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Abstract: The content-based publish/subscribe paradigm enables a loosely-coupled and expressive form of communi-
cation. However, privacy preservation remains a challenge for distributed event-based middleware especially
since encrypted matching incurs significant computing overhead. This paper adapts an existing attribute-based
encryption scheme and combines it with data splitting, a non-cryptographic method called for alleviating the
cost of encrypted matching. Data splitting enables to form groups of attributes that are sent apart over se-
veral independent broker networks so that it prevents the identification of an end-user; and, only identifying
attributes are encrypted to prevent data leakage. The goal is to achieve an acceptable privacy level at an af-
fordable computing price by encrypting only the necessary attributes, whose selection is determined through
a Privacy Impact Assessment.

1 INTRODUCTION

Publish/subscribe (pub/sub) or Distributed Event-
Based System (DEBS) is a communication paradigm
that allows flexible and dynamic communication be-
tween a large number of entities, like in the Internet of
Things (IoT). Publish/subscribe communicating par-
ties are loosely-coupled—i.e. time, space, and syn-
chronisation decoupling of subscribers and publish-
ers (Eugster et al., 2003). Subscribers express their
interest in a set of publications through constraints
specified in the subscription. In broker-based DEBS
middleware, the publications are routed to the inter-
ested consumers by a third-party entity composed of
brokers.

The most popular models to determine which pub-
lications consumers are interested in are topic-based
and content-based filtering (Eugster et al., 2003). In
topic-based filtering, e.g. in AMQP (AMQP Consor-
tium, 2008) and in MQTT (OASIS, 2019), filtering
is achieved by complementing publication data with
metadata tags named topics, and subscription filters
are routing keys expressed as regular expressions on
topics. Topics are shared by consumers and publish-
ers, and the content of the publication is left opaque
since it is not used for routing. In content-based filter-
ing, filters are conjunctions of elementary filters that

parse parts of the content data, including attribute val-
ues. Consequently, content-based filtering is expen-
sive, but more expressive. While content-based filter-
ing prevents the use of common encryption schemes
requiring to disclose the whole publication content for
routing, it is much more suitable for IoT because of its
expressiveness.

Since the European General Data Protection Reg-
ulation (GDPR) became enforceable in 2018, privacy
has been turning into a burning issue. Besides, the
European regulation is the most widely adopted stan-
dard worldwide (Sullivan, 2019). When privacy is at
risk, companies have to conduct a Privacy Impact As-
sessment (PIA). The PIA is as “a methodology for
assessing the impacts on privacy of a project, pol-
icy, programme, service, product or other initiative
and, in consultation with stakeholders, to identify so-
lutions” (Wright, 2012). Among the main purposes
of PIA is the identification of privacy controls to mit-
igate unacceptable risks. One of the main security
concerns in pub/sub systems is confidentiality. This
is particularly true under the semi-trusted broker as-
sumption where brokers are considered honest-but-
curious, which means that they will route the pub-
lications to the interested consumers, but can make
use of the data for their own interest (Onica, E. et al.,
2016). More precisely, “confidentiality is the property
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that an information is not made available or revealed
to unauthorised persons, entities or processes” (ISO,
1989). In the context of pub/sub middleware, confi-
dentiality concerns encompass (1) part or all of the
constraints of the subscriptions, (2) part or all the in-
formation in the publication that is used for routing
against subscriptions, and (3) the payload of the pub-
lications (Onica, E. et al., 2016).

Through encryption, a full degree of confiden-
tiality can be achieved but with a significant over-
head. The will of the user as well as the desired de-
gree of confidentiality must be considered. Depend-
ing on the nature of the data sent by the users of a
pub/sub system, parts of the publications might be
sent in clear text under some assumptions. Particu-
larly, the main concern of the users may be to pre-
vent the brokers from identifying them. Following
the work of (Domingo-Ferrer, J. et al., 2019), we dis-
tinguish three categories of attributes: (1) identify-
ing attributes that individually disclose the identity of
a subject, (2) quasi-identifying attributes that do not
identify subjects when considered separately, but their
combination may, and (3) confidential attributes that
convey sensitive features of an individual (income, re-
ligion, health condition, etc.) and may be sent in clear
text as long as they can not be associated with an iden-
tity. Any attribute that does not fit any of these cate-
gories is considered as non-confidential and be out-
sourced as it is.

