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Abstract: Dynamic web browsing, supported by web scripting languages such as JavaScript, has quickly conquered the
Internet. In spite of the obvious advantages they offer, they have also opened many security flaws for the user
browsing. The browser starts by retrieving some external scripts, potentially distributed over many servers.
In terms of security, this process is extremely sensitive, therefore many solutions have been introduced to
secure web browsing. Unfortunately, they mostly rely on server side actions. Hence, a malicious server is
able to compromise the client by modifying the security policy and the scripts sent. We propose an efficient
solution, which does not require any trust in the servers, to ensure the integrity of distributed web scripts. Our
protocols rely on simple cryptographic tools, such as digital signature schemes and hash functions. In the end,
we provide a proven secure, user-friendly and easy-to-deploy solution which only adds a small latency in the
end-user browsing.

1 INTRODUCTION

Over the last decades, web content has become
more and more dynamic. In practice, dynamic web
pages are provided to the client by scripts, written in
Javascript for 95% of them (W3C, 2018). They pro-
vide many kind of services to the end-users, but are
also used to track and advertise them. The browser is
in charge of executing those scripts generally located
between the HTML tags <script>...</script>.
Two main methods exist to retrieve scripts: either
they are directly included into the web server re-
sponse or the browser has to make additional requests.
In the first method, called inline scripting, a script
is represented as a plaintext program between the
tags. Whereas the second method only provides the
browser with a pointer materialized as a URL in or-
der to retrieve the scripts. The external method is
massively implemented since it facilitates the use of
external libraries such as jQuery (De Volder, 2006)
and allows cache management. In order to avoid end-
user actions, the libraries are retrieved on-demand:
when the user requests a web page including a script
requiring a library, the latter is also requested. In
practice, these libraries are widely used: more than
87% of the Alexa top websites used at least one of
them (Lauinger et al., 2017). Consequently, the li-
brary distribution is performed by dedicated servers,

called Content Delivery Networks (CDN) (Farber
et al., 2003), and possibly by some cloud services.
The purpose of CDNs is twofold: to limit the network
stream of the original server by hosting libraries and
to ensure the versioning of these libraries (even if us-
ing outdated libraries is still a problem, see (Lauinger
et al., 2017) again).

In terms of security, web scripts have opened
many flaws (Bielova, 2013). Among the previous
methods, inline scripts are however safer from the
client viewpoint. Assuming that there is a secure con-
nection between the client and the server (e.g., with
HTTPS), only the scripts directly sent by the server
are executed on the client side. Obviously, this also
supposes that the client trusts the server enough to ex-
ecute the aforementioned scripts. In the case of exter-
nal scripts, either the URLs indicate the same server
or a different one. The second method has many se-
curity flaws (Nikiforakis et al., 2012): neither of the
end-user privacy nor the script integrity is guaranteed
since the third party is allowed to inject malicious
code. A recent example of code injection has been re-
alized using end-user resources to mine cryptocurren-
cies (Eskandari et al., 2018). To counteract the numer-
ous security issues brought by malicious script inclu-
sions, many solutions have been deployed (see (Nadji
et al., 2009) for a more exhaustive listing).

One of them is the Same-Origin Policy (SOP),
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which is a kind of access control policy for scripts.
This checks if the origin (defined as a protocol, a
domain and a port) of the scripts is the same as the
original server. In theory, all three of them must ver-
ify the equality with the web server. This method
only provides a partial protection, and some breaches
have been found (Saiedian and Broyle, 2011). In
practice, the origin is only partially verified so that
the port is deduced from the protocols (Ruohonen
et al., 2018). Moreover, cross-origin embedding is,
despite the SOP, often allowed (Ruderman, 2018).
SOP can also be relaxed through the Cross-Origin
Resource Sharing (CORS) via a whitelisting of au-
thorized cross-origin resources declared in the head-
ers of the original web pages. This method has also
recently been attacked (Chen et al., 2018). Another
widely deployed counter-measure, called Content Se-
curity Policy (CSP) (West, 2018), provides to the web
administrator a way to define a security policy on the
resources that the end-user is allowed to retrieve or
execute. In practice, the CSP is represented as a set of
rules located in the headers of the HTTP response.
The SubResourceIntegrity (SRI) (Weinberger et al.,
2016) mechanism allows the client to verify the script
integrity beforehand. This works as follow: along
with the received scripts, a list of hashes is associated.
Before executing a script, the browser computes the
hash of a script, and verifies that the obtained digest
matches the given one. This solution prevents against
eventual script modifications by an external resource
(such as a CDN), but not against the server itself. This
clearly leads to a security flaw.

1.1 Contributions

Previous countermeasures are mainly rules set by the
administrator on the server-side. A client such as the
browser must follow these rules to block potential at-
tacks. Nevertheless, if the server is corrupt and the
rules are removed then the client won’t be able to
block any potential attacks on his own. This raises
two issues: firstly, the current trend is towards de-
centralizing the script sources so that server-based
solutions offer security guarantees inversely propor-
tional to the deployment difficulties. Secondly, this
assumes that the server is trusted. Otherwise, a mali-
cious server has then the ability to modify the scripts
sent to the client, to retrieve private information from
it or to reduce the security policy from the initial con-
figuration. We propose a different approach: here, the
web server and potential external resources such as
CDNs are seen as untrusted ways of storing resources.
We choose to differentiate the web storage from the
script editor i.e., the entity which develops the pro-

gram. The latter goal is to put these scripts online,
so that end-users retrieve and execute them into their
browser. The scripts can be stored on a classic web
server potentially administrated by the editor itself,
but they can especially be stored into an external web
server, or a cloud. The editor has no control on the
content that the web server really distributes.

