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Even though Deep Learning models are presenting increasing popularity in a variety of scenarios, there are

many demands to which they can be specifically tuned to. We present a real-time, embedded system capable
of performing the visual inspection of Collective Protection Equipment conditions such as fire extinguishers
(presence of rust or disconnected hose), emergency lamp (disconnected energy cable) and horizontal and ver-
tical signalization, among others. This demand was raised by a glass-manufacturing company which provides
devices for optical-fiber solutions. To tackle this specific necessity, we collected and annotated a database
with hundreds of in-factory images and assessed three different Deep Learning models aiming at evaluating
the trade-off between performance and processing time. A real-world application was developed with potential
to reduce time and costs of periodic inspections of the company’s security installations.

1 INTRODUCTION

Deep Learning (DL) has been presenting excellent
performances for the past decade in subjective tasks
due to its capability of adapting to large amounts
of data. This is particularly true in Computer Vi-
sion, given the high dimension and variability of im-
ages and videos. As a consequence, different Deep
Learning models have been applied to a wide range
of supervised learning tasks and its popularity is in-
creasing considerably (Dargan et al., 2019). Never-
theless, models can often be better tailored to tackle
highly specific demands (Aggarwal, 2018) from sev-
eral kinds of industries if an adequate partnership is
articulated between research lab and market.

In this context, we aim at solving a typical task
many companies rely on; the periodic visual inspec-
tion of Collective Protection Equipment (CPE). Un-
der a partnership firmed with a multinational com-
pany focused on manufacturing devices for installa-
tion of optical fiber systems, we tuned DL models to
inspect various specific conditions of fire extinguish-
ers, emergency lamps, horizontal and vertical signal-
ization, among others. An overview of the application
can be seen in the Figure 1. The solution can be ap-
plied remotely on the company’s surveillance system
or embedded on a tablet attached to a mobile robot
responsible for navigating the factory. It has the po-
tential of reducing costs and time associated with the
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inspection of security systems.
More specifically, we present the following con-
tributions:

1. We collect and annotate a database containing
characteristics specifically aimed at tackling the
company’s demand. To the extent of our knowl-
edge, no database containing such features has
been presented so far.

2. We assess the performance of three DL models
and evaluate the trade-off between precision and
processing time. The system was embedded on a
tablet that can potentially be attached to a mobile
robot.

|

Figure 1: Overview of the application.

2 RELATED WORK

According to (Hocenski et al., 2016), using Computer
Vision in pottery can result in promising and satisfac-
tory results. Even though no deep learning algorithms
were used, they faced the necessity of automated as-
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sessment techniques for production analysis. Authors
used well traditional in image processing to create
three routines that detected problems in ceramic tiles
such as those related to surface, edge and corner. The
system worked in real time and was tested in a real
factory for validation with satisfactory results.

As stated in (Veeraraghavan et al., 2017), Battery
Management System (BMS) is a critical component
in electrical vehicles. Accurate detection of the actual
status of the battery is relevant, since this evaluation
has impact over the control of many stages of the car
functioning. Current models of battery estimation are
complex and unable to provide result information in
real time. Thus, authors applied deep learning tech-
niques to develop an less complex estimator which
would allow processing in real time. Complex bat-
tery model functionalities were simulated with using
neural networks and the models developed presented
high accuracy and real-time processing capabilities.

According to (Li et al., 2018), with the advance
of Internet of Things (IoT) have been largely incor-
porated into industry facilities. Allowing better mon-
itoring of their processes, sensors are now easier to
install on machinery and to be connected to local fog
via wireless networks. From sensors readings, often
with high sampling frequency, a big volume of data is
generated. From these data, authors proposed a clas-
sifier based on neural networks capable of detecting
faulty products. However, in order to be suitable for
industry, the classifier should be capable of running
inferences about all data in real time which could be
tackled using fog network.

Authors in (Rao and Frtunikj, 2018) elucidate dif-
ficulties that deep learning will find in automobile in-
dustry, bearing in mind the enormous effort that has
been applied in the production of autonomous vehi-
cles. One of the hardest difficulties is related to the
safety, since autonomous cars should not take deci-
sions harmful to passengers or people nearby.

For (Zhang et al., 2018), proposed the utilization
of a YOLOV?2 for automated detection of oil facilities
to improve safety in extraction and production per-
formance. Results were compared to traditional tech-
niques with a combination of Haar features combined
AdaBoost classification. YOLOvV2 presented higher
efficiency and accuracy.