The proposition of this paper is to use a masking
method, namely data splitting, with a cryptographic
scheme to balance performance and security. This
allows to avoid the use of encrypted matching when
possible, regarding security requirements. In order to
assess the feasibility of our proposal, we implemented
our solution before proceeding to performance tests.

The paper is structured as follows. In Sec-
tion 2, we describe then illustrate the security con-
cerns through a motivating scenario. Afterwards, we
discuss related works in Section 3. In Section 4, we
detail our contribution. In Sections 5 and 6, we anal-
yse the security of our system and provide the results
of some performance tests. Finally, we conclude the
paper in Section 7.

2 MOTIVATION

In Section 2.1, we illustrate the security needs through
a security-oriented lifeguard scenario. Then, in Sec-
tion 2.2, we highlight the security concerns caused by
data splitting.

2.1 Scenario

In our motivating scenario, we consider bathers on
beaches and lifeguards whose mission is to protect
bathers from drowning. All bathers and lifeguards
are equipped with RFID wristbands that include ge-
olocation sensors. The lifeguards need to collect the
geolocation information of bathers and personal data
to fulfill their role. To comply with the GDPR regu-
lation, the collected data type must be determined in
advance and exposed clearly to the bathers to get their
consent.

Moreover, different physical or logical overlays
of brokers are present around the beach. They col-
lect information from the bathers and relay it to the
lifeguards. To avoid the automatic use of encryption
that would result in performance issues, the data are
rather split into non-sensitive chunks sent to different
overlays. For instance, let us consider the case where
the bather has to publish the following attributes:
{name, location,age,gender,occupation}. The name
is an identifying attribute. As a consequence, it has
to be encrypted to prevent an immediate identifica-
tion. The location, without being combined with any
identifying information, is not considered as sensi-
tive information. While gender, age, and occupation
are not confidential or identifying attributes when left
alone, they might identify someone when grouped to-
gether. They are quasi-identifiers and need specific
processing. Therefore, we split them into two groups:
{age,gender},{occupation}. Note that many com-
binations are possible. For example, we could split
them as {age},{gender}, and {occupation}, which is
the most basic way to split the data, but also the one
that needs the highest number of distinct overlays of
brokers. So, these two groups of quasi-identifiers are
sent to two different overlays of brokers in order to
avoid re-identification attacks. An additional overlay
of brokers may be used to publish the encrypted at-
tributes and the non-confidential ones together, which
is not troublesome anymore.

This scenario stresses the need to process the data
properly, firstly to avoid sending groups of attributes
that would allow re-identification, but to limit the
number of overlays as well. However, the second is-
sue is more a matter of performance rather than secu-
rity and we do not address it in this paper.

2.2 Security Threats and Requirements

We consider the semi-trusted model where the confi-
dentiality of subscriptions, publications, and payloads
(see Section 1) is at risk, as well as their privacy, if
any of these three items contains identifying or confi-
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dential attributes. Under that model, our threat model
includes the two following attackers:
(I). The Standalone Broker: One broker belonging to
one overlay network gets knowledge only from the
flows it has directly access to;
(II). The Colluding Brokers: k − 1 brokers belon-
ging to different overlays (see Section 2.1) collude
to gather all their knowledge, i.e. quasi-identifiers
that were originally split apart thanks to the data split-
ting method. Note that k corresponds to the number
of overlays used by a publisher to send one of their
quasi-identifiying attributes as part of their publica-
tion.

The objective of both attackers is to:
1. Reidentify the publisher or the subscriber thanks to
the identity disclosure attack well known in the statis-
tical disclosure control domain. (Domingo-Ferrer, J.
et al., 2015);
2. Get confidential information about the publisher
or the subscriber thanks to the following possible at-
tribute disclosure attacks:
• Inference Attack: “This category covers attacks
where the attacker has used existing knowledge to aid
the attack” (Henriksen-Bulmer, J. et al., 2016), e.g.
deducing the working place of a person by knowing
their movements with recurrent GPS positioning;
• Homogeneity Attack: “Re-identification by homo-
geneity consists of showing a subject’s belonging to
a homogeneous group in order to deduce all, or part
of his/her identity” (Aı̈meur, E. et al., 2012). Let us
consider a correlation attack in the lifeguard scenario.
A malicious user may use the auxiliary Table 1(a) to
learn from the pseudonymised table 1(b) that Alice is
either a student or a lifeguard, as only two people in
the lifeguard pseudonymised table are aged 18.

