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Abstract: A real-time system must react to events from the controlled environment while executing specific tasks that
can be periodic, aperiodic or sporadic. These tasks can be subjected to a variety of temporal constraints, the
most important one is the deadline. Thus, a reaction occurring too late may be useless or even dangerous. In
this context, the main problem of this study is how to configure feasible real-time system having both peri-
odic, aperiodic and sporadic tasks. In this paper, we propose a new off-line approach that configures feasible
scheduling of a combination of software real-time tasks while serving aperiodic tasks without jeopardizing
schedulability of periodic and sporadic ones.

1 INTRODUCTION

In the last years, real-time systems have become the
focus of much study as this new technology is very
attached to our daily life and can be nearly found in
all domains such as transport, consumable electron-
ics, games, etc (Ben Meskina et al., 2018; Lakhdhar
et al., 2019; Ghribi et al., 2018). A real-time sys-
tem is a computer system where the correctness of
a computation depends on both the logical correct-
ness of the results, and the time at which the compu-
tation completes (Burns and Wellings, 2001; Lakhd-
har et al., 2018; Mavrommati et al., 2016). Such sys-
tem reacts to signals from its environment by exe-
cuting specific tasks that can be periodic, aperiodic
or sporadic. A periodic task is activated on a reg-
ular cycle and must adhere to its hard deadline. It
is characterized by its arrival time, worst-case execu-
tion time (WCET), period, relative deadline, and max-
imum deadline. A sporadic task can arrive to the sys-
tem at arbitrary points in time, but with defined min-
imum inter-arrival time between two consecutive in-
vocations. It is characterized by its worst-case execu-
tion time, minimum inter-arrival time, relative dead-
line, and maximum deadline. These attributes are
known before system execution. Additional informa-
tion available on-line, is its arrival time and its abso-

lute deadline. An aperiodic task is activated at ran-
dom time to cope with external interruptions, and it is
based upon soft deadline. Its arrival time is unknown
at design time. It is characterized by its worst-case
execution time, and relative deadline.

To provide design-time guarantees on timing con-
straints, different scheduling methodologies can be
used, such as Rate Monotonic (RM) scheduling algo-
rithm which was defined by Liu and Layland (Liu and
Layland, 1973) where the priority of tasks is inversely
proportional to their periods, and Earliest Deadline
First scheduling algorithm (EDF) which at each in-
stant in time chooses for execution the currently active
job with the smallest deadline (Baruah and Goossens,
2004). EDF is an optimal scheduling algorithm on
preemptive uniprocessors, in the following sense: if
a collection of independent jobs (each one charac-
terized by an arrival time, an execution requirement,
and a deadline) can be scheduled (by any algorithm)
such that all the jobs complete by their deadlines, then
the EDF will schedule this collection of jobs such
that all of them complete by their deadlines. On the
other hand, if a set of tasks is not schedulable under
EDF, then no other scheduling algorithm can feasibly
schedule this task set.

Enforcing timeliness constraints is necessary to
maintain correctness of a real-time system. In order to
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ensure a required real-time performance, the designer
should predict the behavior of a real-time system by
ensuring that all tasks meet their hard deadlines. Fur-
thermore, scheduling both periodic, sporadic and ape-
riodic tasks in real-time systems is much more dif-
ficult than scheduling a single type of tasks. Thus,
the development of real-time systems is not a trivial
task because a failure can be critical for the safety of
human beings (Wang et al., 2016). In this context,
the considered problem is how to calculate the effec-
tive deadlines (hard and soft) of the different mixed
tasks to guarantee that all tasks will always meet their
deadlines while improving response times for aperi-
odic tasks.

