FALCO: Detecting Superfluous JavaScript Injection Attacks using

Keywords:

Abstract:

Website Fingerprints

Chih-Chun Liu', Hsu-Chun Hsiao' and Tiffany Hyun-Jin Kim?
I National Taiwan University, Taiwan
2HRL Laboratories, LLC, U.S.A.

JavaScript Injection Detection, Website Behavior Fingerprint, Browser-based DDoS.

JavaScript injection attacks enable man-in-the-middle adversaries to not only exploit innocent users to launch
browser-based DDoS but also expose them to unwanted advertisements. Despite ongoing efforts to address
the critical JavaScript injection attacks, prior solutions have several practical limitations, including the lack of
deployment incentives and the difficulty to configure security policies. An interesting observation is that the
injected JavaScript oftentimes changes the website’s behavior, significantly increasing the additional requests
to previously unseen domains. Hence, this paper presents the design and implementation of a lightweight sys-
tem called FALCO to detect JavaScript injection with mismatched website behavior fingerprints. We extract
a website’s behavior fingerprint from its dependency on external domains, which yields compact fingerprint
representations with reasonable detection accuracy. Our experiments show that FALCO can detect 96.98% of
JavaScript-based attacks in simulation environments. FALCO requires no cooperation with servers and users
can easily add an extension on their browsers to use our service without privacy concerns.

1 INTRODUCTION

In a JavaScript injection attack, the man-in-the-
middle (MitM) attacker (e.g., an Internet Service
Provider) injects malicious JavaScript in HTTP con-
nections. Such malicious behaviors could lead gen-
uine users to browse unwanted advertisement web-
sites,)"2 or launch DDoS attacks to other web-
sites (Marczak et al., 2015). More specifically,
JavaScript-based attacks utilize untrusted intermedi-
aries between clients and webservers that inject ma-
licious JavaScripts or replace legitimate JavaScripts
with malicious ones. By injecting malicious
JavaScripts, attackers can launch various attacks that
affect clients locally, such as drive-by-downloads,
phishing, malicious web advertising, and stealing user
information.

Prior work on mitigating JavaScript injection at-
tacks have several limitations, including lack of de-
ployment incentives and difficulties in configuring
policies. For example, Content Security Policy (CSP)
allows a website to restrict script sources by setting
the script-src directive in HTTP response headers.

Uhttps://www.privateinternetaccess.com/blog/2016/
12/comcast-still-uses-mitm-javascript-injection-serve-
unwanted-ads-messages

Zhttps://zmhenkel.blogspot.tw/2013/03/isp-
advertisement-injection-cma.html

180

Liu, C., Hsiao, H. and Kim, T.
FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints.
DOI: 10.5220/0009835101800191

However, CSP is difficult to correctly configure (We-
ichselbaum et al., 2016) and can be modified by
MitM adversaries on HTTP connections. Moreover, a
victim website cannot protect itself from JavaScript-
based DDoS with CSP, as the adversary here exploits
vulnerable websites (which support neither HTTPS
nor CSP) to attack the victim. Cross-Origin Request
Policy (CORP) (Telikicherla et al., 2014) allows the
server to block unwanted cross-origin requests from
the browser, and can be applied to prevent JavaScript-
based DDoS (Agrawall et al., 2017). However, be-
sides the difficulties in configuring policies, CORP
has not been adopted in practice. Subresource In-
tegrity (SRI)® allows browsers to verify whether the
transmitted web resources (e.g., JavaScript) are intact.
Howeyver, it is not useful when a MitM attack tam-
pers the verification information. Stickler (Levy et al.,
2016) guarantees the integrity of the website content
when the website owner uses a trustless CDN, which
stores the website content that was signed by the pub-
lisher. However, Stickler requires the client to contact
an additional trusted server to bootstrap its service.
As prior techniques often require server-client col-
laboration, therefore further elevating the deployment
challenges, Excision (Arshad et al., 2016) presents an

3https://developer.mozilla.org/en-US/docs/Web/
Security/Subresource_Integrity

In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 180-191

ISBN: 978-989-758-446-6

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

in-browser solution to detect malicious JavaScript in-
clusion. However, Excision’s browser instrumenta-
tion increases the browsing time by 12.2%.

To address these limitations, we present
FALCO—a historical behavior-based robust sys-
tem using website fingerprints while protecting
enduser privacy. In particular, this paper attempts
to address attackers that launch additional network
activities, for example, to force users to visit adver-
tisement pages or continuously send out requests to
other websites. We refer to these types of attacks
as superfluous JavaScript injection, or superfluous
JS injection in short. If malicious scripts launch an
excessive number of HTTP requests to a victim server
or try to inject arbitrary advertisements, additional
HTTP requests to external domains result in different
dependency relationships between the website and
external domains, compared to the condition when
the website is free from such JavaScript attacks.
To balance performance and accuracy, we generate
compact fingerprints that encode the appearance of
external domains using Bloom filters. We detect the
unusual traffic that is triggered by the MitM attacker
in two ways, trading off fingerprint availability and
privacy: (1) A browser refers back to its own previous
visits for the same website, or (2) the browser con-
tacts an external fingerprint server that collects and
manages website fingerprints reported by other nodes
in a privacy-aware manner. Querying an external
fingerprint server for each website visit raises privacy
concern as the external server can learn about the
user’s browsing history. Besides maintaining the
fingerprint database locally, FALCO can address this
privacy concern by letting users download a group
of fingerprints in advance or adapt existing private
information retrieval techniques (Chor et al., 1995) to
acquire the website’s fingerprint without revealing its
browsing history.

We simulated two types of JavaScript-based
DDoS attacks to evaluate the detection effectiveness
of our system. We also computed website fingerprints
of the top 10k websites according to the Majestic top
million sites database* to investigate the robustness of
the proposed fingerprint representations. Our exper-
iments show that FALCO can detect 96.98% of su-
perfluous JS injection attacks in simulation environ-
ments.