As a concrete use case, one can imagine a secu-
rity software editor whose clients need to update their
configuration. The editor provides some JavaScript
applications that should be retrieved by the client. Us-
ing cloud-based services to ensure the availability of
these scripts, neither the client nor the editor can be
sure about their integrity. This is a concern for both
of them: the former risks a potential data leakage,
whereas the latter runs the risk of ruining its reputa-
tion. This example is inspired by the request of Pro-
tonMail (Team, 2019): “we are closely following the
work being done in the web standards community to
introduce some form of code signing for web”. From
this scenario, we extract the following problem, that
has also been highlighted in (Ruohonen et al., 2018):
How can we ensure the integrity of outsourced (web)
scripts without trusting the delivering servers ?

We address this question by proposing protocols
to ensure the integrity of outsourced scripts, in par-
ticular the JavaScript ones. Unlike existing solu-
tions, our goal is to protect the client from a mali-
cious server, which holds the web page including the
scripts. We propose an externalized signature-based
solution ensuring the integrity of scripts with respect
to the initial developer code publication. Moreover,
our solution also plays a part in the attacks against
the JavaScript versions (NPM) (Lauinger et al., 2017):
we let the developers choose the library version that
should (and will) be executed by the client. Our so-
lution proposes a way to protect the user from a web-
site that is running on an untrusted provider. It may
seem unnatural to run a website on such host but it
can respond to specific needs or scenarios. Our main
focus is to ensure and prove that a website, provid-
ing cryptographic services (such as mail encryption or
data storage encryption) has not been compromised.
Then the client’s secrets are not leaked since we pro-
vide a possibility for the client to verify that all scripts
came from a trusted source. When the developer has
updated the scripts, the client can also be notified to
eventually audit them.

1.2 Related Work

The problem of ensuring the integrity of web scripts
has been addressed several times. Historically,
BEEP (Jim et al., 2007) has been one the first.
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Their proposal is a kind of CSP, with a client-
side whitelisting approach. In the same vein, fine-
grained client-side policy have been studied, for
example in Conscript (Meyerovich and Livshits,
2010). In (Mitropoulos et al., 2016), authors pro-
pose a fingerprint-based solution as a countermea-
sure against XSS attacks. Their approach consists
in checking the fingerprints for all JavaScripts that
might be executed by the browser. Unfortunately,
none of these approaches remain secure assuming that
the server is malicious. A closer solution which also
relies on external signatures has been developped by
Mozilla (Mozilla, 2008). The idea is to use a signed
JAR file, which contains the entire HTML structure
along with the scripts references. Besides being re-
lated to a specific browser, this solution has been
abandoned due to the risks associated to the JAR
files (Mozilla, 2019). We overcome this issue by pro-
viding an astute use of hash lists, so that the integrity
proof is small enough to not require any compres-
sion without degrading performances. In (Soni et al.,
2015), the authors propose a solution based on sig-
natures and some JavaScript specific isomorphisms
defined to reduce the number of signature updates.
However, their proposal is server-based, centralized
and requires trust on first use. In (West, 2019), their
idea is to replace the digest field from SRI solution
by a digital signature by the web server. Then the
client checks the signature using the server public key
before executing the scripts. From this work, which
seems to be close to our solution, we insist on the
fact that the two security models differ: in our case,
adding a signature into the SRI field does not provide
any security enhancement if the web server is mali-
cious. For instance, it is sufficient for the server to
simply updates the original field containing the script
signature and add a malicious one computed with
the server private key. Another example consists in
changing the headers used to define the security pol-
icy: the server removes the one indicating that the
client must verify signatures beforehand. In our case,
by addressing a malicious server, we handle both of
these attacks. In (Nakhaei et al., 2018), the author
presents a method in which scripts are first viewed as
plaintexts containing signatures. Specific JavaScript
files act as proxies to retrieve other subresources and
check their signature. If the signature is valid, the
original plaintext is converted to a JavaScript object
and then loaded. Their approach eliminates the need
for modification in web servers or browsers. As be-
fore, if the initial web server is malicious, the proxy
script can be modified to bypass signature verification
in order to allow malicious content to be executed by
the browser.

1.3 Organisation

We start with a general description of our solution and
its security model in Section 2. Then in Section 3, we
present the protocols, in the form of algorithms. In
the following section (Section 4), we formally define
the security model and guarantees that these proto-
cols provide. Next, (in Section 5), we detail an im-
plementation of a plugin dedicated to the integrity of
JavaScripts based on our solution. Finally, we con-
clude and present some future works in Section 6.

2 OVERVIEW AND DEFINITIONS

2.1 Preliminaries and Notations

We denote a cryptographic hash function as H :
{0,1}∗ → {0,1}l with l ∈ N the size of the digest.
The concatenation of two messages m1,m2 is denoted
m1||m2. The cardinal of a set A is denoted #A. The
security parameter is written 1k. We denote with ε a
negligible function. Next, we recall the definitions of
the digital signature schemes and hash functions.