Several research works have been done in recent
years, focusing on real-time systems, such as those
reported in (von der Brüggen et al., 2016; Shanmuga-
sundaram et al., 2016; Gammoudi et al., 2015; Gam-
moudi et al., 2016; Gasmi et al., 2016; Wang et al.,
2015a). Some of them (Gammoudi et al., 2015; Gam-
moudi et al., 2016; Gasmi et al., 2016) work on real-
time schedulability without considering the deadlines
analysis. Some other (von der Brüggen et al., 2016;
Shanmugasundaram et al., 2016) seek to schedule
tasks to respect energy constraints and consider that
deadlines are given beforehand. Furthermore, these
researches does not consider mixed tasks set. More-
over, techniques to calculate tasks’ deadlines are sel-
dom presented. For this reason, the studies that ad-
dress this problem are few. The work reported in
(Balbastre et al., 2007) presents a method that min-
imizes deadlines of periodic tasks only. The research
in (Cervin et al., 2004) calculates new deadlines for
control tasks in order to guarantee close loop stabil-
ity of real-time control systems. On the other hand,
several related works, such as in (Wang et al., 2014;
Wang et al., 2015b) have chosen to manage the tasks
of a real-time system by modifying either their peri-
ods or worst-case execution times (WCET). This ori-
entation affects the performance of the system, since
increasing the periods degrades the quality of the of-
fered services, and decreasing the WCET increases
the energy consumption.

We propose in this paper a new approach that con-
figures feasible scheduling of software tasks of vari-
ous types (periodic, sporadic and aperiodic) and con-
straints (hard and soft) in the context of dynamic-
priority, preemptive, uniprocessor scheduling. The
calculation of deadlines is performed off-line on the
hyper-period which is the lowest common multiple
(LCM) of the periodic tasks’ periods (Ripoll and
Ballester-Ripoll, 2012). In this paper, we suppose
that the maximum number of occurrences of aperi-
odic tasks in a given interval of time is a random vari-

able with a Poisson distribution which is a discrete
probability distribution that expresses the probability
of a given number of events occurring in a fixed in-
terval of time. First, a periodic server is created to
serve aperiodic tasks. A periodic server is a service
task invoked periodically to execute aperiodic ones
with: (i) a period which is calculated in such a way
that the periodic execution of the server is repeated
as many times as the maximum number of aperiodic
tasks occurrences in the hyper-period, and (ii) a ca-
pacity which is the allowed computing time in each
period and it is calculated based on unused process-
ing time by a given set of periodic and sporadic tasks
in the hyper-period in a such way aperiodic task ex-
ecution should not jeopardize schedulability of peri-
odic and sporadic tasks. Then, this approach calcu-
lates aperiodic tasks soft deadlines while supposing
that an aperiodic task, with the smallest WCET, gets
the highest priority. Second, this approach computes
hard deadlines for periodic and sporadic tasks. In fact,
for each periodic or sporadic task, it calculates the
deadlines of its jobs that occur on the hyper-period
based on (i) the maximum cumulative execution time
requested by periodic and sporadic tasks that have to
be executed before the considered job on the hyper-
period, and (ii) the maximum cumulative execution
time requested by aperiodic tasks that may occur be-
fore this job. For each periodic or sporadic task, the
maximum among its calculated jobs deadlines will be
its relative deadline. Thus, at runtime, even if an ape-
riodic task occurs, the periodic and sporadic tasks will
certainly respect their deadlines and the response time
of aperiodic task is improved as the invocation of ape-
riodic task execution is considered when calculating
hard deadlines.

We note that most of existing studies working on
real-time schedulability, address separately periodic,
sporadic or aperiodic tasks but not together. Thus, the
originality of this work compared with related studies
is that it

• Deals with real-time tasks of various types and
constraints simultaneously,

• Parameterizes periodic server to execute aperiodic
tasks,

• Calculates soft deadlines of aperiodic tasks,

• Calculates periodic and sporadic tasks hard dead-
lines which will be certainly respected online,

• Improves response times of aperiodic tasks which
can lead to a significant improvement of the sys-
tem performance,

• Presents new tool called GIGTHIS-TOOL to eval-
uate the proposed solution.
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The remainder of the paper is organized as fol-
lows. Section 2 presents the computational model and
the considered assumptions. Section 3 explains in de-
tails the proposed approach to obtain valid deadlines.
Section 4 presents the developed tool, and illustrates
the approach on a case study while evaluating its effi-
ciency. Finally, Section 5 summarizes this paper and
provides directions for a future work.

2 PROBLEM FORMALIZATION

In this section, we present a formal description of a
real-time system. We present in addition the different
tasks models.