Contributions. We introduce FALCO, a historical
behavior-based fingerprinting system that detects su-
perfluous JavaScript injection attacks. FALCO is ca-
pable of operating without any server-side coopera-
tion, resilient to dynamic factors such as session infor-
mation, and preserves enduser’s privacy. According

“https://majestic.com/reports/majestic-million

function imgflood() {
var TARGET = 'victim-website.com
var URI = '/index.php?'
var pic = new Image()
var rand = Math floor(Math.random() * 1000)
pic.src = 'http://'+TARGET+URI+rand+'=val'
}

setinterval(imgflood, 10)

Figure 1: JavaScript code in Browser-based DDoS.

to our evaluation results, FALCO can detect 96.98%
of superfluous JS injection attacks in simulation envi-
ronments.

2 ATTACKER MODEL

We consider a man-in-the-middle (MitM) adversary,
existing between the client and the server, injects a
malicious script or replaces a benign script with a ma-
licious one when the user browses the website. The
MitM adversary (which is an untrusted intermediary)
can leverage this malicious script to perform drive-
by-downloads (Cova et al., 2010), phishing, malicious
web advertising (Li et al., 2012; Thomas et al., 2015),
and stealing user information (Huang et al., 2010).

In our attacker model, the malicious script
launches superfluous JavaScript injection to force
users to continuously send out requests to other web-
sites to DDoS (Section 2.1) or visit advertisements
pages (Section 2.2).

2.1 Browser-based DDoS

In contrast to general Distributed Denial of Service
(DDoS), browser-based DDoS attacks leverage inno-
cent browsers as bots to send thousands of HTTP re-
quests to bombard the target server (Pellegrino et al.,
2015). The attackers can easily harvest a large num-
ber of bots by choosing popular non-HTTPS websites
to inject the malicious code. Figure 1 shows an ex-
ample of a malicious script’ that continuously trigger
cross-origin requests to a victim server.

Figure 2 illustrates the attack steps of browser-
based DDoS. When a user A visits a website
http://genuine.server.com hosted on G, her
browser sends an HTTP request to G. G returns a
webpage referencing a script hosted on another server
Aj. After getting the response from G, the browser
subsequently sends a request to Ay to load the script.
Ay’s response, however, is intercepted by a MitM at-
tacker and replaced with a malicious one (e.g., the
script shown in Figure 1). As a result, A’s browser

Shttps://blog.cloudflare.com/an-introduction-to-
javascript-based-ddos

181



SECRYPT 2020 - 17th International Conference on Security and Cryptography

; (1) User A connects server G
< =
- (2) Server G responds a page including =l
— ﬂ reference a.js from server Al
User A

(3) User A requests a.js
a - = !9
Tk =
(5) Attacker H (4) Al responds =]
- |

replaces a.js with normal a.js Assets server Al
tampered one A

/) server A2

(7)Attaker can inject mal server A3

script to many servers  server An

(6)SetInterval(Get B site(), 100);

-E cervrrrsenseeeeeennnnnn SELNtETVAlGEE B Site(), 100); ............. > [ !9
| =
=

User B IR :::oooeeneeRRUTIEOVANGEL B Sltel) 100K, .o oecvee B v
ser !E E Victim server B

Figure 2: Browser-based DDoS.

loads the tampered script and triggers cross-origin
HTTP requests to the victim server B continuously.
Every user browsing http://genuine.server.com
effectively launches a Denial-of-Service (DoS) attack
on the server B. If the attacker injects the malicious
script to multiple websites A1,A7,A3,---,A,, thou-
sands of innocent users will execute the code, result-
ing in a browser-based DDoS attack.

Web Browser-based DDoS. In March 2015, a new
type of DDoS attack called the Great Cannon was ob-
served (Marczak et al., 2015) targeting two GitHub
pages. This attack was caused by an in-path system
located at the edge between China’s inner network
and the Internet, and executed a MitM JavaScript in-
jection for the targeted flow. The attack replaced a
Baidu’s analytics script with a malicious one that con-
tinuously issued requests to the two target pages. By
injecting malicious JavaScript to sites loaded by enor-
mous unwitting users, the Great Cannon caused mas-
sive HTTP requests per second to target pages and
easily overwhelmed them.

Mobile Browser-based DDoS. In September 2015,
a customer of Cloudflare was hit by browser-based
DDoS attack that leveraged mobile users as DDoS
vectors.®7 When a user was surfing the web using
a mobile device, the browser app injected an iframe
that inserted an advertisement in the browser app.
Hence, the user was forced to visit the advertisement,
and the advertisement forwarded the victim to the at-
tack page. When the malicious JavaScript code in
the attack page was executed, it flooded the servers
that belong to the victim. This attack event utilized
mobile devices as the distributed attack vectors and
created distributed flows, causing 275,000 HTTP re-

Shttps://blog.cloudflare.com/mobile-ad-networks-as-
ddos-vectors/

7https://threatpost.com/javascript-ddos-attack-peaks-
at-275000-requests-per-second/114828/

182

http://genuine.server.comr

quests per second during the peak time. Grossmann
and Johansen also presented how attackers injected
malicious advertisements to launch DDoS (Grossman
and Johansen, 2013).