Table 1: Lifeguards table.

Names Age Occupation
Alice 18 Student

(a) Auxiliary table
Names Age Occupation
Ae25ade 18 Student
Jfhs1s3 18 Lifeguard
Pdkfd23 24 Policeman
(b) Pseudonymised table used by lifeguards.

3 RELATED WORK

Current systems for privacy-preserving pub/sub are
mostly based on encrypted matching for preserv-
ing the subscription and publication privacy. (Ion,
M. et al., 2012) designed an encrypted matching

scheme based upon attribute-based encryption (ABE)
and multi-user searchable data encryption (SDE). The
scheme applies to any numerical operator as well as
string equalities. Attribute-based encryption is used
to enforce the confidentiality of publication payload.
Subscription constraints are encoded into an access
tree. The non-leaf nodes of the tree are threshold
gates that specify the number of sub-trees to be satis-
fied. In order to handle inequality constraints, the tree
uses “bag of bits” representation (Bethencourt, J. et
al., 2007). The encrypted matching scheme is based
on a premapped equality comparison. It means that
publication attributes and subscription constraints are
premapped to a set of values. This mapping enables
a matching strictly based on equality comparisons.
The preservation of the publication payload privacy
is achieved by extending the ElGamal scheme (El
Gamal, 1985) to a proxy re-encryption context, the
proxy being the access broker of the publisher.

(Duan, L. et al., 2019) proposed a comprehen-
sive access control framework (CACN) by providing:
(1) a privacy-preserving bi-directional policy match-
ing scheme, and (2) a fully homomorphic encryption
scheme for encrypting the publication payload. The
bi-directional policy matching allows subscribers and
publishers to control the publication data to balance
security requirements and capabilities of the service.
Service privacy is provided through attribute encod-
ing and anonymous-set-based principle. Furthermore,
Bloom filters are used as proposed by (Barazzutti, R.
et al., 2017) and sent as part of access credentials
with the publications. Bloom filters enable to pre-
filter publications—i.e. to filter out some publications
before using the expensive encrypted matching func-
tion.

To avoid the significant overhead of the encrypted
matching function, there is another direction related
to the statistical disclosure control domain, not yet ap-
plied to pub/sub systems, but cited as a solution in a
survey about the privacy-aware outsourcing technolo-
gies in Cloud computing (Domingo-Ferrer, J. et al.,
2019). The authors review masking methods based
on data splitting and anonymization. These different
methods are compared in terms of overhead, accuracy
preservation, and impact on data management. Ho-
momorphic encryption includes an overhead that is
linear with the data size; it involves expensive primi-
tives; and it provides high-level privacy of data. Con-
versely, in data splitting, the overhead is constant for
all operations that are transparent for the Cloud ser-
vice providers, but the data privacy might be broken
due to collusions or compromised metadata during the
process.

To support the confidentiality of the publication
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payload, the Attribute-Based Encryption designed for
encrypted data sharing can be applied. The Key-
Policy Attribute-Based Encryption (KP-ABE) crypto
system, designed in (Goyal, V. et al., 2006) to enforce
fine-grained access control, relies on labelling cipher-
texts with sets of attributes while private keys are as-
sociated with access structures to determine which
cipher-texts a user might decrypt. Ciphertext-Policy
ABE (CP-ABE) is another form of attribute-based
encryption system in which the private keys are la-
belled with attributes, while the cipher-text is embed-
ded with access policy (Bethencourt, J. et al., 2007).
In CP-ABE, the publisher can decide which architec-
tural entity is allowed to decrypt, while in KP-ABE,
this role belongs to the authority that generated the
keys.

Since the encryption scheme proposed by (Ion,
M. et al., 2012) fits our data model and the content-
based pub/sub requirements, our work extends the
data splitting principles to the pub/sub paradigm, and
combines data splitting to (Ion, M. et al., 2012) en-
cryption scheme in order to enforce privacy and con-
fidentiality in pub/sub systems.

4 OUR CONTRIBUTION

In Section 4.1, we provide an overview of our pro-
posal. We introduce the architectural entities in Sec-
tion 4.2, and then the data model of the publica-
tions and the filter model of the subscriptions in Sec-
tion 4.3. Next, we explain how we perform data split-
ting over different overlays of brokers in Section 4.4.
Finally, in Sections 4.5, 4.6, and 4.7, we present the
algorithms of the cryptographic system, respectively
for handling subscriptions and publications.