Definition 2.1 (Digital Signature Scheme). Let Σ =
(KeyGen,Sign,Verif) be a digital signature scheme,
composed with three probabilistic polynomial time
(p.p.t.) algorithms such that:
KeyGen(1k) → (pk,sk) with pk a public key and sk
the associated private key ;
Sign(sk,M)→ σ, with sk the private key and M ∈
{0,1}∗ a message ;
Verif(pk,M,σ) → b ∈ {0,1}. σ is a valid signature
of M with sk if Verif(pk,M,σ) = 1.
A signature scheme is correct if ∀k ∈N,∀M ∈ {0,1}∗,

Pr

[
(pk,sk)

$← KeyGen(1k)

Verif(pk,M,Sign(sk,M)) = 1.

]
= 1

We recall the security definition in the case of an
existential forgery under the chosen message attack.

Definition 2.2 (Security of digital signature schemes).
Let Σ = (KeyGen,Sign,Verif) be a digital signature
scheme. An adversary A is a p.p.t. algorithm that is
given as input a public key pk and an access to a sign-
ing oracle OΣ(sk, ·), where (pk,sk) = KeyGen(1k).
The oracle takes as input a message M and returns
a signature σ = Sign(sk,M). The adversary is able
to ask a signature for the messages of its choice,
and eventually outputs a forgery (M,σ). The advan-
tage of A against the signature scheme, denoted as
AdvUF−CMA

A (1k) is the probability that the adversary
outputs a valid pair (M∗,σ∗) such that the signature
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of the message M∗ has not been previously requested.
We say that a signature scheme Σ is secure against
existential forgery under adaptive chosen message at-
tacks if the advantage for any A is negligible with re-
spect to the security parameter k.
Definition 2.3 (Second pre-image resistance of a hash
function H (adapted from (Rogaway and Shrimpton,
2004)). Let H : {0,1}∗→{0,1}l with l ∈ N, l > 0 be
a hash function. H is second pre-image resistant if

Pr

[
(M)

$←{0,1}∗,M′ $← A :

(M 6= M′)∧ (H(M) = H(M′))

]
≤ ε

The advantage for an adversary A to find a second
pre-image attacks is denoted Adv 2ndPre

A ().

2.2 Entities and Security Model

We propose a tripartite model composed of a client C ,
a server S and the program editor P E . In real-life, the
client is represented by the end-user’s browser. The
latter communicates with the web server and poten-
tially a small number of CDNs (around one or two).
We represent all of these as a generic server. Finally,
the program editor is the direct provider of the scripts,
which deploys them via the server services.

The idea is to capture the cases in which attacks
might be induced because of a bad script retrieval i.e.,
the scripts executed by the client’s browser differ from
the initial developer will. Two points are then partic-
ularly sensitive: first, the script source code has been
altered. This obviously means that at least one part
of the program does not match the initial source, but
it could also mean that some of the libraries are not
exactly the expected ones. The second point concerns
the security policy, that could be altered when sent
to the client. In this case, external sources or inline
scripts might be added by a malicious server.

The security model stems from these observations.
First, the client is trusted: in our model, it is the at-
tacks target. However, we make some assumptions
on its behavior in order to free ourselves from some
collateral attacks. We suppose that its browser is safe
i.e., it implements the common security requirements
and is up-to-date. In particular, we require that the
browser is able to deploy a security policy from the
headers of an HTTP response, that it is able to check
digital signatures and computes cryptographic hashes.
Currently, this means that the browser could verify
these assumptions if it implements the CSP and SRI
mechanisms correctly. The program editor is trusted:
in the sense that the provided scripts are not supposed
to endanger the client security. Then, attacks related
to the privacy of the client are not considered as at-
tacks: if the client has chosen to execute the program

for this editor, then we consider that the client agreed
on giving its data. The server is malicious i.e., it
might modify the web pages before sending them to
the client. In particular, it has the possibility to alter
the headers of its HTTP responses or the script con-
tent in order to damage the client security or privacy.
As previously precised, the server might also repre-
sent also the set of entities delivering sources related
content. Considering a malicious server encompasses
the case where several servers collude, since they are
viewed as one malicious entity (i.e., a n among n se-
curity). Thus, CDNs are not trusted to correctly de-
liver libraries and their behavior is associated with
the server attacks. Moreover, considering a malicious
server captures also potential attacks by an external
adversary, since a server can be seen as an external
adversary with additional possibilities.