2.2 Advertisements Injection

Several Internet Service Providers (ISPs) were iden-
tified to inject advertisements into customer-facing
webpages.®?'10 These ISPs continuously monitor
customer traffic and inject advertisement-incurring
JavaScript on webpages that their customers visit
without their consents. In this case, customers are
compelled to receive unexpected information and
website owners cannot assure that the content seen by
users is unmodified. Such an attack is not only obtru-
sive, but can cause significant problems with normal
Web application functions and network performance.
For example, TELCOM—the biggest telecommuni-
cation company in Indonesia—was found to secretly
inject advertisements to almost every unencrypted
webpage that their customers visited; TELKOM
sniffed traffic between the client browser and the web-
site owner and injected JavaScript to trigger requests
to its advertisement server. Such an injection attack
resulted in two undesirable consequences: customers
faced unwanted advertisements on the webpages, and
such advertisements increased the page loading time,
incurring additional usage fees.

In addition to ISPs, some browser extensions
are found to be linked to ad-networks by execut-
ing JavaScript-based extension.!! Users installed a
highly-rated browser extension to download videos
from YouTube. Unfortunately, an additional video
appeared on the user’s webpage and started playing
while loading the page.

3 SYSTEM ARCHITECTURE

FALCO detects superfluous JS injection that inflates
network activities based on behavior fingerprints,
which capture a website’s dependency to its external
domains.

8https://www.privateinternetaccess.com/blog/2016/
12/comcast-still-uses-mitm-javascript-injection-serve-
unwanted-ads-messages
“https://zmhenkel.blogspot.tw/2013/03/isp-
advertisement-injection-cma.html
10https://medium.com/@ grumpyuser/telkom-indonesia-
secretly-injects-advertisements-a3bf10b447ee
Uhttps://staging.hanselman.com/blog/can-you-trust-
your-browser-extensions-exploring-an-adinjecting-
chrome-extension



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

Website

Website

Website

Data collection
node browser

Browser extension

Requests collection
from tab A Fingerprint server

| Create fingerprint with Bloom filter |

Fingerprints of websites

Figure 3: System architecture of data collection phase.

Cross-origin request
extraction

Request domain
extraction

FALCO consists of three phases: data collection

(Section 3.1), fingerprint management (Section 3.2),
and attack detection (Section 3.3).
Overview. Figure 3 shows an overview of the
FALCO system. In the data collection phase, data
collection nodes collect HTTP requests when load-
ing websites and send the collected data to a finger-
print server. In the fingerprint management phase, the
fingerprint server extracts, stores, and updates web-
site fingerprints on behalf of clients. Fingerprints are
represented compactly using Bloom filters or their
variants. In the attack detection phase, the client’s
browser extension downloads fingerprints from the
fingerprint servers, and compares the fingerprints with
the client’s local observation. Once detecting suspi-
cious fingerprint changes, the browser extension will
alert the user.

To ensure privacy, a client can run its local ver-
sion of data collection node and fingerprint server.
The client can also retrieve fingerprints via privacy-
preserving manners, as described in Section 6.1.

3.1 Data Collection

During the data collection phase, we assume that the
data collection nodes and websites are not under at-
tack.

A data collection node collects raw HTTP re-

quests when loading each website of interest, and
strips off privacy-sensitive information. Only the do-
mains and their occurrences are sent to the fingerprint
server, for the following reasons.
Privacy Considerations. Since an HTTP-request
URL can leaks clients’ sensitive information such as
personal accounts, session ID, or cookies, we con-
sider privacy as a fundamental design parameter as
follows: the data collection nodes extract the domains
from HTTP-request URLs before they are delivered to
the fingerprint server. Consequently, the fingerprint
server receives the connection data without any pri-
vate information and uses it to create the fingerprint.

For example, National Taiwan University’s web-

site launches 61 requests, only two of which are cross-
origin requests. These two cross-origin requests con-
tain the user’s location or environment information in
the parameters.!”> To mitigate this privacy concern,
we focus only on the URL domain of the cross-origin
requests, truncating the request and obtaining the do-
main (e.g., “stats.g.doubleclick.net”) for the finger-
print.
Fingerprint Robustness. Ideally, a website’s behav-
ior fingerprint should be robust against factors such
as location and time. We conducted small-scale ex-
periments to observe the impact of location and time.
Specifically, we investigated the HTTP requests for
launching http://www.mit.edu from the US, Japan,
and Taiwan, and Figure 4 summarizes the triggered
time for each request. This figure can be considered
as an approximate shape for all the fingerprints from
different locations. Even though the time duration for
each HTTP request is not always the same across dif-
ferent locations, we can still infer that the additional
HTTP requests preserve the order.

http://web.mit.edu JOEGGRNA 440 AA B A
https://stat...lick.net o m A
— https://www....tics.com e Afm A
5
B
S
g
= https://site...rics.com X3 | | A B A
http://znbsg...rics.com < H A
https://znbs...rics.com 3 L] A g Japan
AAA Taiwan
909 USA

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time(sec)

Figure 4: Fingerprints of mit.edu from USA, Japan, and
Taiwan.

In addition to the location, we speculated that the
website browsing time may affect the fingerprint. In-
deed, we observed that the fingerprints collected at
different times were not always the same, due to net-
work conditions (e.g., speed, server status, processing
speed, etc.) at different times. To confirm this conjec-
ture, we accessed http://www.ntu.edu.tw once every
hour within a day with the same client environment in
Taiwan, and the connection results are shown in Fig-
ure 5.

Based on the small-scale experiments, we decided
to take into account the frequency of requests but not

2For instance, one was sent to Google Analytics
(stats.g.doubleclick.net) and contained parameters of screen
resolution, browser language, etc.

183



SECRYPT 2020 - 17th International Conference on Security and Cryptography

the precise timestamps or sequence of requests for
generating a fingerprint. In addition, to reduce the
variance introduced by location-dependent requests,
we recommend deploying data collection nodes at dif-
ferent locations across the world.