2.1 System Model

It is assumed in this work that a real-time system Π is
defined as having three task sets: (i) the first, denoted
P , containing n periodic software tasks, i.e., P = {τ0

1,
..., τ0

n}. We suppose that all these tasks are activated
at t = 0. (ii) The second, denoted S , containing m
sporadic software tasks, i.e., S = {τ1

1, ..., τ1
m}, and (iii)

the third, denoted A , containing k aperiodic software
tasks, i.e., A = {τ2

1, ..., τ2
k}.

2.2 Periodic Task Model

Each periodic task τ0
i , i ∈ [1, ...,n], in P is charac-

terized by: (i) a release time R0
i which is the time at

which a task becomes ready for execution (Buttazzo,
2011), (ii) a worst-case execution time (WCET) C0

i ,
(iii) a period P0

i , (iv) a relative deadline D0
i to be cal-

culated, and (v) a maximum relative deadline Dmax0
i .

Each periodic task τ0
i produces an infinite se-

quence of identical activities called jobs τ0
i j (Buttazzo,

2011), where j is a positive integer. Each job τ0
i j is de-

scribed by: (i) a release time r0
i j, (ii) a relative dead-

line d0
i j, and (iii) an end execution time E0

i j. We note
that

D0
i = max{d0

i j} (1)

where i ∈ [1, ...,n].
Finally, we denote by HP the hyper-period which

is the lowest common multiple (LCM) of the periodic
tasks’ periods.

HP = LCM{P0
i } (2)

where i ∈ [1, ...,n].

2.3 Sporadic Task Model

Each sporadic task τ1
e , e ∈ [1, ...,m], is defined by:

(i) a release time R1
e , (ii) a worst-case execution time

C1
e , (iii) a relative deadline D1

e , (iv) a period P1
e which

measures the minimum interval between the arrival of
two successive instances of a task τ1

e , and (v) a maxi-
mum relative deadline Dmax1

e (defined by users).
Each sporadic task τ1

e produces an infinite se-
quence of jobs τ1

e f , where f is a positive integer. Each
job τ1

e f is described by: (i) a release time r1
e f , (ii) a rel-

ative deadline d1
e f , and (iii) end execution time E1

e f .

D1
e = max{d1

e f } (3)

where e ∈ [1, ...,m].

2.4 Aperiodic Task Model

Each aperiodic task τ2
o, o ∈ [1, ...,k], is defined by:

(i) a worst-case execution time C2
o , and (ii) a relative

soft deadline D2
o. An aperiodic task can arrive in a

completely random way. Thus, we model this number
by the Poisson distribution with a parameter λ. We
note by OC the maximum number of aperiodic tasks’
occurrences estimated on the hyper-period.

Let NPS be a periodic server that behaves much
like a periodic task, but created to execute aperiodic
tasks. It is defined by: (i) a period Ps, and (ii) a capac-
ity Cs. These parameters will be calculated to meet
time requirements of aperiodic tasks.

2.5 Problem: Feasible Scheduling of
Real-time Tasks with Various Types

The problem to be treated in this paper is how to pa-
rameterize the feasible scheduling of real-time tasks
with various types and constraints in the context of
dynamic-priority, preemptive, uniprocessor schedul-
ing. Our scheduling problem contains two subprob-
lems:

• Configuring aperiodic tasks: the execution of the
aperiodic task must not jeopardize the schedula-
bility of periodic and sporadic tasks, then the ca-
pacity of the NPS server must not be greater than
the unused processing time by periodic and spo-
radic tasks. In addition, a soft deadline is calcu-
lated for each aperiodic task to allow that an ape-
riodic task with the smallest WCET will be served
before another with high WCET.
• Real-time periodic and sporadic tasks’ schedul-

ing: during each hyper-period, each periodic or
sporadic job has to be completed before the abso-
lute deadline using the EDF scheduling algorithm
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even if an aperiodic task is executed. In fact, the
cumulative execution time requested by aperiodic
tasks must be token into consideration when cal-
culating the tasks’ deadlines. Thus, s an aperiodic
task will be executed as soon as possible of its ac-
tivation, and periodic and sporadic tasks will meet
their deadlines. This constraint is given by

• For periodic jobs:

∀i ∈ {1, ...,n}, and j ∈ {1, ..., HP
P0

i
], E0

i j ≤ r0
i j +D0

i (4)

• For sporadic jobs:

∀e ∈ {1, ...,m}, and f ∈ {1, ...,
⌈

HP
P1

e

⌉
], E1

e f ≤ r1
e f +D1

e

(5)

In what follows, it is always considered that i ∈
[1...n], e∈ [1...m], o∈ [1...k], j∈ [1...HP

P0
i
], where

HP
P0

i
denotes the number of jobs produced by task τi on

hyper-period HP and f ∈ [1...dHP
P0

i
e].