4.1 Overview

Our main contribution is the implementation of a sys-
tem using both data splitting and cryptographic tech-
niques to achieve the following properties:
• Publication Payload Confidentiality: our solution
fully relies on (Ion, M. et al., 2012), which is based
on KP-ABE encryption;
• Publication Privacy: our solution is based on both
the encrypted matching solution of (Ion, M. et al.,
2012) and data splitting principles, according to how
much confidential are the attributes (see Section 2.1).
That is, for confidential and identifying attributes,
an encrypted matching is performed by the brokers,
and for quasi-identifying attributes, data splitting is
performed prior to sending the quasi-identifying at-
tributes onto several separated overlays of brokers;

Figure 1: Architectural entities of our DEBS system.

• Subscription Filter Privacy: thanks to the proxies
of both producer and consumer, the consumer and the
producer can benefit from the same level of privacy.

4.2 Architectural Entities

Figure 1 depicts the architectural entities of our DEBS
system:
• Producer P: the entity sending a publication p to the
DEBS system;
• Consumer C: the entity willing to receive publica-
tions satisfying subscription filter F ;
• Trusted Authority (TA): the entity that is responsible
for generating and distributing the keys to the differ-
ent parties of the system;
• Access Broker BP of Producer P: the broker which
P is connected to, and that first receives the publica-
tions from P;
•Access Broker BC of Consumer C: the broker which
C is connected to, and that first receives the filter from
C;
• Brokers B: Brokers are organised into several over-
lays (as displayed in Figure 2) in order to split the data
into the required amount and preserve privacy;
• PxP and PxC are respectively the producer-side
proxy and the consumer-side proxy. PxP is respon-
sible for splitting the data according to the PIA. Pub-
lication messages are self-describing so that PxC can
reassemble the original publication from the different
parts.

4.3 Publication Data Model and
Subscription Filter Model

We base our model on content-based DEBS with
structured records:
• A publication p is a non-empty set of attributes
{a1, ...,an};
• An attribute ai is a (namei,vali) pair;
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• Attribute names are unique: i 6= j ⇒ namei 6=
name j.

The corresponding filter model is :
• A filter F is a conjunction of attribute filters:
F = A1∧ ...∧Ak. A publication p matches filter F if
and only if it satisfies all the attributes filters of F ;
• An attribute filter is a triple Ai =
(namei,opi,valueOfRef i), with namei being the
attribute name, opi being the test operator, and,
valueOfRef i being the reference value for the test.

Attributes can be optional in the publication, and
new attributes added without affecting existing filters.

4.4 Data Splitting over Different
Overlays of Brokers

Our DEBS system combines data splitting with cryp-
tography to achieve required security requirements.
To the best of our knowledge, after masking methods
were suggested by (Domingo-Ferrer, J. et al., 2019),
no solutions using both methods at the same time
were developed for the pub/sub paradigm. Our so-
lution discriminates the attributes in the publication
and split the attributes according to their type. The
identifying attributes are systematically encrypted,
while quasi-identifiers are sent apart to avoid re-
identification.

The purpose of our solution is to provide an alter-
native to fully-encrypted publications and subscrip-
tions when confidentiality requirements are not ut-
most. To illustrate our approach, let us consider a
publication p. The PIA has sorted the publication as
follows: p = idAttr + qiAttr + rmAttr +m, where idAttr
is the set of identifying attributes, qiAttr is the set of
quasi-identifiers, rmAttr the remaining attributes, and
m may be unstructured content to be delivered to sub-
scribers. Afterwards, the proxy has to split the quasi-
identifiers into subgroups. Each subgroup has a lim-
ited number of quasi-identifiers that together are not
able to identify a user. Consequently, we can fur-
ther detail the composition of our publication: p =
idAttr + {qiAttr j

} j∈J + rmAttr, where qiAttr j
is a sub-

group of quasi-identifiers attributes and J = {1, ...,N}
is the set of subgroups of cardinality N.

Once the splitting is performed at proxy PxP, the
outcome is given to publisher P, which encrypts the
identifiers and gives them back to PxP. Then, PxP dis-
tributes the publication to the N overlays of brokers.
Each overlay of brokers is responsible for one sub-
group of quasi-identifiers; the encrypted attributes,
and the remaining attributes can be distributed on any
of these overlays. The overlays of brokers route the
different parts of the publication. Proxy PxC of con-
sumer C reassembles the different parts to reconstruct

Figure 2: Data splitting workflow for privacy-preserving
pub/sub.

the publication, which is provided to consumer C.