3.2 Fingerprint Management

The fingerprint server is responsible for extracting,
storing, and updating fingerprints. For each website,
the fingerprint server receives a list of accessed do-
mains and their frequencies from the data collection
nodes. The fingerprint server then extracts and en-
codes important information into a Bloom filter as a
fingerprint. We will explain why using Bloom-filter-
like data structures shortly. The fingerprint server
stores fingerprints of the popular websites collected
from different locations, updates fingerprints when
necessary, and provides them when users query.

Fingerprint Construction. A straightforward ap-
proach is using the list of accessed domains and their

23:00p ©® sm oo

22:00 po @ee 00 ® 0000 comaw ©

210 ® ® come weo am ®

20:00 po en e ommD © ®

19:00 pamam @ ooomo

18:00 po = oo amme  am

17:00 po @ o wesam oo

16:00 po o oo © emmen

15:00 po @» evenmm o0

14:00 o @ocmn oo

13:00 po mooamme oo

12:00 po @ omme @eo

11:00 powamoce o -

10:00 poam @oe ® ®esoo wooe

www.ntu.edu.tw requests

09:00 )0 @ @sepcommm e

08:00 p @o e o ooomes o 0o we oo ommen ®

07:00po ® © @ ommems

06:00 po owmonm ® 0

05:00 po ®80 oemo am ow apumese °

04:00 po @ ® om0 owme o0 oo

03:00 o @ amammoe o0

02:00 pan @ amomme

01:00 p» ocommmm @

00:00pm® e 0 ®oo o @ o owe

] 1 2 3 4 5 6 7 8
timestamp (sec)

Figure 5: Fingerprints of ntu.edu.tw.

184

GET aljs

~ com o
GET A-site.com Lng
= AR

-_

N Py
Website: g

A-site.com

asset.a.com

Client node
Gg7b
S

A-site.com > asset.a.com : 1 Qa
A-site.com > asset.b.com : 5
A-site.com > asset.c.com : 2

A-site.com > asset.a.com : 1~3
A-site.com > asset.b.com : 4~6
A-site.com > asset.c.com : 173

Fingerprints of A-
site.com

Figure 6: Obtain fingerprint from requests using Bloom fil-
ter.

asset.b.com

I

asset.c.com

frequencies as a website’s fingerprint. When visiting
a website, the client will compare its domain access
patterns to the website’s fingerprint. If the client ob-
serves a new domain that is not on the list, or accesses
a domain more frequently than it was documented in
the fingerprint, the client reports detection of spuri-
ous requests, which indicates a potential superfluous
JS injection attack. However, this straightforward ap-
proach is inefficient (in terms of storage cost on the
fingerprint server and the client, as well as the com-
putation cost on the client side) and leaks unnecessary
information to whoever queries the fingerprint server.

To improve efficiency and privacy, FALCO uses

a Bloom filter or a counting Bloom filter to repre-
sent a website’s fingerprint. At a high level, a Bloom
filter is a compact data structure that supports effi-
cient membership queries. Thus, given a Bloom fil-
ter that contains the set of accessed domains, one can
easily determine whether a new domain is visited by
querying the Bloom filter. After a brief introduction
of Bloom filters, we describe three fingerprint con-
struction methods that utilize Bloom filters and dis-
cuss their applicability in Section 3.2.1.
Bloom Filters & Counting Bloom Filters. A Bloom
filter is a data structure that uses a bit array for set
membership queries. This space-efficient structure
offers operations, such as adding elements to the set
and querying if the element exists in the set. Bloom
filters might claim an element is one of the set when
it does not belong to the set, but never reports an ex-
isting element to be absent from the set.

An empty Bloom filter is a bit array of n bits, rep-
resenting a set of n elements with initial value 0 as
Figure 7(a) shows. When an element x from the set
S = {x1,x2,- - ,x,} is inserted, the Bloom filter uses
k independent hash functions to calculate the position
hi(x),hy(x), -+ ,hg(x) in the array and set these bits
to 1 as shown in Figure 7(b). To determine if y exists
in this set S, we only need to check the k hash func-
tions with y. If any value in A1 (y),ho(y), -, I (y) is
0, then y does not belong to the set S (Figure 7(c)), and



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

o [e[o o e oo e o[o]=To]
Xy X2
wlof1]1]ofa]o]1]o]o]..[1]
Y Y,
halys)/atya Y Rava) fhotys) N halya)
©@[of1]1]ofa]o1]o]o].[1]

Figure 7: Bloom filter operation.

when there are more 1s in the array, the false positive
is higher.

An enhanced version called a counting Bloom fil-
ter uses an array of n counters to replace the n bits
in a Bloom filter. The counters show the number of
inserted elements of the hash values that are indexed
at each position. To confirm that an element is in the
set, we can check if the values in the hash-indexed
positions of the element are all above zeros.

In summary, Bloom filters provide a fast mem-
bership queries operation with space-efficient feature.
Although the length of the array and the number of
hash functions could directly affect the false positive
rate, we can reduce it by extending the array of the
Bloom filter. Because of the benefits of space effi-
ciency and querying speed, we use the Bloom filter
to create a fingerprint of the cross-origin domains for
each website in our system architecture.

3.2.1 Fingerprint Extraction Methods

We propose three fingerprint construction methods as
shown in Figure 8. They provide different levels of
efficiency and accuracy depending on the information
encoded in Bloom filters.
Method I: Store the Visited Domains in Bloom Fil-
ters. To generate a fingerprint of a website, Method
I inserts the domains of the website’s cross-origin
HTTP requests to the Bloom filter, without consider-
ing the timestamp and the frequency of each domain.
A superfluous JS injection attack is detected if the
client browser observes a new domain that does not
appear in the fingerprint (i.e., the Bloom filter returns
false). Figure 8 (a) shows an example using Method
L.
Method II - Store the Pairs of Visited Domain and
its Frequency in Bloom Filters. As shown in Figure
8 (b), compared with Method I, Method II addition-
ally considers the frequency of each domain in finger-
print generation. For each cross-origin HTTP request,
Method II inserts the pair of its domain and frequency
to the Bloom filter. The frequency is quantized into
coarse-grained ranges to reduce false detection. For

example, if a website launched requests to domain
a.com 1 time, to domain b.com 5 times and to c.com
2 times, Method II with a range of three will insert
three elements: a.com:[1-3], b.com:[4-6], c.com:[1-
3].