As stated in (Choi et al., 2019), shipping indus-
try is one of the most dangerous and there are many
safety policies and techniques for decreasing the num-
ber of accidents. Besides the risk of not wearing
safety equipment appropriately, there exists the risk of
accidents due to unpredictable environment variables.
In this manner, authors proposed a model capable of
estimating the current risk of an environment, aiming

to evaluate which safety measures are more adequate
to make the workplace safer. A deep learning model
was trained and allowed the identification of danger-
ous zones, measuring risk automatically.

In (Chou et al., 2019), a detection scheme for
faulty coffee grains was proposed, together with a
Generative-Adversarial Network (GAN) which both
augmented the database and labeled new data. This
approach improved the generalization capability of
the model decreasing significantly the cost of creat-
ing the database, making it easier to train different DL
models for the task.

3 METODOLOGY

The steps that were followed in order to obtain our
results were;

1. building a database with labeled images for each
class;

2. designing deep network models considering ar-
chitectures more suited to the problem at hand;

3. testing the trained models.
3.1 Collecting the Database

The first stage of building the database was collect-
ing the images. For that, many photos of fire extin-
guishers were taken in diverse environments, such as,
the factory itself, the university facilities, many build-
ings, etc. One challenge was the difficulty in finding
fire extinguishers really rusty, or with noticeable de-
fects. This was due to safety laws that obligate near-
to-expire fire extinguishers to be replaced. Thus, im-
ages were also collected from the internet, with some
examples of faulty extinguishers. Another approach
was taking pictures of different rusty object while an-
notating only the rust. This strategy was aimed at
teaching the model characteristics of rust images in-
stead of teaching only what rusty extinguishers look
like.

After collecting fire extinguisher images and
emergency lamps, the annotation process begun. The
hose, the signaling plate, the rusty marks, the extin-
guisher body and the floor signaling were annotated
in extinguisher pictures. On the emergency lamp pho-
tos, the male socket plug, the female socket plug, the
status led and the body of the lamp were annotated.
These characteristics were chosen by considering the
demand presented by the company, which stated that
those are most common faults occurring on their fa-
cilities.
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With respect to the extinguisher, only the hoses
in good conditions were annotated, considering that
the faulty hoses (including the ones placed inappro-
priately) were very different and, hence, should not
be detected by the model. Another reason for not an-
notating the situations where the hose was found in a
bad position was due to a proximity that the classes
would present in feature space, resulting in increased
difficulty for the classification. From the emergency
lamps, the power plug and the female socket on the
wall were annotated. If one of them was detected, we
assumed that the emergency lamp was not plugged
into the electrical power-line and, hence, was not be-
ing used.

Since the database was built from scratch, it did
not present many images per class, which led us to
apply some augmentation techniques to reduce over-
fitting. The first pre-processing technique was resiz-
ing all images to 300 x 300 pixels and the conversion
from PNG to JPEG. For data augmentation, the fol-
lowing techniques were used;

e vertical and horizontal mirroring;

e 90 degrees rotation;

e bright adjustment;

e resizing

e cropping

All augmentation techniques were applied ran-

domly during training. In the case of resizing and
cropping, the bounding boxes were taken into con-
sideration. When there were multiple objects of in-
terest in the same image, regions containing one or
more objects were extracted to generate a new sub-
image sample. This way, one image could generate

sub-images with combinations of its objects. At least
one object was visible for each sub-image.

3.2 Topologies

Three neural network topologies with very distinct
characteristics were chosen aiming to assess the pros
and cons of each one, in different circumstances. The
first was the MobileNet V2 SSDLite, proposed by
(Sandler et al., 2018). The second was FPN Resnet-
50 SSD, presented by (Lin et al., 2017). The third was
the Inception Resnet V2 Faster R-CNN with Atrous
Convolution, adapted from (Szegedy et al., 2017). All
architectures were trained using the same database,
for unbiased comparison.

3.2.1 MobileNet V2 SSDLite

The MobileNet V2 SSDLite (MV2) was chosen as the
first topology to be tested by the fact that it was de-
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signed to run in mobile devices, which makes it faster
than other topologies. According to (Sandler et al.,
2018), the most important contribution presented in
MV?2 was the new layers known as Inverted Residual
with Linear Bottleneck. This new layer presents an in-
put with reduced dimension, that is first expanded to
an increased dimension and filtered with depth-wise
separable convolutions. Next, filtered features have
their dimension reduced through linear convolutions.
The author also proposes a SSDLite that is a varia-
tion of the SSD, proposed by (Liu et al., 2016), with
the convolutional layers being replaced by depth wise
separable convolutions.