4.5 Algorithms of the Cryptographic
System

The cryptographic system of our DEBS system puts
into action the following algorithms:
• Init(1κ): at the beginning, the Trusted Authority ini-
tiates the crypto system with PublicParameters and a
master key mk by running Init(1κ), where κ is a secu-
rity parameter;
• KeyGen(mk,E): the Trusted Authority uses its mas-
ter key mk to compute a key for entity E, e.g. the
user-side key kuP for publisher P or kuC for consumer
C, or the server-side keys—i.e broker-side keys—for
brokers BP or BC;
• RequestDecryptionKey(C,γF): the Trusted Autho-
rity returns the decryption key DF to a requesting con-
sumer C owning the set of attributes γF ;
• Trapdoors(a): publisher P computes a trapdoor for
an attribute as in multi-user SDE (Dong, C. et al.,
2008). By extension, Trapdoors(γa) computes a trap-
door for each attribute in the set of attributes γa and
outputs T (γa);
• Encr-Trapdrs(ksP,T (γa)): broker BP encrypts a
trapdoor T (γa) using its key ksP and outputs ct ;
• Encr(kuC,F,γF): consumer C encrypts a filter F us-
ing the user-side key kuC and the set of attributes ap-
pearing in F , γF , to output cF ;
• Re-Enc-Filt(ksC,cF): Broker BC re-encrypts an en-
crypted filter cF using the server-side key ksC and out-
puts c f ;
• Match(ct ,c f ): a broker checks whether each en-
crypted attribute of c f matches any of the attributes
encrypted into the trapdoors ct ;
• KP-ABE-Encr(p,γp): publisher P encrypts a publi-
cation p using KP-ABE under the set of attributes γp,
and outputs cn;
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• Pre-Decr(ksC,cn): broker BC pre-decrypts the con-
tent cn using its server-side key ksC, for next the con-
sumer C to be able to decrypt the publication. BC out-
puts c′n’;
• KP-ABE-Decr(DF ,c′n): consumer C finalises the
decryption of the publication using its decryption key
DF over the pre-decrypted content c′n sent by its ac-
cess broker BC.

4.6 Subscription Handling

We now describe subscription handling in this sec-
tion and publication handling in the next section. Fi-
gure 3 displays the corresponding interaction dia-
gram, where message numbers of the figure corre-
spond to item numbers in the sections.

A consumer C that subscribes to filter
F = (A1∧ ...) performs the following actions:
1. C builds the set of attribute names
γF = {nameA1 , ...};
2. C sends a request to the Trusted Authority to get
its user-side key kuC;
3. C sends a request with γF to the
Trusted Authority for the decryption key DF
(RequestDecryptionKey(C,γF));
4. C encrypts the filter F by using algorithm
Encr(kuC,F,γF) = {Encr(kuC,(nameA1 ,opA1

,
valueOfRef A1

),{nameA1}), ...};
5. C sends to its access broker BC a sub call with
the content of Encr(kuC,F,γF), which we note
cF = {cFA1

, ...} in the following.
When an access broker BC receives the subscrip-

tion from C, BC performs the following actions:
6. BC sends a request with the identity of C to the
Trusted Authority to get C’s server-side key ksC;
7. BC re-encrypts the encrypted subscription fil-
ter by executing algorithm Re-Enc-Filt(ksC,cF) =
{Re-Enc-Filt(ksC,cFA1

), ...};
8. BC broadcasts the encrypted filter to all its neigh-
bouring brokers, which forward it to all their neigh-
bouring brokers, etc., so that the encrypted filter is
installed on all the brokers of the overlay.

4.7 Publication Handling

A publication p = {a1, ...} is published by the pro-
ducer P by performing the following actions:
9. P builds the set of attribute names γp =
{namea1 , ...};
10. P sends a request with its identity to the Trusted
Authority to get its user-side key kuP;
11. P sends a request with γp to the Trusted Autho-
rity to get the public parameters to compute the La-
grange coefficients as in (Bethencourt, J. et al., 2007)

L(γp) = {L(namea1), ...};
12. P encrypts the publication by executing algorithm
KP-ABE-Encr(p,γp);
13. P builds the set of trapdoors Trapdrs(γp) =
T (γp) = {T (namea1), ...};
14. P sends to its access broker BP a pub call with the
content KP-ABE-Encr(p,γp)+L(γp)+T (γp).