To detect whether a visited website is under a su-
perfluous JS injection attack, a client browser accu-
mulates and computes the frequency of each cross-
origin domain. The client browser then check whether
every pair of domain:range is in the Bloom filter.
Method III - Store the Pairs of Visited Domain and
its Frequency in Counting Bloom Filters. Similar
to Method II, Method I1I also considers the frequency
of each domain in fingerprint generation. Instead of
using a Bloom filter to encode the pair of domain and
frequency range, Method III uses a counting Bloom
filter, in which each element is naturally associated
with a count. Method III uses the counter in the count-
ing Bloom filter to record the frequency of each do-
main.

To detect whether a visited website is under a su-
perfluous JS injection attack, a client browser accu-
mulates and computes the frequency of each cross-
origin domain, as in Method II. The client browser
then checks whether the frequency of each domain is
smaller than or equal to what the counting Bloom fil-
ter returns. An attack is detected if any of the domain
has a frequency higher than the return value.

3.2.2 Website Classification and Method
Selection

We observe that each fingerprint construction method
presented in Section 3.2.1 is suitable for different
types of websites. To improve detection accuracy,
we propose heuristics for website classification and
method selection.

Website Classification. We divide websites into four
types according to their dynamics in the visited do-
mains and the number of requests. We assume a fin-
gerprint server can determine the type of a website af-
ter seeing several rounds of data provided by the data
collection nodes. As the classification should be rela-
tively stable, popular websites (e.g., the top one mil-
lion) can also be classified and labelled in advance.

The first category consists of websites that load a
fixed number of requests and visit identical domains
every time. These websites often contain no media
or advertisement. An example of such websites is
Wikipedia.

The second category consists of websites that is-
sue requests to different domains over time, such
as websites embedding real-time bidding advertise-
ments. In this case, the JavaScript first queries an ad-
vertisement network, and then the advertisement net-

185



SECRYPT 2020 - 17th International Conference on Security and Cryptography

Req w/o freq using BF

A-site.com > asset.a.com
A-site.com > asset.b.com
A-site.com > asset.c.com

O

A-site.com > asset.a.com
A-site.com > asset.b.com
A-site.com > asset.c.com

Req w/ freq using BF

A-site.com > asset.a.com : 1
A-site.com > asset.b.com : 5
A-site.com > asset.c.com : 2

O

A-site.com>asset.a.com : [1~3]
A-site.com>asset.b.com : [4~6]
A-site.com>asset.c.com : [1~3]

(n=6,k=1)

BF

Rlo|o|r|Oo|-

Req w/ freq using CBF

A-site.com > asset.a.com : 1
A-site.com > asset.b.com : 5
A-site.com > asset.c.com : 2

O

A-site.com > asset.a.com :1
A-site.com > asset.b.com :5
A-site.com > asset.c.com :2

(b)

(c)

Figure 8: Examples of three fingerprint construction methods.

nfixed numben
of req

yes
Method | Method Il
(req wio freq in BF) (req Wi req in BF)

Figure 9: A decision diagram for selecting a fingerprint con-
struction method based on the website type.

Method Il
(req wi freq in CBF)

no

work asks the browser to contact different advertis-
ers. The Yahoo website belongs to this type. To re-
duce false positive during detection, for this type of
websites, the data collection nodes should access the
websites for multiple times, ensuring that the web-
site’s fingerprint captures most of the normal web ac-
tivities.

The third category consists of websites that issue
requests to a fixed set of domains but the number of
requests may vary over time. For example, a web-
site embedding autoplay videos (e.g., Disney) will in-
struct the browser to send periodic requests in order to
play the videos. For this type of websites, we select
Method I to collect the fingerprint.

The last category consists of websites that issue
a fixed number of requests, but the destinations of the
requests may change over time. An example is a web-
site that relies on a CDN service: A website publisher
hosts the website assets on CDN servers; when a user
wants to visit the website, he or she will be directed to
one of the CDN servers based on location, load, price,
etc. Similar to the second category, for this type of
websites, the data collection nodes should access the
websites for multiple times. Because the number of
requests stay the same, we use Method II or III to cre-
ate fingerprints.

Selection of Fingerprint Construction Method.
Figure 9 shows the decision diagram for selecting a
fingerprint construction method based on the website
type. We first check whether the website falls in the
first category. If the website does not have a fixed

186

number of requests, we use Method I to create the
fingerprint. Then we check if the website belongs to
the second category or not. If yes, the requests will
be formalized before adding to the fingerprint. Addi-
tionally, if the number of requests is more than 100,
we choose Method 1II for space saving. The rest will
be handled by Method III.

3.3 Attack Detection

Given the website type and its fingerprint of a website,
the FALCO browser extension on the client side can
detect whether the website is under a superfluous JS
injection when the user browses the website.

The client-side detection is performed through the
following procedure.

1. Install - The user installs the FALCO browser ex-
tension.

2. Fetch - When the user accesses a website using the
browser, the detector (browser extension) will first
fetch the website’s fingerprint from the fingerprint
server. The user can also fetch the fingerprint of
the website in advance.

3. Detect - All the cross-origin requests initiated by
the website will be checked by the detector before
they are sent out.

4. Block - If a superfluous request is detected (i.e., it
does not exist in the fingerprint or the number of
requests to the same domain exceeds the record in
the fingerprint), the request will be blocked. The
user can decide whether to add the request to a
blacklist.