Despite the new layers Inverted Residual with Lin-
ear Bottleneck being the most important contribution
of MV2, they still inherit some very important charac-
teristics from its predecessor: the MobileNet V1. The
main inherited features are the depth-wise separable
convolutions, which decrease the necessary number
of mathematical operations in one inference, making
the topology faster to train and test. Depth-wise sep-
arable convolutions consist of replacing conventional
convolution by a factored version with two separated
layers. The first layer is the depth-wise convolution,
which executes a low-cost convolution applying only
one filter per input layer. The second layeris a 1 x 1
convolution, which is called point-wise convolution,
used to compute new features from the linear com-
bination of input layers. This is how the depth wise
separable convolutions is done. First, it applies only
one convolutional filter per each input layer. Then, it
summarizes the features generated on previous layer
with a 1 x 1 linear convolution.

3.2.2 FPN Resnet-50 SSD

The FPN Resnet-50 SSD (FPN50) has the follow-
ing characteristics: presents feature pyramid network
(FPN) as a generic extractor of features; has 50 resid-
ual layers; uses SSD as a multi-box detector.

The FPN is important by the fact that it aggregates
invariance to scale for the model. With respect to the
Resnet-50, its incorporation on the chosen model was
relevant since residual layers allow for more deep net-
works while preventing over-fitting. This is possible
because residual layers only apply convolutions when
strictly necessary. If not necessary, the layer will re-
produce the input on the output.

The FPN Resnet-50, proposed by (Lin et al., 2017)
was modified by replacing the Faster-RCNN by the
SSD. The FPN50 was chosen due to its capability of
detecting more complex features.
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3.2.3 Inception Resnet V2 Faster R-CNN with
Atrous Convolution

Choosing the Inception Resnet v2 Faster R-CNN with
Atrous Convolution (IRV2) was due to the fact that it
presents, currently, one of the best results in object de-
tection according to (Huang et al., 2017). This topol-
ogy has a slower inference time than the previously
cited ones, since it is large, but also comes with larger
learning capabilities.

The IRV2 is a combination of the Inception Resnet
v2, proposed by (Szegedy et al., 2017), with the
Atrous Convolution, proposed by (Chen et al., 2017).
A model trained with this topology is not able to
compete with MV2 and FPN50, since the region pro-
posal architecture from it is the Faster-RCNN. Faster-
RCNN presents a bigger inference time when com-
pared to SSD, as showed by (Huang et al., 2017).

Thus, the main objective of using this topology
was to evaluate the performance of a model well
known by its high generalization capabilities and high
quality of bounding box prediction and classification.
This would bring a best case scenario in order to com-
pare previous models with it.

3.3 Training and Tests

For training and testing, it was defined which tech-
niques of database augmentation would be used, tak-
ing into consideration the low number of images per
class. Variables such as split ratio between training
and test sets, as well as evaluation metrics for the
model performance are chosen here. Training time
was also recorded for each model.

3.3.1 Data Augmentation

Chosen techniques for the augmentation were: ver-
tical and horizontal mirroring; 90 degrees rotation;
bright adjustment; resizing; and cropping.

Mirroring and rotations were made aiming at gen-
eralizing shapes of objects that were present on the
training base. However, using this kind of manipula-
tion excessively may produce the inverse effect, mak-
ing the model filters account more for color and tex-
ture.

Resizing and cropping had as objective the ag-
gregation invariance to scale for the models that do
not present this characteristic inherently, such as the
MV2.

With respect to the bright manipulation on the im-
age, this technique was aimed at making the model
less sensible to color, accounting more for contour
patterns and shapes.

3.3.2 Hardware and Software Infrastructure

A video-graphics card RTX 2080 Ti, with 11 GB of
RAM GDDR6, was used along with Object Detection
API from TensorFlow V1. The choice of a GPU of
family 20XX from Nvidia for training the models was
due to the presence of special cores in it, called Ten-
sorcores, which decrease training time significantly.

Tensorflow API for object detection provides all
topologies that were discussed previously, among oth-
ers. It allows for rapid prototyping, including easy ad-
justments in the parameters. This API also provides
pre-trained models with well known data-sets, allow-
ing for techniques such as transfer learning. It is ex-
tremely useful for limited custom databases.