When an access broker BP receives the publica-
tion from P, BP performs the following actions:
15. BP sends a request with the identity of P to the
Trusted Authority to get P’s server-side key ksP;
16. BP encrypts the trapdoors by executing algo-
rithm Encr-Trapdrs(ksP,T (γp)), which outputs the
set {Encr-Trapdrs(ksP,T (name1)), ...};
17. BP performs the encryption matching as follows:
∀c f ∈ {Re-Enc-Filt(ksP,cFA1

), ...},
∀ct ∈ {Encr-Trapdrs(ksP,T (name1)), ...},
Match(ct ,c f );
18. When the publication matches a filter, that
is the previous formula is satisfied, Bp forwards
the publication to the brokers along the paths to
the access brokers of the corresponding consumer,
the content being KP-ABE-Encr(p,γp) + L(γp) +
Encr-Trapdrs(ksP,T (γp)).

When an access broker BC of consumer C receives
a publication, BC performs the following actions:
19. BC predecrypts the publication by executing
Pre-Decr(ksC,KP-ABE-Encr(p,γp)).
20. BC notifies consumer C with the content c′n that is
equal to Pre-Decr(ksC,KP-ABE-Encr(p,γp))
+L(γp)
+Encr-Trapdrs(ksP,T (γp)).

When a consumer C receives a publication, C per-
forms the following actions:
21. C decrypts the publication by executing algorithm
KP-ABE-Decr(DF ,c′n), which outputs the publication
p = {a1, ...}.

5 SECURITY ANALYSIS

Since our encrypted matching solution is based upon
the scheme of (Ion, M. et al., 2012), our security
analysis focuses on how data splitting might alter this
solution. Note that the encrypted matching scheme
from (Ion, M. et al., 2012) supports both publication
and subscription confidentiality, but also payload con-
fidentiality. Consequently, when the security require-
ments require strong confidentiality, our model can
provide it by fully relying on this scheme. Brokers
are then able to match the filters against the publica-
tions and to deliver the publications to the interested
consumers with no ability to learn the content of the
publication.
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CP

TA

6. ksC = getServerSideKey(C)

15. ksP = getServerSideKey(P )

7. Re-Encrypt-Filter(ksC , cF ) = {Re-Encrypt-Filter(ksC , cFA1
), ...}

19. c′n = Pre-Decrypt(ksC ,KP -ABE -Encrypt(p, γp)) + L(γp) + Encrypt-Trapdoors(kuP , T (γp))

16. Encrypt-Trapdoors(ksP , T (γp))

17. ∀cf ∈ {Re-Encrypt-Filter(ksP , cFA1
), ...},

∀ct ∈ {Encrypt-Trapdoors(ksP , T (name1)), ...},
Match(ct, cf)

BP BC

10. kuP = getUserSideKey(P )

11. getPublicParams()

5. subscribe(cF )

20. notify(c′n)

1. γF = {nameA1, ...}
4. cFA1

= Encrypt(kuC , (...), {nameA1})
cF = {cFA1

, ...}
21. p = KP -ABE -Decrypt(DF , c

′
n)

8. forward(Re-Encrypt-Filter(ksC , cF ))

2. kuC = getUserSideKey(C)

3. DF = RequestDecryptionKey(C, γF )

14. publish(KP -ABE -Encrypt(p, γp) + L(γp) + T (γp))

18. forward(KP -ABE -Encrypt(, p, γp) + L(γp) + Encrypt-Trapdoors(ksP , T (γp)))

13. T (γp) = {T (namea1), ...}
12. KP -ABE -Encrypt(p, γp)

9. γp = {namea1 , ...}

Figure 3: Interaction diagram of subscription handling and publication handling with encryption.