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

4 EVALUATION

To generate a fingerprint of a website, we load the
website for 20 seconds!® and collect its cross-origin
requests. We assume that the website is not under
attack during data collection. Data collection nodes
and a fingerprint server are hosted using AWS, and
the data is collected from USA, Japan, and Taiwan.

4.1 Fingerprint Generation

We investigate the robustness of the fingerprint gen-
eration methods presented in Section 3.2.1 across dif-
ferent locations. In the first part of the experiment, we
collect 3,000 websites fingerprints from the US using
AWS WorkSpace and set up a client browser in Tai-
wan. In the second part of the experiment, we collect
3,000 websites fingerprints and set up a client browser
in Taiwan to test the fingerprints from the same loca-
tion. The results are shown in Table 1.

Table 1: True positive detection rate using fingerprint.

TP in TP in

different location ~ same location
Req w/o freq in BF 90.58% 96.68%
Req w/ freq in BF 85.28% 87.48%
Req w/ freq in CBF 82.42% 88.24%

A true positive represents a consistent detection
in different locations. The parameters of the Bloom
filters are n = 500 and k = 3, and the parameters of
the counting Bloom filters are n = 1000, k = 3. The
results show that more than 82.42% websites have
the same fingerprints in different locations, and more
than 87.48% websites have the same fingerprints in
the same location. The true positive rate increases as
the size of the Bloom filter increases. As the size of
Bloom filter increases by four times, the true positive
rate approaches 100%.

According to our classification in Section 3.2.2,
we divide the websites into four categories, and create
fingerprints using different methods, as shown in the
procedure of Figure 9.

As shown in Table 2, by performing the classifi-
cation, the true positive rate of the two-location ex-
periment increases to 93.08%, where 6.97%, 42.97%,
and 50.06% of the websites use method I, II, and III,
respectively, to create the fingerprints. Similarly, the
true positive rate of the same-location experiment in-
creases to 98.36%, where 12.5%, 39.4%, and 48.1%

13We performed a small-scale measurement of the top
100 websites and observed that 58% of them completed
loading in 10 seconds and 87% in 20 seconds. Thus, we
use 20 seconds as a threshold.

Table 2: True positive detection rate using fingerprint with
websites classification.

Different loca- Same location

tions

Method I (BF w/o times) 6.97% 12.5%
Method II (BF w/ times) 42.97% 39.4%
Method III (CBF w/o times) 50.06% 48.1%
Avg TP 93.08% 98.36%

Table 3: False positive rate under attack.

FP when under attack

Req w/o freq in BF 3.02%
Req w/ freq in BF 0.57%
Req w/ freq in CBF 0.07%

of the websites are assigned to method I, II, and III,
respectively.

4.2 Attack Detection

We simulate two types of attacks and evaluate the de-
tection rate using FALCO.

4.2.1 Attack Simulation I - Ad Injection

We first simulate the ad-injection attack introduced in
Section 2.2. When a website is under ad-injection,
it will send out extra cross-origin requests to ad do-
mains. Therefore, in this attack simulation, we in-
sert arbitrary cross-origin HTTP requests into 3,000
request lists from different websites, and detect the
extra traffic by fingerprints. The result of this experi-
ment is shown in Table 3. A false positive means that
the request is not in the fingerprint but is detected.
The false positive for FALCO is less than 3.02%. The
results also confirm that the larger the fingerprint size
is, the more accurate the result is, as we can see that
the size of Bloom filter and the numbers of hash func-
tions impact the false positive of fingerprints.

4.2.2 Attack Simulation II - Browser-based
DDoS

The second attack we simulated is browser-based
DDoS attack. As shown in Figure 10, we use mitm-
proxy'# to MitM attack our browser in the simula-
tion environment. When the client browses website
A-site.com (http://www.ntu.edu.tw) and gets the ex-
ample.js from A-site.com, the mitmproxy replaces the
example.js to mal.js. This mal.js attempts to send a re-
quest to the victim server continuously to perform an
HTTP flooding attack.

Figure 11 shows the collected fingerprints from
multiple countries. The purple dots represent the

4https://mitmproxy.org/

187



SECRYPT 2020 - 17th International Conference on Security and Cryptography

" Next hop: router Next hop: ISP
IMProxy g4 urce: proxy Source: proxy
(transparent) pegtination: A-site.com Destination: Arsite.com

GET example.js = GET examplejs
ﬁ
Next hop: proxy 1+ & Next hop: router
Source: router Source: ISP Isp
Destination: client Destination: client
example.js example.js
Next hop: mitmproxy Next hop: client
Source: client Source: proxy
Destination: A-site.com Destination: client [eee |
GET example.js mal.js .
N
- Website:
[ ] - Assite.com
client : Victim
Figure 10: Attack environment simulation.
ntu.mitm.log pusgd <CBDED @ © & ® @

ntu.tw.ts.log [B®

ntu.jp.log p @ CXX?0 O©® ed WD ¢
ntu.us.log p [l <od ° o0 o ® ©® o000
. . . .
0 2 4 6 8 10

Figure 11: Fingerprint of MitM attack simulation.

cross-origin requests, and the blue spots represent the
same-origin requests. The first log on top shows the
fingerprint when the browser is under attack, the sec-
ond one is the fingerprint from Taiwan, the third one
is from Japan and the last is from USA. As our re-
sults confirm, FALCO can detect all of the simulated
attacks.

4.3 Performance Evaluation

In this section, we compare the latency between a
browser without the extension and a browser which
installs the extension we implemented. The compar-
ison results are shown in Figure 12. We tested top
10 websites from majestic.com. Each bar displays the
loading time with dark color, and the finish loading
time with light color. Pink bars show the latency of
visiting websites using the browser without the exten-
sion, and blue bars show the latency of visiting web-
sites using the browser with the extension. The av-
erage latency of loading one website is 0.29 seconds.
The additional latency introduced by the browser ex-
tension may result from the number of cross-origin
requests, the performance of the web server, or the
client network environments.

