability
to uncover active security measures that are correctly
implemented in an IoT system, and to identify secu-
rity measures that are not considered or incorrectly
implemented.
Setup: the three use-cases are based on devices, gate-
ways and external cloud servers communicating over
HTTP. We provide below some details about these
systems:

• UC1 is composed of 3 motion sensors that turn on
a light-bulb when they detect movements. They
communicate through a gateway; all of them have
user interfaces, which may be used for configura-

tion. The main purpose of this use-case is to focus
on classical attacks (code injection, brute force,
availability) and on the related security measures;

• UC2 includes a motion sensor, a switch and a
camera. The motion sensor communicates with
the switch in clear-text, and with the camera with
encrypted messages. The camera also commu-
nicates with external clouds requiring authentica-
tion and encryption. In this use-case, we mainly
focus on vulnerabilities and security measures re-
lated to encryption and authentication;

• UC3 is composed of 3 cameras, which commu-
nicate with external cloud servers. Two cameras
can check for updates and install them. This use-
case aims at focusing on vulnerabilities and secu-
rity measures related to the update mechanisms.

For every use-case, we collected a first log that in-
cludes traces of ”normal behaviours” and generated
first models with CkTail. We identified the testable
components, on which we applied a set of penetra-
tion testing tools. During this testing stage, we col-
lected a second larger log. Testing was only possi-
ble on the components of UC1. We manually anal-
ysed the source code of the software (when avail-
able) and the logs to list the ENISA security mea-
sures that have been implemented and those that are
not applied. Then, we generated LTSs along with
dependency graphs. We used the 11 property types
formulating the security measures provided by the
ENISA organisation related to communications. We
called SMVmaker to generate property instances and
NuSMV to check whether these property instances
hold on LTSs.
Results: Table 2 summarises the experiment re-
sults. Col. 2,3 show for every use-case the num-
ber of known components and the number of gener-
ated LTSs. The difference # LTSs - # components
gives the number of unknown external components,
i.e. cloud servers with our use-cases. The remaining
columns give the results obtained for the known com-
ponents only because we can only give the sensitiv-
ity and specificity of these components by comparing
the results given by our tool chain with our observa-
tions. Col. 6,7 give the number of property types
that have been instantiated and the instance number.
Col.8 shows the number of measures that are not cor-
rectly implemented. The two last columns provide the
sensitivity (rate of satisfied property instances that are
correctly evaluated) and the specificity (rate of unsat-
isfied property instances that are correctly evaluated).

With Table 2 (col. 3,4), we can firstly observe that
the models along with the property instance sets are
large. This confirms that manually analysing the se-
curity of real IoT systems and writing LTL formu-

Verifying the Application of Security Measures in IoT Software Systems with Model Learning

357

Table 2: Experiment results: col. 8,9 give the sensitivity and specificity of our approach on 3 use-cases.

IoT
syst.

compo-
nents

LTSs # states # transi-
tions

property type
instantiated/to-

tal

property
instances

detected
issues

Sensitivity Specificity

UC1 5 5 1332 1553 38/55 402 17 99.5% 99.1%
UC2 3 8 1416 2174 14/33 31 3 100% 88.9%
UC3 3 11 168 853 15/33 32 4 100% 92.8%

las is difficult. None of these use-cases allows us
to instantiate all the property types. This result was
expected here as the components do not implement
all the security features captured by the predicates of
Pred, e.g., password recovery for UC1, or authenti-
cation for some components of UC2, UC3. We also
observed that a few property types were not instanti-
ated on account of the lack of precision of some rules
of the expert system. For instance, we observed that
the rule dedicated to recognise encrypted messages
does not always return correct results. At the mo-
ment, the rule computes the message entropy to de-
cide if it is encrypted or not. Unfortunately, the en-
tropy is not precise enough, but we didn’t find any
better solution in the literature. SMVmaker warns
the user when some predicates of Pred are not used
or when some property types are not instantiated.
As stated in Section 3, he or she still has to check
if this is on account of wrong/missing LTS comple-
tions or of missing security features not implemented
in the components. The overall sensitivity is 99,6%
and the specificity is 98.7%. These results tend to
show that our MLC approach is effective to help au-
ditors check if security measures are implemented.
The results are especially relevant on UC1, which is
the only system experimented with penetration test-
ing tools. Indeed, the latter indirectly increased the
log file size, the models and the property instance
number. On these 3 use-cases, we obtain few false
positives or negatives though. After inspection of the
LTSs, we observed that all of them come from under-
approximations (rejection of valid behaviours) in the
models. At the moment, none of the passive model
learning tool generates exact models, they usually are
under- or over-approximated (acceptance of invalid
behaviours). We showed in (Salva and Blot, 2020a)
that CkTail is one the most effective approach for gen-
erating models of communicating systems, but here
under-approximation leads to less than 2% of incor-
rect results anyway.