3 CONTRIBUTION: NEW
SOLUTION FOR DEADLINES
CALCULATION

3.1 Motivation

We deliver an off-line approach, presented in Figure
1, that computes hard deadlines for periodic and spo-
radic tasks and soft deadlines for aperiodic ones while
improving their response time. This method consists
of two phases:

• The first one defines the NPS server which serves
periodically aperiodic tasks. In fact, the server
can be accounted for in periodic task schedulabil-
ity analysis, it has a period Ps and a capacity Cs.
Then, it calculates aperiodic tasks soft deadlines
while supposing that an aperiodic task, with the
smallest WCET, gets the highest priority.

• The second one calculates hard deadlines of pe-
riodic and sporadic tasks ensuring real-time sys-
tem feasibility while considering the invocation
of aperiodic task execution, i.e., while consider-
ing the maximum cumulative execution time re-
quested by aperiodic tasks that may occur before
periodic and sporadic jobs on the hyper-period.
Thus, at runtime, even if an aperiodic task occurs,
the periodic and sporadic tasks will certainly re-
spect their deadlines and the response time of ape-
riodic task is improved.

Figure 1: New methodology of deadlines calculation.

3.2 Case Study

We present in this section a case to be studied in the
paper. We consider a real-time system to control tem-
perature and humidity in a cold room. A temperature
controller reads the temperature every 8s. If the mea-
sured value is not in the desired temperature interval,
then a temperature regulator is activated to correct this
problem. A humidity controller reads the humidity
every 20s. If the measured value is not in the desired
humidity interval, then a humidity regulator is acti-
vated to correct this problem. The measured values
are displayed in a digital display every 5s. This sys-
tem, noted Π, is powered by the battery that its status
is checked at most once every 20s. This system is im-
plemented with the following tasks presented in Table
1:

Thus, Π is implemented by three sets:
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Table 1: System tasks.

Task Fonction WCET Period Maximum
deadline

τ0
1 displays tem-

perature
1 5 6

τ0
2 reads the tem-

perature
2 8 10

τ0
3 mesures hu-

midity
3 20 18

τ1
1 checks the bat-

tery status
2 20 23

τ2
1 adjusts temper-

ature
2

τ2
2 adjusts humid-

ity
1

P = {τ0
1,τ

0
2,τ

0
3}, S = {τ1

1} and A = {τ2
1,τ

2
2}.

We have, HP = LCM{5,8,20}= 40s.

Let’s suppose that the parameter λ of the Pois-
son distribution is equal to 0.5 occurences in 10 sec-
onds. Thus, in the hyper-period we have HP

10 × λ =
40
10 ×0.5 = 2 occurences, i.e., OC = 2.

3.3 Proposed Approach

In this section, we present the solution that we pro-
pose to extend. This solution is mainly based on the
calculation of effective deadlines of mixed tasks set in
order to ensure that the system will run correctly and
to satisfy the real-time feasibility.

3.3.1 Parameterizing Aperiodic Tasks

As mentioned previously, aperiodic tasks will be run
periodically by the periodic server NPS (Ps,Cs). As,
OC is the maximum number of aperiodic tasks’ oc-
currences estimated on the hyper-period, then, NPS
must be activated OC times to serve all possible ac-
tivations of aperiodic tasks that may occur. Thus, its
period is calculated as bellow

Ps = bHP
OC
c (6)

Moreover, aperiodic tasks are scheduled by utiliz-
ing unused processing time by a given set of periodic
and spordic tasks in the hyper-period. Thus, the ca-
pacity of server is calculated as follows: first, we cal-
culate the unused time by subtracting the maximum
cumulative execution time requested by periodic and
sporadic jobs from HP, and second we divide the ob-
tained result by OC, i.e., the possible activation num-
ber, to affirm that in each period the same amount of

execution time will be executed, hence the server ca-
pacity value.

Cs = dHP−Q
OC

e (7)

where, Q is the maximum cumulative execution time
requested by periodic and sporadic jobs on the hyper-
period HP.