2.3 Overview

When the browser needs to display dynamic pages,
first it analyses the rules provided by the web server
response. Generally, they are described with a list of
headers, in which belongs the security policy. Then,
we represent the security policy as a set of head-
ers, denoted {hd}. Next, the browser retrieves the
script sources accordingly to the security policy. The
complete program might require several scripts (such
as external libraries), potentially downloaded by the
browser from different providers. In the end, we only
have interest into these scripts, since the providers
should not have any impact on the security. Thus,
we model these scripts with a simple set, denoted
{script}. Each element scripti ∈ {script} refers to a
finite set of instructions belonging to a common spe-
cific language, such as JavaScript. We abstract a com-
plete web page as the concatenation of the set of head-
ers and scripts i.e., WP = {hd}||{script}. In order to
ensure that the policy and the scripts have not been
modified by the server, we propose protocols divided
into two parts. The first one is about the generation
of the reference file labeled IntFile, for integrity file.
Namely, its main property is to be unalterable. The
second is about the comparison between the IntFile
and the actual web page sent by the untrusted server.
In the Figure 1, an overview of a protocol execution is
schemed. The main idea is to externalize the signature
of both the security policy and the scripts. This leads
to an integrity file (IntFile), which is then published
by the developer on any outsourced web services. The
generation of this IntFile only requires that the devel-
oper signs its program and then uploads it. No more
action or trust towards the outsourced service are re-
quired from its side. At this point, the client retrieves
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the web page along with the IntFile. In practice, the
manner of retrieving this file is decided by the client:
it could get it from the same web server or on any ser-
vices of its choice. Next, the client checks that the
web page is indeed in accordance with the integrity
file. This solution is simple and efficient: it only re-
quires one signature verification and the computation
of some hashes from the client.

2.4 Key Management

The digital signature schemes are the core of the pro-
posed solution. Although providing strong crypto-
graphic guarantees, they assume an efficient and se-
cure key management. On one hand, the signer uses
its private key to sign. In general, it has generated the
key pair himself, so this is not an issue. On the other
hand, the verifier checks the signature using the public
key of the signer, so that retrieving the key a priori is
mandatory. We now detail some appropriate solutions
addressing the key management problem. From now
on, an underlying secure key management is assumed
to be used.

Firstly, the program editor distributes, out of the
band, its public key. Although simplistic, this solves
the problem for the security software editor willing
to distribute its script, as in our B2C use case. Sec-
ondly, public key infrastructures with X.509 certifi-
cates are also conceivable: the program editor re-
quests a certificate to a well known certification au-
thority (i.e., included into the trust anchor store of the
browser). Then, the certificate is sent within the web
pages. A more decentralized way will be to use the
web-of-trust, namely Pretty Good Privacy based so-
lutions. Each editor manages its own keys and gives
its trust to other editors’ public key. Obtaining a con-
sensus seems however hardly achievable unless a pri-
vate trust evaluation mechanism like (Dumas et al.,
2017b) is also deployed. User-centric PKIs are also
appropriate such as (Dumas et al., 2017a). The lat-
ter presents the advantage of easily getting a certifi-
cate for the program editor while only using existing
tools. In the same vein, using the DNSSEC infras-
tructure (Arends et al., 2005), as described in (Jøsang
and Dar, 2011) is also an alternative. Currently, some
practical aspects have to be developed, in order to al-
low scripting languages such as JavaScript to make
DNSSEC requests.

Others normalized solutions, like Certificate
Transparency (Ryan, 2014) seem adequate by pub-
licly showing the certificates related actions. In the
same vein, plenty adaptations of the previous solu-
tions using blockchains have been proposed: some
examples of mixing PKIX and blockchains (Garay

et al., 2018; Axon. and Goldsmith., 2017; Yakubov
et al., 2018), or PGP and blockchains (Yakubov et al.,
2018). We also refer to (Kubilay et al., 2019) for
the approach mixing Certificate Transparency and
Blockchains. Their main strength lies into their pub-
lic checking of certificates and decentralized way of
working. In the context of publishing the integrity
file, public verifiability is also desirable. In our case,
these solutions enable to add a versioning manage-
ment to our schemes without any user-side change.

2.5 Definitions

We start by defining generic schemes called Program
Externalizer. This notion captures the will of dis-
tributing program via an insecure platform and so is
applicable to our use case in a web context.

Definition 2.4. A Program Externalizer
Scheme(PES) is composed of three algorithms:

• ParamGen(1k)→ (sp,pp): From the security pa-
rameter 1k, it outputs the public (pp) and private
(secret) parameters (sp).

• IntFileGen(sp,Policy) → IF: From the private
parameters sp and a security policy Policy, it out-
puts the integrity file IF containing the security
policy.

• Match(pp, IF, In)→ {0,1}: From the public pa-
rameters, the integrity file IF and the input In, it
outputs 1 if the latter matches the security policy
of IF, 0 otherwise.

Definition 2.5 (Security of Program Externalizer
Scheme). Let PES=(ParamGen, IntFileGen,Match)
be a program externalizer scheme. The challenger
starts by sending the public parameters pp. Then it
chooses a Policy, generates a valid IntFile and sends
it to the adversary A . A has the possibility to re-
quests the challenger about the validity of (In∗, IF∗),
so that the challenger computes Match(pp, In∗, IF∗),
and returns the results to A . A wins the game when-
ever it outputs a valid forgery (In∗, IF∗), defined as:
either IF∗ does not correspond to the original policy
or In∗ is not valid, and Match(pp, In∗, IF∗) = 1. The
outputs of the game is the value of Match on the ad-
versary forgery, denoted GamePESA = b ∈ {0,1}. The
advantage of A is written:

AdvPES
A (1k) = Pr

[
GamePESA = 1

]
We say that a PES scheme is secured if the advan-
tage of the adversary is negligible w.r.t. the security
parameter 1k.