5 RELATED WORK

5.1 Model Learning

Some model learning approaches, which infer mod-
els of communicating systems, have been proposed
in the literature. In the field of active learning, these
papers (Petrenko and Avellaneda, 2019; Groz et al.,
2008) present algorithms that recover models through
active testing. This kind of active technique implies
that the system is testable and can be queried. In
(Groz et al., 2008), the learning of the models is done
in isolation. This constraint is lifted in (Petrenko and
Avellaneda, 2019) by testing a system with unknown
components by means of a SAT solving method. An
active learning approach specialised to IoT protocols
has also been proposed in (Tappler et al., 2017). It re-
quires several implementations to perform a compar-
ison of several models, which allows the detection of
potential bugs. In contrast, our approach is passive,
and learns models from logs. The requirements are
hence quite different than those used in these papers.

As stated previously, we have proposed the model
learning approach CkTail in (Salva and Blot, 2020a).
The first step of the MLC approach uses CkTail to
generate models. The two next steps, which cor-
respond to the main contribution of this paper, as-
sist auditors instantiate property types with an ex-
pert system and verify whether the LTSs satisfy prop-
erty instances. We presented a comparison of CkTail
with most of the passive model learning techniques of
communicating systems (Mariani and Pastore, 2008;
Beschastnikh et al., 2014; Salva and Blot, 2019) in
(Salva and Blot, 2020a). In summary, we showed
that CkTail builds more precise models thanks to its
trace segmentation algorithm. Besides, compared to
CSight, CkTail requires less constraints (CSight re-
quires specific trace sets, which are segmented with
one subset by component, the components have to be
known in advance, etc.). Furthermore, CkTail is the
only approach among these ones that detects compo-
nent dependencies and expresses them with DAGs.
The latter are used in our MLC approach to instan-
tiate LTL formula.

ICSOFT 2020 - 15th International Conference on Software Technologies

358

5.2 IoT Audit

A plethora of surveys or papers have exposed the op-
portunities, challenges, requirements, threats or vul-
nerabilities involved in the IoT security. Among
them, several approaches have been proposed to au-
dit IoT systems. Some papers (Nadir et al., 2019;
Lally and Sgandurra, 2018) propose to audit devices
with check lists or threats models, which have been
devised or extended from the recommendations pro-
posed by the OWASP organisation (OWASP, 2003).
Other works focus on the audit of IoT device by de-
crypting the traffic sent via TLS (Wilson et al., 2017)
so that TLS traffic can be verified without compro-
mising future traffic. This king of technique could be
used prior our MLC approach to obtain readable logs.

Many approaches rely on models to analyse the
security of IoT systems. In (Ge et al., 2017), secu-
rity models are devised from data collected from an
IoT system. A security analysis is then performed
to find potential attack scenarios, evaluate security
metrics and assess the effectiveness of different de-
fense strategies. Other works introduce MbT secu-
rity testing methods. Some of them are said to be ac-
tive, i.e. test cases are generated by hands or from a
given specification, and are later used to experiment
IoT systems (Gutirrez-Madroñal et al., 2019; Ahmad
et al., 2016; Tappler et al., 2017; Matheu Garcia
et al., 2019). Others are called passive, i.e. they are
based upon monitoring tools, which security issues by
checking rule satisfiability in the the long run (Siby
et al., 2017; Chaabouni et al., 2019; Maksymyuk
et al., 2017). The tool IoTSAT (Mohsin et al., 2016)
is a SMT based framework, which helps analyse the
security of IoT systems. IoTSAT models the device-
level interactions as in our approach, but also policy-
level behaviours and network-level dependencies. In
comparison to our MLC approach, the works (Ge
et al., 2017; Matheu Garcia et al., 2019) go further
in the risk assessment by proposing the evaluation of
metrics. IoTSAT also goes further in the modelling of
the IoT system environment. But all of them require
models or formal properties, which need to be man-
ually devised. Most of the active testing technique
could complement our MLC approach to get mode
logs, as illustrated in Figure 1(a).