188

S RELATED WORK

In this section, we describe existing defense tech-
niques and their limitations.

Same-Origin Policy (SOP). The same-origin pol-
icy!> is a web security policy enforced by modern
browsers. In principle, the same-origin policy re-
stricts scripts in one page from accessing another
page unless they belong to the same origin. SOP
can prevent scripts from accessing Document Object
Model (DOM), cookies, and local storage data be-
longing to another web origin, but it cannot block
cross-origin requests from HTML tags such as (img),
(script) and (iframe), because the requests triggered
by HTML tags inherit the origin of the main page.
Since browsers can still be deluded with sending mali-
cious requests, the same-origin policy cannot prevent
or detect superfluous JS injection.

Cross Origin Request Policy (CORP). CORP (Teli-
kicherla et al.,, 2014; Agrawall et al., 2017) is a
browser security policy against browser based DDoS
attacks. It enables the server to control cross-origin
requests from the browser and block illegal requests
by the server. For example, with CORP response
header, site alice.com can block unauthorized re-
quests from site bob.com. As a browser receives the
response with CORP header, it records the policy in
the browser cache when encountered for the first time.
When further requests are triggered, the browser will
enforce the CORP rule on the request. As mentioned
above, executing CORP mechanism involves both the
server and browser. For example, when only the
server-side supports CORP, the browser can still send
illegal cross-origin requests to the server. Moreover,
besides the difficulties in configuring policies, CORP
has not been adopted in practice.

Content Integrity. SRI? guarantees the integrity of
resource by checking its hash value. More specifi-
cally, users compute the hash value of a resource and
declare it alone with the resource path. Upon fetching
the resource, a browser can compute the hash and ver-
ify the integrity of resource. Although SRI can ensure
that the JavaScript is not tampered by an attacker, it is
not flexible for either a dynamic webpage or updating
the JavaScript. Furthermore, if attackers act as man-
in-the-middle, it is easy to replace both the hash value
and the resource at the same time.

Stickler (Levy et al., 2016) provides a service that
supports a website publisher to place its static re-
source, such as JavaScript, CSS, images, or other me-
dia files, around the world via CDN network. By
using CDN, website owners can efficiently deliver

https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

mmm |oad by browser w/o extension detector
finish by browser w/o extension detector
@ |oad by browser w/ extension detector

@ finish by browser w/ extension detector

91 regsi/ 1.9MB.

93 regs

time(sec)
G

182 regq: 02KB

/ 320KB

5

53 reqs

8 reqs /64.2KB

7 7

A
/ 393KB 55 reqs./ 1.2MB éﬁ

wikipedia.org _ twitter.com _instgram.com _google.com linkedin.com

Websites URL

% L y ¥ i
apple.com  facebook.com youtube.com wordpress.com microsoft.com

Figure 12: Average latency of browsing websites by fingerprint extension.

their content and reduce bandwidth costs, under the
premise that they trust CDN unconditionally. Stick-
ler provides a system that guarantees that the website
asset would not be tampered by the trustless CDN ser-
vice, by allowing a website publisher to digitally-sign
all their assets on CDN. Users who want to access
the website will first fetch the bootloader from web-
site’s server, in which case the bootloader downloads
the signed assets from CDN and verified them. Ac-
cording to the digital signature and the operation of
the bootloader, Stickler can ensure the integrity of the
website content from CDN.

Client-side Protection. Prior techniques often re-
quire server-client collaboration, therefore further el-
evating the deployment challenges. Excision (Arshad
et al., 2016) presents an in-browser solution to detect
malicious JavaScript inclusion. However, Excision’s
browser instrumentation increases the browsing time
by 12.2%.

Comparison We compare FALCO with existing de-
fense mechanisms introduced in Section 5 with re-
spect to the deployment requirement, policy setting,
detection indicator, and threat model. The results are
summarized in Table 4.

For the deployment requirement, FALCO and Ex-
cision only need to modify the client side and does
not require server collaboration, whereas the others
require participation of both the client and server.
For the policy setting, mechanisms such as CORP
are only effective if the web administrators can cor-
rectly configure access policies to block unwanted
traffic; FALCO does not require any complex setting.
FALCO is more lightweight than Excision, because
FALCO focuses on superfluous JS injection, which
incurs observable inflation in network traffic, whereas
Excision aims to detect generic content injection.

6 DISCUSSION

6.1 Privacy Concern

In FALCO, the client-side’s detection relies on the fin-
gerprint provided by the fingerprint server. Therefore,
the fingerprint server must know which websites the
users attempt to browse. We briefly describe possi-
ble approaches to prevent the fingerprint server from
explicitly recording the browsing history. The first
approach is prediction; users can regularly download
a group of fingerprints in advance, which they may
visit in the future. The second approach is by increas-
ing the anonymity set; users can download the finger-
print of the website which they want to browse with
other random fingerprints at the same time. The third
approach is by maintaining a local fingerprint server
with a group of users; the users in the group fetch
the fingerprint through this server, then the central-
ized fingerprint server will know that this group at-
tempts to view some websites but never learns about
the specific user. The last approach is adapting ex-
isting private information retrieval techniques (Chor
et al., 1995) to acquire the website’s fingerprint with-
out revealing its browsing history.

6.2 Limitations and Challenges

There are several limitations of FALCO. To detect po-
tential abnormal traffic sent from the client browser,
users have to install a browser extension in their
browsers and the extension will generate and com-
pare fingerprints while browsing, which may affect
the browsing performance. Also, we assume that a
website’s fingerprint is computed when the website is
not under attack, which may not always hold in prac-
tice.