This security models captures the idea that the at-
tacker is successful if it is able to distribute a different
input file, but still considered as valid. In this model,

Ensuring the Integrity of Outsourced Web Scripts

159



Client C Server S Program Editor P E

IntFile Generation

IntFile Publication

Retrieves IntFile

Usual WebPage Exchanges

Match(WebPage, IntFile) =?= 1
Execute Scripts or Return “Error”

Figure 1: Overview of an execution of the Outsourced Script Integrity protocols.

we assume that only one valid IntFile is available.
Versioning of IntFile is discussed in 2.4.

3 THE OUTSOURCED SCRIPT
INTEGRITY PROTOCOLS

We propose an efficient and practical PES applied on
the integrity of web scripts. Here, we describe three
protocols: the first two represent the main function-
alities, whereas the third one describes an execution
involving each entity.

3.1 Generation of the Integrity File

Firstly, the program editor i.e., P E , should have the
list of authorized scripts, along with the security pol-
icy required. This means that P E owns: ({hd},
{script}). From both of these lists, P E generates an
Integrity File which contains {hd}, an hashes list of
each script {H(script)}, and the digital signature of
the whole previous information. The complete pro-
cess is described into the Algorithm 1.

Algorithm 1: Generation of IntFile: IntFileGen.
Require: : A private key sk and two sets:
{hd},{script}

Ensure: : Generation of IntFile
1: Let M := ({hd}||{H(script)})
2: Computes σ := Sign(sk,M)
3: return IntFile := (M||σ)

This integrity file is the keystone in these proto-
cols: it will be used as the reference during the com-
parison with the received web page. It contains a list
of hashes, which will be checked by the client to en-
sure the script integrity. In other words, this file is

the deported trust of the editor. Once the IntFile has
been generated, the program editor deploys it on the
(untrusted) outsourced service of its choice: cloud or
web server for instance. From now on, the part of the
program editor is over: every future interaction will
be done between the (malicious) server and the client.

3.2 Verification of the Integrity File

Once the integrity file has been generated, one needs
to check its validity. This obviously relies on the
signature verification to ensure that the integrity file
has indeed been provided by the program editor P E .
Then, a comparison with the content retrieved from
the untrusted web server and the one from the IntFile
should be made. A total of two checks are made: first
on the security policy, and then on the scripts them-
selves. The security policy provided by the server
should match exactly the one decided by the P E :
each header included into the web page must also be
present in the integrity file. Otherwise, the client stops
the check, and the browser does not display the page.
In the script verification, the comparison method is re-
laxed: the client only checks that each script needed
by the web page is allowed by the program editor.
Therefore, if only a part of the scripts is required i.e.,
some of them are listed on the integrity file but not
on the web page, then the verification is validated.
However, a script which has not been added into the
integrity file cannot be added by the server. On one
hand, we choose to only store the script hashes in or-
der to reduce the size of IntFile. This implies that the
client has to compute hashes of the retrieved scripts
to make the comparison. On the other hand, we di-
rectly store the headers, since there are short strings.
Moreover, this allows the client to directly checks the
security policy deployed by the P E . The complete
verification process is detailed in the Algorithm 2.
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Algorithm 2: Integrity Verification: Match.

Require: A public key pk, the WebPage =
({hd}WP||{script}WP) and the IntFile =
{hd}IF ||{H(script)}IF ||σ

Ensure: Return true if the WebPage integrity is ver-
ified, false otherwise.

1: if Verif(pk, IntFile) == false then
2: return false
3: end if
4: if (#{hd}WP 6= #{hd}IF) ∨ (#{script}WP >

#{H(script)}IF) then
5: return false
6: end if
7: if ∃hdi ∈ {hd}WP s.t. hdi /∈ {hd}IF then
8: return false
9: end if

10: if ∃scripti ∈ {script}WP s.t. H(scripti) /∈
{script}IF then

11: return false
12: end if
13: return true

3.3 Protocol Execution Instance

We now show a correct way of executing the previous
protocols, with a client C , a server S and a program
editor P E . We denote by ∆X ,X ∈ {WP, IF} the valid-
ity period of the cache for the web page (WP) or the
integrity file (IF). The current cache period of WP or
IF is denoted with δX ,X ∈ {WP, IF}.

Algorithm 3: Outsourced Script Integrity (OSI) Protocols.

1: P E : Let IF = IntFileGen({hd}IF ||{script}IF)
2: P E : Publication o f IF
3: if C : δWP > ∆WP then
4: C ← Req = ({hd}WP||{script}WP) f rom S
5: end if
6: if C : δIF > ∆IF then
7: C ← IF f rom S .
8: end if
9: if C : Match(pkP E ,WP, IF) == false then

10: return ⊥
11: end if
12: C : Display Web Page

Now, we prove that our protocols are correct.

Theorem 3.1 (Correctness). Let the Outsourced
Script Integrity (OSI) described in the Algorithm 3
be a PES. Then, if the signature schemes Σ =
(KeyGen,Sign,Verif) with (pkP E ,skP E )
$← KeyGenΣ(1k) is correct, and if for all sets
{hd}X ,{script}X ,X ∈ {IF,WP} such that {hd}WP =

{hd}IF and {script}WP ⊂ {script}IF , then OSI is cor-
rect.