6 CONCLUSION

We have proposed an approach combining model
learning and model checking to help audit the security
of IoT systems. Security properties are modelled with
generic LTL formulas called property types. This ap-

proach assists auditors in the instantiation of these
property types by means of an expert system made up
of inference rules, which encode some expert knowl-
edge about the kind of system under audit.

As future work, we firstly plan to evaluate our
MLC approach on further kinds of communicating
systems, e.g., web services. We observed that the use
of an expert system offers a great potential for instan-
tiating property types. However, this benefit strongly
depends on the successful implementation of the ex-
pert system rules. We indeed observed in the expe-
rimentations that few property types were not com-
pletely instantiated on account of the lack of precision
of some rules. This is why the property type instan-
tiation and LTS completion steps are performed in a
semi-automatic manner to allow the detection of po-
tential issues. We will investigate how to alleviate the
need of this manual inspection. A first direction is to
complete the approach with a preliminary step allow-
ing to evaluate or test the expert system rules. An-
other direction is to study if restrictions on the prop-
erty formulation could make the rule definition easier
and make the property instantiation automatic.

REFERENCES

Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., and Leg-
eard, B. (2016). Model-based testing as a service for
iot platforms. In Margaria, T. and Steffen, B., editors,
Leveraging Applications of Formal Methods, Verifica-
tion and Validation: Discussion, Dissemination, Ap-
plications, pages 727–742, Cham. Springer Interna-
tional Publishing.

Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M. D.,
and Krishnamurthy, A. (2015). Using declarative
specification to improve the understanding, exten-
sibility, and comparison of model-inference algo-
rithms. IEEE Transactions on Software Engineering,
41(4):408–428.

Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishna-
murthy, A. (2014). Inferring models of concurrent
systems from logs of their behavior with csight. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 468–479,
New York, NY, USA. ACM.

Biermann, A. and Feldman, J. (1972). On the synthesis of
finite-state machines from samples of their behavior.
Computers, IEEE Transactions on, C-21(6):592–597.

Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C.,
and Faruki, P. (2019). Network intrusion detection for
iot security based on learning techniques. IEEE Com-
munications Surveys Tutorials, 21(3):2671–2701.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pis-
tore, M., Roveri, M., Sebastiani, R., and Tacchella, A.
(2002). Nusmv 2: An opensource tool for symbolic
model checking. In Brinksma, E. and Larsen, K. G.,

Verifying the Application of Security Measures in IoT Software Systems with Model Learning

359

editors, Computer Aided Verification, pages 359–364,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1999).
Patterns in property specifications for finite-state ver-
ification. In Proceedings of the 1999 International
Conference on Software Engineering (IEEE Cat.
No.99CB37002), pages 411–420.

ENISA (2017). Baseline security recommendations for
iot in the context of critical information infrastruc-
tures, https://www.enisa.europa.eu/publications/base
line-security-recommendations-for-iot, technical re-
port.

ETSI (2015). Methods for testing & specification; risk-
based security assessment and testing methodologies,
https://www.etsi.org/, technical report.

Ge, M., Hong, J. B., Guttmann, W., and Kim, D. S. (2017).
A framework for automating security analysis of the
internet of things. Journal of Network and Computer
Applications, 83:12 – 27.

Groz, R., Li, K., Petrenko, A., and Shahbaz, M. (2008).
Modular system verification by inference, testing and
reachability analysis. In Suzuki, K., Higashino, T.,
Ulrich, A., and Hasegawa, T., editors, Testing of Soft-
ware and Communicating Systems, pages 216–233,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Gutirrez-Madroñal, L., La Blunda, L., Wagner, M. F., and
Medina-Bulo, I. (2019). Test event generation for
a fall-detection iot system. IEEE Internet of Things
Journal, 6(4):6642–6651.