Let us now consider the broker attackers (I) and (II)
described in Section 2.2, and the type of information
that goes through different overlays (see Section 4.4):
(a) Encrypted and Non Confidential Attributes—over

one Unique Overlay: This is a special case in
which attributes are sent over one specific over-
lay;

(b) Each Subgroup of Quasi-identifier Attributes—
over N Overlays: If a quasi-identifier is made of
N subgroups of attributes, then these sets of quasi-
attributes are sent over N overlays;

(c) Remaining Attributes—over one Unique Overlay:
This is a special case in which the remaining at-
tributes are sent over one specific overlay;

(d.) Encrypted, Non Confidential, and Remaining
Attributes—over N Overlays: The encrypted, non
confidential and remaining attributes are sent over
the N overlays corresponding each to a set of
quasi-identifiers.
According to the attacker type and the kind of at-

tributes (a), (b), or (c) that are made accessible to
brokers, the following security analysis can be con-
ducted.

Let us start with the attacker targeting the publica-
tion and thus the publisher’s privacy:
(I) with (a): The standalone broker has no further
knowledge than in (Ion, M. et al., 2012), and benefits
directly from the security level of this latter scheme
because our encrypted matching approach is based
upon this scheme. Note that this scheme is proved
to be indistinguishable under the chosen plain-text at-
tack (IND-CPA): in case the attacker has the possi-
bility to get the cipher-texts corresponding to their

message choices several times, they cannot success-
fully solve a game with a non-negligible probability,
where the game asks the attacker to decide among
two cleartexts, of which one corresponds to a given
cipher-text. Since our semi-trusted model considers
passive attackers, the IND-CPA assumption is appro-
priate;
(I) with (b): The standalone broker gets access to only
one subgroup of quasi-identifiers, which by definition
does not permit to reidentify the publisher;
(I) with (c): Because the remaining attributes bring
non-sensitive information, the attacker cannot deduce
any identifying or any relevant information about the
publisher;
(I) with (d): This case is a sub-case of the next con-
sidered attack—i.e.,(II) with (a), (b), (c), and (d)—in
which N = 1: the standalone broker gets access to one
overlay: encrypted, non confidential, one subgroup of
quasi-identifiers, and the remaining attributes;
(II) with (a), (b), (c) and (d): The colluding bro-
kers might aggregate several attributes including en-
crypted, non confidential, and remaining attributes,
with N− 1 subgroups of attributes belonging to one
quasi-identifier of the publisher. In that case, N− 1
subgroups of attributes do not leak any identifying in-
formation. Thus, the attackers are not able to reiden-
tify the publisher. However, they can leak informa-
tion about some attributes for an attacker to infer in-
formation about the publisher. Actually, the publisher
decides how to implement data splitting to meet the
privacy requirements.

Let us continue with the attacker targeting the
subscriber’s filter, and thus the subscriber’s privacy.
Since the attacker implements the matching opera-
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tion between the publication attributes and the filter
attributes, they can only deduce information of inter-
est in case of matching, as follows:
(I) with (a): The attackers are not able to infer infor-
mation of interest from encrypted attributes. How-
ever, they can infer some information from non-
confidential attributes. This is up to the publisher
to decide which attributes are considered as non-
confidential, i.e. not critical for the privacy of the
publisher and the subscriber;
(I) with (b): The attacker has no further information
than what is available through the subgroup of at-
tributes. That is why, it is of importance to split at-
tributes into adequate subgroups of quasi-identifiers,
so that the privacy of the subscriber is preserved in
case of matching;
(I) with (c): The same remark applies as for attacker
(I) with (a) with non-confidential attributes;
(II) with (a), (b), and (c): By combining several data,
the attacker can extend their knowledge, but without
being be able to infer information about the subscriber
or the publisher. As such, the carefulness with which
data splitting is performed over attributes is crucial
for preserving privacy of both the publisher and the
subscriber.

6 PERFORMANCE EVALUATION

In order to assess the performance of our solution, we
implemented the prototype PP-DEBS, for Privacy-
preserving DEBS1, with encryption matching and
data splitting in the Java language (version 8). The
prototype was deployed on a machine with an Intel
Xeon E5 v3 3.1GHz and 8GB of RAM. Our main
interest is to illustrate the potential benefit in perfor-
mance brought by the use of data splitting. To pro-
vide a complete set of results, we perform four dif-
ferent experiments on a simple scenario. The sce-
nario consists in publications that contain an increas-
ing number of attributes (from 1 to 20), by a single
publisher, and delivered to a single subscriber. We
only consider a single broker to perform the match-
ing operation on the three types of attributes: identi-
fiers, quasi-identifiers and non-confidential attributes.
Consequently, the time needed to route all the packets
to the corresponding overlays of brokers is not consi-
dered. The aforementioned tests target the following
phases: the initialisation performed by the Trusted
Authority at the beginning, the encryption of both at-
tributes and filters by the clients as well as the re-
encryption by the access brokers, and the matching

1https://fusionforge.int-evry.fr/scm/?group id=175

on encrypted and non-encrypted data handled by the
brokers.