Proof. We assume that the client is able to get
the public key pkP E of the developer P E . Then,
it is able to successfully check the signature σ =
Sign(skP E ,{hd}IF ||{H(script)}IF) of the integrity
file IF = ({hd}IF ||{script}IF ||σ) previously re-
trieved. If the server S sends a valid web page WP =
({hd}WP||{script}WP), the latter will contain all the
headers hd from IF , along with at least a subset of
allowed scripts. Thus, the cardinal checks on the sets
are successfully passed. Then, C is able to compute
the hash for each script and to find a correspondence
such that for all scripts into WP, its hash is equal to a
hash located into the set {H(script)}IF . Then, for all
correct requests (pkP E ,WP, IF) the Match will return
true. Therefore, the protocol described in the Algo-
rithm 3 is correct.

4 SECURITY ANALYSIS

The following theorem summarized the security pro-
vided by the OSI schemes. As usual when the secu-
rity relies on signature schemes, the mechanisms used
to get public parameters are abstracted, so that a PKI
is assumed to be deployed. For instances, some ade-
quate architectures are discussed in 2.4.

Theorem 4.1. Let the OSI be an instance of a PES.
Let Σ = (KeyGen,Sign,Verif) be a digital signature
scheme, and H a hash function. If Σ is secure against
existential forgery under adaptive chosen-message
attacks, and that H is 2nd-preimage resistant, then
OSI is a secure PES. For any p.p.t. adversary A
against OSI, there exist adversaries B against Σ and
C against H such that:

AdvOSI
A (1k)≤ 2∗Adv2ndPre

B ()+AdvUF-CMA
C (1k)

Proof. By contradiction, let us suppose that it exists
an efficient adversary A which is able to break the
scheme. From the security game GamePESA , the ad-
versary A wins if it sends a modified IF∗ (i.e., unlike
the one provided at the beginning of the challenge)
or a non valid WP∗ (w.r.t. the definition of the cor-
rectness) such that Match returns 1. Assuming that it
exists such an adversary A , we construct efficient ad-
versaries which, according to the behavior of A , break
either the digital signature scheme Σ or the hash func-
tion H.

From the protocol definition, we have the web
page, WP = ({hd}WP||{script}WP) and the integrity
file IF = ({hd}IF ||{H(script)}IF)||σ), where σ =
Sign(skP E ,{hd}IF ||{H(script)}IF). We define two
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events respectively associated to the previous cases:
WP-Forged and IF-Forged. Then, we obtain:

AdvOSI
A (1k)≤ Pr [WP-Forged ]+Pr [IF-Forged] (1)

Case 1: WP-Forged

Firstly, we assume the event WP-Forged i.e., the
adversary A has an attack such that only the web page
has been altered, so that Match(pk, IF,WP∗) = 1,
where IF is obtained from the signature ora-
cle at the beginning of the attack. Then, A has
modified at least one header or one script i.e.
{hd}WP∗ 6= {hd}IF or {script}WP∗ 6⊂ {script}IF .
Let WP-Hd-Forged and WP-Script-Forged be
the associated events to each of these possi-
bilities. Then, we obtain: Pr [WP-Forged] ≤
Pr [WP-Hd-Forged ] + Pr [WP-Script-Forged ]. Yet,
the event WP-Hd-Forged is impossible, since it relies
on a direct comparison between two sets, no attack
could be realized. Thus Pr [WP-Hd-Forged ] = 0.
The second event Pr [WP-Script-Forged ] relies
on the hash function H. In this case, let B be
an adversary against H. From A , the adversary
B retrieves the set {script}WP∗ . In particular,
it extracts the value scriptWP∗ ∈ {script}WP∗

such that H(scriptWP∗) = H(scriptIF) (with
scriptIF ∈ {script}IF ) and scriptWP∗ 6= scriptIF .
Then, the adversary B has found a collision triplet
(scriptWP∗ ,scriptIF ,h), with h the associated hash
value. Hence, we obtain:

Pr [WP-Script-Forged]≤ Adv2ndPr
A () (2)

Case 2: IF-Forged

Secondly, we assume that the adversary A has
an attack such that the integrity file has been
altered, so that Match(pk, IF∗,WP) = 1. By
definition, IF = ({hd}IF ||{H(script)}IF ||σ), so A
must have modified the content: namely at least
one element from one of the set {hd}IF or
{H(script)}IF . As previously, we associate each
possibility to an event, that being IF-Hd-Forged for
the first case, and IF-Script-Forged for the sec-
ond one. Hence, we can bound the probability
that the event IF-Forged occurs: Pr [IF-Forged] ≤
Pr [IF-Hd-Forged]+Pr [IF-Script-Forged]. The event
Pr [IF-Hd-Forged ] implies that at least one element
from the original set {hd}IF has been modified. Con-
sequently, the signature σ must also have been re-
computed, otherwise the A cannot win the secu-
rity game. Then, the adversary has sent the fol-
lowing parameters (pk,({hd}∗IF ,{H(script)}IF)||σ∗).
Let B be an adversary against the digital signature
scheme Σ . By using A as a subroutine, B ex-
tracts M∗ = ({hd}∗IF ||{H(script)}IF) and σ∗. Then,

it wins the digital signature security game by sending
(M∗||σ∗) to OVerif . This shows Pr [IF-Hd-Forged] ≤
AdvUF−CMA