189



SECRYPT 2020 - 17th International Conference on Security and Cryptography

Table 4: Comparison of FALCO with related work.

Deployment Policy Setting  Detection Basis Threat Model
FALCO browser only N/A external dependency  superfluous JS injection
SOP browser & web server N/A requests header cross-origin request
CORP browser & web server  CORP rule request header JavaScript-based DDoS
SRI browser & web server N/A hash value of script ~ tampered JavaScript
Stickler browser & web server N/A digital signature malicious CDN
Excision browser only N/A inclusion sequences  3rd-party content inclusions

Some challenges remain as well. First, further in-
vestigation is needed to determine the effect of loca-
tion, browsing time, network environments, browser
versions, etc. Second, as web applications today are
highly personalized, it would be interesting to ex-
plore whether the fingerprints should be personalized
and how to efficiently and effectively create person-
alized fingerprints. Third, it is worth investigating
the incentive model of adopting defense mechanisms
against superfluous JS injection attacks, as users may
not have enough incentive to install an extension just
for avoiding their browsers from being leveraged to
attack others. Instead, ISPs may have strong motiva-
tion to defend against such attacks, but there are tech-
nical challenges to identify unwanted requests trigger
by each website from the ISPs’ perspectives.

7 CONCLUSION AND FUTURE
WORK

This paper presents a robust detection system called
FALCO against superfluous JavaScript injection at-
tacks using website fingerprints without server-side
cooperation. To analyze normal website behavior, we
extracted the fingerprints of the top 10,000 websites,
and our evaluation results confirm that FALCO can
detect 96.68% superfluous JS injection attacks in our
simulation environment.

As for the future work, we are studying how to im-
prove FALCO as follows. (1) To expand the deploy-
ment of our system, we have to improve the trans-
parency of our system, such as providing our service
under a third-party certification authority to improve
users’ willingness to use FALCO. (2) On the client-
side, a personal fingerprint from the user’s browsing
history is better than a fingerprint from others. We
plan to develop a local fingerprint system in which a
fingerprint can be extracted for each connection from
the user’s browser and detect attacks based on his/her
own local observations. (3) Many dynamic factors
may impact the accuracy of fingerprints such as the
location, browsing time, network environment and the
browser version. Websites continuously send out re-
quests (e.g., website analytic services, websites with

190

session-replay scripts).!® We plan to focus on investi-

gating such dynamic factors to improve the accuracy.
(4) We plan to enhance the website classification ap-
proach by websites’ characteristics.

ACKNOWLEDGEMENTS

This research was supported in part by the Ministry
of Science and Technology of Taiwan (MOST 109-
2636-E-002-021).

REFERENCES

Agrawall, A., Chaitanya, K., Agrawal, A. K., and Chop-
pella, V. (2017). Mitigating browser-based ddos at-
tacks using corp. In Proceedings of the 10th Innova-
tions in Software Engineering Conference, pages 137—
146. ACM.

Arshad, S., Kharraz, A., and Robertson, W. (2016). Include
me out: In-browser detection of malicious third-party
content inclusions. In International Conference on Fi-
nancial Cryptography and Data Security, pages 441—
459. Springer.

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M.
(1995). Private information retrieval. In Proceedings
of IEEE 36th Annual Foundations of Computer Sci-
ence, pages 41-50.

Cova, M., Kruegel, C., and Vigna, G. (2010). Detection and
analysis of drive-by-download attacks and malicious
javascript code. In Proceedings of the 19th interna-
tional conference on World wide web, pages 281-290.
ACM.

Grossman, J. and Johansen, M. (2013). Million browser
botnet. Black Hat USA.

Huang, L.-S., Weinberg, Z., Evans, C., and Jackson, C.
(2010). Protecting browsers from cross-origin css at-
tacks. In Proceedings of the 17th ACM conference on
Computer and communications security, pages 619—
629. ACM.

Levy, A., Corrigan-Gibbs, H., and Boneh, D. (2016). Stick-
ler: Defending against malicious content distribution
networks in an unmodified browser. IEEE Security &
Privacy, 14(2):22-28.

19https://freedom-to-tinker.com/2017/11/15/no-
boundaries-exfiltration-of-personal-data-by-session-
replay-scripts/



FALCO: Detecting Superfluous JavaScript Injection Attacks using Website Fingerprints

Li, Z., Zhang, K., Xie, Y., Yu, F,, and Wang, X. (2012).
Knowing your enemy: understanding and detecting
malicious web advertising. In Proceedings of the 2012
ACM conference on Computer and communications
security, pages 674—686. ACM.

Marczak, B., Weaver, N., Dalek, J., Ensafi, R., Fifield, D.,
McKune, S., Rey, A., Scott-Railton, J., Deibert, R.,
and Paxson, V. (2015). China’s great cannon. Citizen
Lab, 10.

Pellegrino, G., Rossow, C., Ryba, F. J., Schmidt, T. C.,
and Wihlisch, M. (2015). Cashing out the great can-
non? on browser-based ddos attacks and economics.
In WOOT.

Telikicherla, K. C., Choppella, V., and Bezawada, B.
(2014). Corp: a browser policy to mitigate web in-
filtration attacks. In International Conference on In-
formation Systems Security, pages 277-297. Springer.

Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N.,
Kapravelos, A., McCoy, D., Nappa, A., Paxson, V.,
Pearce, P, et al. (2015). Ad injection at scale: As-
sessing deceptive advertisement modifications. In Se-
curity and Privacy (SP), 2015 IEEE Symposium on,
pages 151-167. IEEE.

Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A.
(2016). Csp is dead, long live csp! on the insecurity
of whitelists and the future of content security pol-
icy. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 1376-1387.

191