In the adopted training process, pre-trained mod-
els were used for the three topologies on the
MSCOCO dataset, developed by (Lin et al., 2014).
We used 75% and 25% of the database for training
and testing ratio, respectively. Tests were carried out
over an Android smartphone, with a Snapdragon 845
processor.

3.3.3 Performance Metrics

In order to evaluate models at training and testing
time, the following metrics were defined: loss in
training set; loss in test set; Average Recall (AR) and
mean Average Precision (mAP) in test set; AR Across
Scales and mAP Across Scales in test set; frame rate
per second (FPS) on a mobile device and on RTX
2080 Ti.

Analysis of loss, both on training and test set, fo-
cused on evaluating if the models were generalizing
well or if they presented some over-fitting characteris-
tics. The AR metric calculation has three main config-
urations: (1) using one detection per image (AR@1);
(2) using ten detections per image (AR@10); and (3)
using 100 detections per image (AR@100). AR re-
sults using more detections tend to be better.

Similar to the AR, mAP calculations have three
main variants: (1) the mean of the Average Preci-
sion (AP) over the limits of Intersection over Union
(IoU), with values between 50% and 95% and step
of 5%; (2) the mean AP with IoU limits set to 50%
(mAP@0.5Io0U); (3) the mean AP with IoU limits set
to 75% (mAP@0.75IoU).

With respect to Across Scales metrics, they are
calculated for three sets of objects: (1) small size
objects, with area less than 322 pixels; (2) medium
size objects, with area values between 322 e 967 pix-
els; and (3) large size objects, with dimensions larger
than 962 pixels. Thus, the AR Across Scales is cal-
culated for images with 100 detections for small ob-
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jects (AR@100 small), medium objects (AR@ 100
medium) and large objects (AR@100 large).

By the other hand, mAP Across Scales is calcu-
lated using mAP’s first configuration for small im-
ages (MAP small), medium images (mAP medium)
and large images (mAP large). The analysis over the
FPS indicator, which consists of the number of im-
ages per second that the model able to analyze, is also
used for speed and efficiency analyses.

4 RESULTS AND DISCUSSION

As the training and testing activities were being ex-
ecuted, results were collected and evaluated, assess-
ing whether it was necessary to modify any configu-
rations. Thus, in this section, obtained results from
each methodology section will be presented.

4.1 Database

Collected database resulted in 137 photos of emer-
gency lamps, 147 photos of rusty objects and 256
photos of fire extinguishers. Even though we col-
lected photos from emergency lamps, models were
trained without this class of objects. This was due to
the fact that some of the objects from lamp emergency
class did not appear very clearly, which was the same
problem for the status led class. Trained models were
not able to find the power socket from the emergency
lamps either, explained by the lack of sufficient im-
ages for the proper generalization. Therefore, we de-
cided to train the models only for the classes strictly
related to fire extinguishers. Some examples from the
tailored dataset can be seen at Figure 2.

4.2 Models Performance

Performance for each of the trained models will be
analyzed in this section considering the metrics dis-
cussed in Section 3.

4.2.1 Losses

Losses for each model for both training and testing
sets can be seen on Figure 3. Results show that losses
for FPN50 and IRV2 are significantly smaller than
MV2.

4.2.2 Average Recall

Here it is shown the AR results using all discussed
configurations : AR@1, AR@10 e AR@100. They
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Figure 2: Database containing fire extinguishers (top cou-
ple of rows), vertical (red signs pointing out where extin-
guishers are) and horizontal (yellow stripes) signalization
and emergency lamps (bottom two rows).
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Figure 3: Training and evaluation losses for the three mod-
els.

can be seen at Figure 4. It shows that MV2 had sim-
ilar results from IRV2, although it took more time to
reach its value. With respect to FPN50, it showed bet-
ter results considering the initial steps of training, but
had worse performance when compared to other two
models at the end of training. IRV2 kept better than
other models during all the training, no matter what
configurations was used.

4.2.3 Mean Average Precision

Regarding the mAP metric, shown in Figure 5, better
results were obtained from mAP@0.5IoU configura-
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Figure 4: Average Recall for the three models.

tion. In a broader perspective, MV2 model was able
to approach the IRV2 for all configurations consid-
ering the last steps of training. FPNS50, once again,
presented the best results at the training start, but did
not manage to maintain its lead until the end. During
all the training, IRV2 kept itself as the best model no
matter what configuration.
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Figure 5: Mean Average Precision calculated for the three
models.