A (1k). Finally, we have to bound the
Pr [Script-IF-Forged]. In this case, we proceed by us-
ing game-based sequence, where the transitions rest
on aborting on specific events.
Game G0: This is the event Script-IF-Forged, i.e. the
adversary A succeeds in modifying the set script.
Game G1: We exclude hash attacks by aborting when-
ever there are two different script1 and script2 which
return the same digest from the function H. By defin-
ing BG0 as an adversary for the Game 0, which out-
puts these two collision values for H, we can bound
the probability by the BG0 ’s advantage in breaking H.
Hence, we obtain:

AdvG0
A (1k)≤ AdvG1

A (1k)+Adv2ndPre
BG0

()

Game G2: We abort whenever a successful forgery is
made on the digital signature scheme Σ. We define
an adversary BG1 which outputs the forgery such that:
(M∗,σ∗), with M∗ = ({hd}∗IF ,
{H(script)}IF) and σ∗ the associated signature. The
probability of aborting is:

AdvG1
A (1k)≤ AdvG2

A (1k)+AdvUF-CMA
BG1

(1k)

We have excluded hash collisions and signature
forgery: from this point, the attacker has no possi-
bility to win the game since every parameters have
been dismissed. Therefore: AdvG2

A (1k) = 0. Hence,
we obtain:

Pr [Script-IF-Forged]≤ Adv2ndPre
BG0

()+AdvUF-CMA
BG1

(1k)

(3)
Assuming that it exists B against H and C against the
signature scheme, from the equations 1, 2 3, we ob-
tain:

AdvOSI
A (1k)≤ 2∗Adv2ndPre

B ()+AdvUF−CMA
C (1k)

5 IMPLEMENTATION -
WEBEXTENSION PLUGIN

To implement our solution, we decide to develop a
browser plugin, using the WebExtension standard.
Using plugins provides us with an effective way to
be compatible with most browsers (Firefox, Chrome,
Edge) and most platforms (Windows, Linux, Mac,
Android...) with a minimum effort. This is a proof of
concept 1 of our solution, but our main goal is to push

1Source code is available at github.com/wallix/.
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it directly into the navigator as a new security feature.
The WebExtension framework, used to develop such
a plugin, is done with JavaScript. We choose to use
only a minimum of non standard Javascript libraries
and make our dependencies as small as possible to
ensure an easy as possible code audit. Since this plu-
gin needs to intercept any response received by the
browser, coding flaws should be detected to not com-
promise the user security. In the following PoC, we
assume that the key has been given out-of-bands. Be-
sides being the easiest solution to implement, this also
fulfills the requirements of the security software edi-
tor use case: the key could have easily been given a
priori.

5.1 Configuration Options

Only some specific websites will be monitored by the
plugin. We intend to minimize the number of param-
eters for each site, so that it will be easy for any user
to add a website with the Javascript Integrity feature.

At the moment, only two options are mandatory
and must be set by the user:
• The website domain name;

• The public key used to sign the IntFile.
These parameters must be retrieved from a trusted

source as they ensure the authenticity of the IntFile.
This critical step is out of the scope of this document.
We plan to implement one of the previous solutions
(discussed in 2.4) in a future version. We only tar-
get some specific websites and needs first. The do-
main name specifies the URI we want to monitor.
The drawback of storing the domain name is that we
cannot follow cross-origin content such as iFrames.
These frames may come from another domain, and in-
clude remote Javascript as well. However we cannot
ensure that they implement our IntFile based solution.
To enforce security on iFrames, we can:
• Ignore the iFrame;

• Include cross-origin information in our IntFile. If
the website changes, we have to change our Int-
File, so we have to monitor continuously this site
for any changes in Javascript or HTTP headers.

Currently, we have only implemented the first solu-
tion. We assume that iFrames can easily be avoided
on the websites we target. For now, we only use a
public key to check the integrity of the IntFile, with-
out metadata (date, revocation capabilities, ...). This
could be improved by using X.509 certificates for ex-
ample, but from our knowledge, there is no embedded
parser available for WebExtension without importing
a huge library such as (Strozhevsky, 2018). This con-
figuration is stored in the browser local storage.

5.2 Dynamic IntFile Retrieval

As seen previously, the IntFile can be stored on a non
secure storage. This enable us to store this file into
the same website as the one we are monitoring at a
well-known address: https://www.domain.com/.well-
known/site-manifest.json.

The plugin will have to fetch this file on a regular
basis, at least on each session startup, and once a day.
As we need our plugin to be fast, our strategy is to
load each file at browser startup. We assume that the
amount of monitored website will be small enough, so
that it will not block or slow the browser down nor in-
terfere with the user experience. If the retrieval does
not work, for example after the deletion of the Int-
File, a warning must and will be displayed to the user.
Then he can either choose to continue by using his
last cache entry (if exists) or to reject the connection.
For simplicity, the IntFile will be a JSON file, storing
the hashes, the HTTP headers we want to monitor and
a version number. Some other fields might be added
in the future (such as a public key to enable automatic
updates).