Q = ( ∑
τ0

i ∈P
(C0

i ×
HP
P0

i
))+( ∑

τ1
e∈S

(C1
e ×d

HP
P1

e
e)) (8)

By assuming that the aperiodic task with the
smallest C2

o gets the highest priority, we calculate the
deadlines D2

o as following

D2
o =

x=k

∑
x=1

C2
x ×αx (9)

where,

αx =

{
1 if (C2

o >C2
x ) or (C2

o =C2
x and o≥ x),

0 else.
(10)

Running Example 1: To solve the problem of
the control system of the case study, the first step is
to configure the periodic server.

The periodic server parameters Ps and Cs are com-
puted respectively as following:

According to Equation (6), Ps = b40
2
c= 20

According to Equation (8), Q = 1× 8+ 2× 5+ 3×
2+2×2 = 28

According to Equation (7), Cs = b40−28
2
c= 6

After that, we calculate aperiodic tasks’ deadlines.
Let’s take for example τ2

1. According to Equation (9)

D2
1 =C2

1 ×α1 +C2
2 ×α2

= 2×1+1×1 = 3

3.3.2 Parameterizing Periodic and Sporadic
Tasks:

At the peak of activity, a sporadic task τe runs at
each P1

e . In this case, we can estimate the value
r1

e f of each job τ1
e f . Therefore, to calculate the

deadline of a sporadic task, we follow the same
procedure of a periodic task deadline calculation.
For that, we unify the notation of periodic and
sporadic tasks by τi1(Ri1 ,Ci1 ,Pi1 ,Di1 ,Dmaxi1),
where i1 in[1, ...,n + m], also for these parameters.
For example, let’s consider a system with two
tasks: a periodic task τ0

1(R
0
1,C

0
1 ,P

0
1 ,D

0
1,Dmax0

1)

and a sporadic task τ1
1(R

1
1,C

1
1 ,P

1
1 ,D

1
1,Dmax1

1),
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then they becomes τ1(R1,C1,P1,D1,Dmax1) and
τ2(R2,C2,P2,D2,Dmax2).

This solution allows the calculation of deadlines
of a task τi1 . We denote by ∆i1 j1 the job quantity,
coming from periodic and sporadic jobs, to be exe-
cuted before the job τi1 j1 . In other words, ∆i1 j1 is
the maximum cumulative execution time requested by
jobs whose (i) maximum absolute deadlines are less
than that of job τi1 j1 . This condition is denoted by
C1, or (ii) maximum absolute deadlines are equal to
that of job τi1 j1 and arrival times are less than that of
job τi1 j1 or their indices are less than i, i.e., we apply
the strategy of first in first out (FIFO) by assuming
that the task with the smallest index is the one that
comes at the beginning. This condition is denoted by
C2. ∆i1 j1 is given by

∆i1 j1 = ∑
τl∈P∪S

(Cl×β
i1 j1
l ) (11)

where β
i1 j1
l is the number of jobs produced by a pe-

riodic or sporadic task τl to be executed before τi1 j1 ,
represented as

β
i1 j1
l =



⌈
( j1−1)Pi1 +Dmaxi1 −Dmaxl

Pl

⌉
if (C1 =true

and C2 = false),⌈
( j1−1)Pi1 +Dmaxi1 −Dmaxl

Pl

⌉
+1

if (C1 = true and C2= true ),

1 if (C1 = false and C2 = true),

0 else.
(12)

The value di1 j1 that guarantees the feasibility of
this job takes the form

di1 j1 =


∑τ2

l ∈A(C
2
l ×d

Pi1
Ps e)+Ci1 +∆i1 j1 − ri1 j1

if ∆i1 j1 > ri1 j1 ,

∑τ2
l ∈A(C

2
l ×d

Pi1
Ps e)+Ci1 else.

(13)
The deadline Di1 of task τi1 is expressed by

Di1 = max{di1 j1} (14)

Finally, Di1 is the fixed deadline for τi1 .

Running Example 2: We move to periodic and
sporadic tasks’ deadlines calculation. As mentioned
previously, we unify the notation of periodic and spo-
radic tasks as following: τ0

1 becomes τ1, τ0
2 becomes

τ2, τ0
3 becomes τ3 and τ1

1 becomes τ4.
As an example, we take the calculation of deadline

D0
3 for task τ0

3, i.e., D3 for the task τ3. The number of
jobs of task τ3 in the hyper-period HP is HP

P3
= 40

20 = 2
jobs.