First of all, we conduct initialisation tests with
the following key lengths in bits: 64, 128, 256, 512,
and 1024. Given the format of the encryption scheme,
it would be illusory to use the three first lengths, but
it remains relevant to measure their impact on the
initialisation phase to determine more precisely their
evolution following the key lengths. The tests reveal
an exponential increase of time as well as an impor-
tant rise of the standard deviation. We observe indeed
an average of 6.50ms for 64 bits length, with 8.8%
of standard deviation on 10.000 executions, while we
note an average of 23.20s for 1.024 bits length, with
72.6% of standard deviation on 200 executions. The
method used to generate the first prime numbers on
which the encryption scheme is based explains these
results. We use one iterative function provided by
the BigInteger class for generating a prime number
q. This function considers two tests, one for testing
a first try that q is prime with a probability of 1−2100

and one for testing that 2q+1 is prime.
Secondly, we execute performance tests for mea-

suring the matching time on encrypted and non-
encrypted attributes. We only consider attributes of
type Integer with an arbitrary value of 1000, and fil-
ters with the equal operator. We make the distinction
between split and unsplit data for non-encrypted at-
tributes. We test these operations with 1024 bits key
length, on 500 000 executions, and for a number of
attributes varying between 1 and 20. The graph in Fi-
gure 4 displays matching time for non-encrypted data,
with confidence level of 95%.

Figure 4: Matching time for non-encrypted data.

The first noticeable fact lies in the impossibility to dis-
cern the confidence intervals from the curves, which
demonstrates the stability of the matching process.
The first experiment reveals that matching on en-
crypted data follows a linear evolution, consuming
0.158ms per attribute on average. Regarding this re-
sult, it is obvious that matching on encrypted data se-
riously alters performances: we can observe two to
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three orders of magnitude comparing to matching on
non-encrypted data, for a high to a low number of at-
tributes. It is although not surprising to notice that the
curve for split non-encrypted data tends to be similar
to a square function, which can be explained by the
implementation. We chose to split the group of quasi-
identifiers in the maximum possible packets, e.g. with
one attribute per packet. To perform matching, we
consequently had to check for each attribute all the
filters corresponding to quasi-identifier attributes.

Encryption and re-encryption of attributes and fil-
ters are still the most time-consuming phases. We
conducted tests for these operations in the same con-
ditions as previously, for 1500 executions. The graphs
in Figure 5 displays encryption time on publisher’s
side, this time including also the re-encryption by the
access broker, with a confidence interval for 95% of
certainty.

Figure 5: Encryption on publisher’s side.

The experiments demonstrate that the encryption pro-
cess is very stable. The encryption on the subscriber’s
side follows a linear evolution, consuming 3ms per
attribute, while the encryption on the publisher’s side
consumes almost 600ms for 20 attributes. It is crucial
to remember that encryption at the subscriber’s side is
only performed once for a given filter, whilst it has to
be computed for each publication on the publisher’s
side.

As a summary, the experiments illustrate that data-
splitting is highly recommended in pub/sub systems,
given the amount of time spent by every broker for
each publication in matching over encrypted-data. In
addition, the encryption on the publisher’s side, fol-
lowed by a re-encryption by the access broker, repre-
sents a considerable overhead on performance, given
it has to be computed for each publication. Finally,
the encryption process done at the subscriber’s side is
followed by a re-encryption process which stands for
a more limited impact, yet not negligible on the global
performances of the system.

7 CONCLUSION

In this paper, we presented a pub/sub system combin-
ing data encryption and data splitting to reduce the
number of encrypted matching function calls. Our
scheme preserves the privacy of the users by prevent-
ing their identification, and lets the users choose the
degree of privacy they need. Privacy can then be en-
forced by relying on encrypted matching.

To demonstrate the relevance of our solution, we
conducted a security analysis based on an original at-
tacker model, introducing new threats with the data
splitting procedure, such as the collusion between
overlays for gathering quasi-identifiers. Besides, we
implemented our solution in the Java language and
evaluated the performance of this implementation.
This highlighted the cost of the encrypted matching
function and the efficiency of our solution in terms of
performance.
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