4.2.4 Average Recall across Scales

Results for the metric AR Across Scales are showed
in Figure 6. All models presented better results for
larger objects, when compared to medium and small

objects. MV2 presented a better result than IRV?2 for
large objects. It is also shown that IRV2 presented
significantly better results for small objects. FPN50
results stabilizes quicker for all configurations, and
shows slightly better results for small objects.
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Figure 6: Average Recall Across Scales for the three mod-
els.

4.2.5 Mean Average Precision across Scales

Results showed, as illustrated in Figure 7, that MV2
did not present good results for small objects. How-
ever, for medium and large objects, results are im-
proved for this topology, being closer to IRV2 per-
formance. FPN50 model presented to be better than
MV2, for small objects, but did not reach results as
good for medium and large objects.

4.2.6 Frames per Second Ratio

As listed in Table 1, it is shown that MV?2 reaches
much better results than the other two models with
respect to Frames per Second (FPS). MV2 is the only
one that is able to run in a mobile device appropri-
ately. FPNS50 is the second fastest, which presents a
good performance when running in a RTX 2080 Ti
graphics card. IRV2, at last, is not able to achieve a
good performance, running on average of 3 FPS.

Table 1: FPS rate for the three models in RTX 2080 Ti and
mobile device.

Models | RTX 2080 Ti | Mobile Device
MV2 42 5
FPN50 12 -
IRV2 3 -

81



DeLTA 2020 - 1st International Conference on Deep Learning Theory and Applications

1.00 mMAP (small)
— MV2

0.75 FPN50
0.50 —— IRV2
0.25 MWWA«/\'\[VWMW
0.00

0 10000 20000 30000 40000 50000
1.00 mMAP (medium)

— MV2
075 FPN5S0

—— IRV2 My VWA N\ VA e
0.50 R e e

/\JV‘ ,_,-\//\M

0.25 M
0.00

0 10000 20000 30000 40000 50000
1.00 mAP (large)
0.75 WW‘W
0.50 /f/ — MV2
025 FPN50

— IRV2

0.00

0 10000 20000 30000 40000 50000
steps

Figure 7: Mean Average Precision Across Scales for the
three models.

4.2.7 Comments about Models Performance

MV2 showed to be very versatile, achieving good
results to medium and large objects. Along with
FPNS50, they were faster than IRV2. Despite achiev-
ing good results, MV2 and FPN50 did not perform
as good when the input image contained objects in a
more complex environment. Analyzing images pre-
sented at the Figures 8a, 9a and 10a, it’s possible
to notice that IRV2 managed to capture more com-
plex patterns from the image and carry out the detec-
tion successfully even in not so well behaved images.
Nonetheless, cases where images are ofter well be-
haved, models are able to reach similar results, as it is
shown in the Figures 8b, 9b and 10b.

S CONCLUSION AND FUTURE
WORKS

Three models capable of detecting faults in fire extin-
guishers were detected. Used methodology may be
applied to other objects within industry environment
and developed models are adequate to different kinds
of auditing. A specific database was built using dif-
ferent sources and data augmentation. It was used to
train and test the models.

Results have shown that the MV2 allows for the
execution of an auditing in real time, by using the
model on a mobile device, or even on a computer if
better efficiency is need. FPN50 is an in-between for
the two other models, since it is able to detect small,
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medium and big defects in the fire extinguishers and
allows for execution in real time, but cannot be ex-
ecuted in a mobile device. IRV2 provides the capa-
bility of detecting more complex patterns, being able
to better detect the flaws in the extinguishers and sig-
nificantly reducing the number of false-positives and
false-negatives. On the other hand, IRV2 requires
more robust computing power in order to be carried
out. Using networks pre-trained on large datasets al-
lowed for the models to converge easier when trained
on smaller datasets. This kind of approach is suitable
for deep learning applications.

As future works, more images will be fed into the
dataset and more classes will be created. With respect
to emergency lamps, more images will be collected so
that their audit can be executed along with extinguish-
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Figure 8: Performances of FPN50’s topology when submit-
ted to unfavorable and normal scenarios.
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ers and other objects that will be incorporated on the
database.

We also intend to address other industry problems,
such as the verification of the load from the extin-
guisher, and if its labeling panel is preserved and read-
able. More up-to-date topologies will also be tested,
aiming to obtain better results for mobile devices.
Further results will be reported eventually.
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