Holzmann, G. (2011). The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
1st edition.

Khan, M. A. and Salah, K. (2018). Iot security: Review,
blockchain solutions, and open challenges. Future
Generation Computer Systems, 82:395 – 411.

Lally, G. and Sgandurra, D. (2018). Towards a framework
for testing the security of iot devices consistently. In
Saracino, A. and Mori, P., editors, Emerging Tech-
nologies for Authorization and Authentication, pages
88–102, Cham. Springer International Publishing.

Maksymyuk, T., Dumych, S., Brych, M., Satria, D., and Jo,
M. (2017). An iot based monitoring framework for
software defined 5g mobile networks. In Proceedings
of the 11th International Conference on Ubiquitous
Information Management and Communication, IM-
COM17, New York, NY, USA. Association for Com-
puting Machinery.

Mariani, L. and Pastore, F. (2008). Automated identification
of failure causes in system logs. In Software Reliabil-
ity Engineering, 2008. ISSRE 2008. 19th International
Symposium on, pages 117–126.

Matheu Garcia, S. N., Hernndez-Ramos, J., and Skarmeta,
A. (2019). Toward a cybersecurity certification frame-
work for the internet of things. IEEE Security & Pri-
vacy, 17:66–76.

Matheu-Garcı́a, S. N., Ramos, J. L. H., Gómez-Skarmeta,
A. F., and Baldini, G. (2019). Risk-based automated
assessment and testing for the cybersecurity certifica-
tion and labelling of iot devices. Computer Standards
& Interfaces, 62:64–83.

Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., and Rah-
man, M. A. (2016). Iotsat: A formal framework for
security analysis of the internet of things (iot). In
2016 IEEE Conference on Communications and Net-
work Security (CNS), pages 180–188.

Nadir, I., Ahmad, Z., Mahmood, H., Shah, G., Shahzad, F.,
Mujahid, M., Khan, H., and Gulzar, U. (2019). An au-
diting framework for vulnerability analysis of iot sys-
tem. pages 39–47.

NIST (2018). Framework for improving critical infrastruc-
ture cybersecurity, version 1.1, https://doi.org/10.6028

OWASP (2003). Owasp testing guide v3.0 project,
http://www.owasp.org/index.php/category:
owasp testing project#owasp testing guide v3.

Petrenko, A. and Avellaneda, F. (2019). Learning commu-
nicating state machines. In Tests and Proofs - 13th
International Conference, TAP 2019, Held as Part of
the Third World Congress on Formal Methods 2019,
Porto, Portugal, October 9-11, 2019, Proceedings,
pages 112–128.

”Red-Hat-Software” (2020). The business rule management
system drools, https://www.drools.org/, march 2020.

Salva, S. and Blot, E. (2019). Reverse engineering be-
havioural models of iot devices. In 31st International
Conference on Software Engineering & Knowledge
Engineering (SEKE), Lisbon, Portugal.

Salva, S. and Blot, E. (2020a). Cktail: Model learning
of communicating systems. In Proceedings of the
15th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2020,
Prague, CZECH REPUBLIC, May 5-6, 2020.

Salva, S. and Blot, E. (2020b). Verifying the application of
security measures in iot software systems with model
learning, companion site. (Date last accessed march
2020).

Siby, S., Maiti, R. R., and Tippenhauer, N. O. (2017).
Iotscanner: Detecting and classifying privacy threats
in iot neighborhoods. CoRR, abs/1701.05007.

Tappler, M., Aichernig, B. K., and Bloem, R. (2017).
Model-based testing iot communication via active au-
tomata learning. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation
(ICST), pages 276–287.

Wilson, J., Wahby, R., Corrigan-Gibbs, H., Boneh, D.,
Levis, P., and Winstein, K. (2017). Trust but verify:
Auditing the secure internet of things. pages 464–474.

Zhang, Z.-K., Cho, M. C. Y., and Shieh, S. (2015). Emerg-
ing security threats and countermeasures in iot. In
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, ASIA
CCS15, pages 1–6, New York, NY, USA. Association
for Computing Machinery.

ICSOFT 2020 - 15th International Conference on Software Technologies

360