Job τ31:
First of all, we calculate the job quantity ∆31. Ac-
cording to Equation (11), we have to calculate β31

1 ,
β31

2 , β31
3 and β31

4 as indicated in Equation((12)).

β
31
1 =

⌈
(1−1)P3 +Dmax3−Dmax1

P1

⌉
=

⌈
(1−1)20+18−6

5

⌉
= 3

β
31
2 =

⌈
(1−1)P3 +Dmax3−Dmax2

P2

⌉
=

⌈
(1−1)20+18−10

8

⌉
= 1

β
31
3 =

⌈
(1−1)P3 +Dmax3−Dmax3

P3

⌉
=

⌈
(1−1)20+18−18

20

⌉
= 0

For the task τ4, the first job τ41 has: (i) an absolute
deadline greater than that of τ31, (ii) an arrival time r41
equal to that of τ31, and (iii) an index greater than that
of τ31. According to Equation (12), C1 = f alse and
C2 = f alse. Therefore, β31

4 = 0.
According to Equation (11), ∆31 is calculated as

following

∆31 = ∑
τl∈P∪S

C1×β
31
1 +C1×β

31
2 +C3×β

31
3 +C4×β

31
4

= 1×3+2×1+2×0+3×0 = 5

We have r31 = 0, so ∆31 > r31 and we have

∑
τ2

l ∈A
(C2

l ×d
Pi1
Ps e) =C2

1 ×d
Pi1
Ps e+C2

2 ×d
Pi1
Ps e

= 1×d20
20
e+2×d20

20
e= 3

Thus, according to Equation (13),

d31 = ∑
τ2

l ∈A
(C2

l ×d
Pi1
Ps e)+C3 +∆31− r31

= 3+3+5 = 11

Job τ32:
First of all, we calculate the job quantity ∆32. Ac-
cording to Equation (11), we have to calculate β32

1 ,
β32

2 , β32
3 and β32

4 as indicated in Equation((12)).

β
32
1 =

⌈
(2−1)P3 +Dmax3−Dmax1

P1

⌉
=

⌈
20+18−6

5

⌉
= 7
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β
32
2 =

⌈
(2−1)P3 +Dmax3−Dmax2

P2

⌉
=

⌈
20+18−10

8

⌉
= 4

β
32
3 =

⌈
(2−1)P3 +Dmax3−Dmax3

P3

⌉
=

⌈
20+18−18

20

⌉
= 1

β
32
4 =

⌈
(2−1)P3 +Dmax3−Dmax4

P4

⌉
=

⌈
20+18−23

20

⌉
= 1

According to Equation (11), ∆32 is calculated as
following

∆32 = ∑
τl∈P∪S

C1×β
32
1 +C1×β

32
2 +C3×β

32
3 +C4×β

32
4

= 1×7+2×4+3×1+2×1
= 20

We have r32 = 20, then ∆32 = r32 and we have

∑
τ2

l ∈A
(C2

l ×d
Pi1
Ps e) = 3

Thus, according to Equation (13),

d31 = ∑
τ2

l ∈A
(C2

l ×d
Pi1
Ps e)+C3 = 3+3 = 6

Finally, we calculate the deadline D3 of the task
τ3 as bellow

D3 = max{d31,d32}= max{11,6}= 11

4 IMPLEMENTATION

4.1 Developed Environment:
GIGTHIS-TOOL

GIGTHIS-TOOL is a new simulator that applies the
services of the proposed methodology. This tool is
an open source environment that: either add a new
system; i.e., sets of periodic, sporadic and aperiodic
tasks or generate the different tasks sets randomly,
and then apply the proposed approach while:(i) cal-
culating the hyper-period, (ii) generating the maxi-
mum occurrence number of the aperiodic tasks, (iii)

calculating the capacity and the period of the NPS
server, and (iv) calculating the deadlines of all tasks
by applying the formulas of the proposed methodol-
ogy. GIGTHIS-TOOL can be simply used by design-
ers to compute and display effective deadlines, with
few clicks, in arranged tables and in short time. This
project can be a future reference for industrial part-
ners who will be focusing on various real-time appli-
cations design.

4.2 Case Study Results

After completing the execution of the proposed ap-
proach, the calculated effective deadlines of the dif-
ferent tasks are given in Table 2.

Table 2: Tasks’ calculated deadlines.

Task τ0
1 τ0

2 τ0
3 τ1

1 τ2
1 τ2

2
Calculated Deadline 4 6 11 16 3 1

The results of the case study by using GIGTHIS-
TOOL1 are stored in this link 2.

In order to test the validity of the obtained re-
sults, we use the Cheddar environment 3. Figure 2
shows the scheduling of tasks after the execution of
the proposed approach. We note that the real-time
constraints are respected by the proposed methodol-
ogy, and the response time of each aperiodic task is
equal to its execution time, i.e, they are executed with
the best response time.

Figure 2: Scheduling of tasks after the execution of the pro-
posed approach.

1As writing index and exponent is not allowed in
GIGTHIS-TOOL (as well as cheddar tool), then the tasks
notation becomes as follows: T pi for a periodic task, T se
for a sporadic task and Tao for an aperiodic one.

2https://projects-lisi-lab.wixsite.com/gigthistool
3http://beru.univ-brest.fr/ singhoff/cheddar/
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4.3 Performance Evaluation

We have randomly generated instances with 10 to 50
periodic and sporadic tasks. We compare the pro-
posed approach with the work reported in (Balbastre
et al., 2007), where the critical scaling factor (CSF)
algorithm is developed. We focus on the reduction
rate of the calculated deadlines compared to maxi-
mum deadlines.

Figure 3 shows that the reduction rates of dead-
lines by using (Balbastre et al., 2007) are smaller than
those by using the proposed work. We conclude that
the rate of reduction of deadlines in (Balbastre et al.,
2007) can be improved. Hence, the gain is offered by
the proposed approach. Moreover, the gain is more
significant when increasing the number of tasks. If 10
tasks are considered, then the gain is equal to (0.31-
0.2) = 0.11, and if 50 tasks are considered, then the
gain is equal to (0.61-0.35) = 0.26.

Figure 3: Rates of deadlines reduction in the case of the
proposed approach and in the case of GSF algorithm.

The histogram in Figure 4 reflects the difference
between the maximum deadlines and the calculated
effective deadlines. In fact, the calculated deadlines
of the proposed approach are decreased compared to
the maximum ones of the 50 tasks. Thus, this reduc-
tion enhances the performance and the stability of the
real-time system by finishing the execution of tasks at
the perfect time.

Figure 4: The difference between the maximum deadlines
and the calculated deadlines.

As can be seen from the first graph presented in
Figure 5, the NPS algorithm can provide a substan-
tial reduction in average aperiodic response time com-
pared to background service (BK), deferrable server
(DS) and total bandwidth server (TBS). This algo-
rithm provides the greatest improvement for short,
frequent aperiodic tasks.

Figure 5: The improvement of aperiodic tasks response
times.

We note that the proposed approach allows to re-
duce the response time, to reduce the calculation time
for the reason that there is no need to waste time
at doing schedulability tests, to guarantee the meet-
ing of aperiodic tasks deadlines without jeopardizing
schedulability of periodic and sporadic tasks and thus
improves the overall performance of the real-time sys-
tem.

5 CONCLUSION

The contribution presented in this paper consists in
a methodology that supports the deadline calculation
of a mixed real-time system. By defining the spec-
ification such as temporal constraints the approach
starts at the first step by building a periodic server to
serve aperiodic tasks by identifying the server’s pe-
riod and capacity. Then, it computes the aperiodic
tasks’ deadlines by assuming that the one with the
smallest WCET, gets the highest priority. Finally, this
approach calculates the periodic and sporadic tasks
deadlines while considering the invocation of aperi-
odic task execution. We have evaluated the perfor-
mance of the proposed approach. The numerical re-
sults show that this methodology reduces the devel-
opment time by computing the deadlines for periodic
and sporadic tasks to be certainly respected without
any feasibility analysis of the device, and allows to
minimize the response time for aperiodic tasks. As a
future work, we aim to extend our approach by con-
sidering distributed architecture and other constraints
e.g. energy and memory constraints.
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