{
u r l : ’ l a b . w a l l i x . com ’ ,
v e r s i o n : 1 . 0 ,
h e a d e r s : [
{ name : ’X−Conten t−Type−Opt ions ’ ,

v a l u e : ’ n o s n i f f , n o s n i f f ’ } ,
{ name : ’ Cache−C o n t r o l ’ ,

v a l u e : ’max−age =0 , p r i v a t e , must−r e v a l i d a t e ’ } ] ,
s c r i p t s : [
{ s r c : ’ / s t a t i c / s c r i p t . j s ’ ,

i n t e g r i t y : ’ sha256−819 f04e570 . . . 9 aae97 ’ } ,
{ s r c : ’ / s t a t i c / s c r i p t 1 . j s ’ ,

i n t e g r i t y : ’ sha256−43 f f 0 3 e 7 a 5 . . . 3 0 f8e4 ’ } ] ,
}

Listing 1: IntFile.

5.3 IntFile Signature Verification

As we get the IntFile from an untrusted source, we
have to check that it was signed by the public key
stored in the plugin configuration. The file is signed
following the JOSE standard (IETF, 2018), with the
protected headers. The signature is done following
these steps:

1. Encoding payload as a base64 string;

2. Defining a header for metadata (signature algo-
rithm, ...) as a JSON object;

3. Encoding metadata as a base64 string;

4. Appending payload and metadata and sign the
whole string;

5. Appending the signature to the file.
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{
p a y l o a d : ’MGY1MGFjO . . . Tc2MzkK ’ ,
h e a d e r : ’OTRY2YwYWJ . . . j lNz0cK ’ ,
s i g n a t u r e : ’N2FlNTM . . . jk1NjAK ’

}

Listing 2: JOSE format.

If the signature verification failed, we prompt an
error message to the user. Then, there are two possi-
bilities: either stopping the navigation to this website
or continuing with the plugin deactivated only for this
specific website. Moreover, the user is able to config-
ure the duration while the plugin is disabled.

5.4 HTTP Header Verification

As seen previously, the policy enforcement is mainly
done through HTTP headers, like Content Security
Policy, Public Key Pins, XSS Protection, HTTP Strict
Transport Security... As we don’t trust the web server,
we must ensure that they are properly set and config-
ured. For our needs the Content Security Policy is the
most important header, as it allows us to define the
source where the browser might download external
scripts (and also deny inlined scripts) with the script-
src parameter. We also thought to use the parameter
require-sri-for (MDN, 2018) which enforces the pres-
ence of SRI for each Javascript defined. This header
is supported in Chrome and Edge but not in Firefox,
which means that we cannot count on this behavior
for our extension. Thus, we manually check that ev-
ery script tag has an integrity attribute.

HTTP headers are available through the onHead-
erReceivedListener() callback, from the background
plugin context. This callback can be synchronous or
asynchronous. As we need to inspect headers and
page content before the browser parses and constructs
the DOM, we have to use the synchronous call. The
headers chosen to construct the security policy are de-
fined in the IntFile. For each one of them, we need to
ensure that it appears only once in the server response.
If a header is duplicated, browser comportment is un-
defined and might take any (or all) of them into ac-
count.

5.5 Page Content Verification

The page content verification ensures that for each
script defined in the document, an associated hash has
previously been configured in the IntFile, so that no
untrusted Javascript will be loaded. The page content
can be retrieved from lots of callbacks, but we need
to ensure that the browser will not parse the DOM

nor execute Javascript before all the checks have been
realized. So we need to find a way to block the re-
sponse until our analysis is done. The better way
we found is to make a data filter with filterResponse-
Data() from inside the onHeaderReceivedListener().
The goal of parsing the whole document is to search
for every Javascript elements. DOM has a specific at-
tribute, called document.scripts which will retrieve all
the lists for any document. The latter method avoids
to reimplement a DOM parser. To get a proper re-
sult, we need to feed the DOM parser with the whole
document at once. The ondata event can be triggered
multiple times for a single page, so we cannot use it
directly to build our document. Instead, we define a
string that will contain chunks and then, before clos-
ing the filter, will give this string to the DOM parser,
as seen in listing 5.5.

l e t p a g e C o n t e n t = ’ ’
l e t f i l t e r = b rowse r . webRequest .

f i l t e r R e s p o n s e D a t a ( d e t a i l s . r e q u e s t I d )
l e t d e c o d e r = new TextDecoder ( " u t f −8")
l e t e n c o d e r = new Tex tEncoder ( )

f i l t e r . o n d a t a = e v e n t => {
p a g e C o n t e n t += d e c o d e r . decode ( e v e n t . d a t a )

}

f i l t e r . o n s t o p = e v e n t => {
l e t i s P a g e V a l i d = v a l i d a t e P a g e ( pageConten t , c o n f i g [ ’ s c r i p t s ’ ] )

i f ( c o n f i g [ ’ i g n o r e _ e r r o r s ’ ] | | ( a r e H e a d e r s V a l i d && i s P a g e V a l i d ) ) {
f i l t e r . w r i t e ( e n c o d e r . encode ( p a g e C o n t e n t ) )

}
e l s e i f ( a r e H e a d e r s V a l i d == f a l s e )

f i l t e r . w r i t e ( e n c o d e r . encode ( ’ Bad h e a d e r s ’ ) )
. . .
f i l t e r . d i s c o n n e c t ( )

}

Listing 3: Document retrieval.

The validatePage() function can then parse the
DOM, search for every scripts and:

• Returns an error if at least one script does not have
an integrity attribute, as the require-sri-for would
do;

• Returns an error if the hash provided in the at-
tribute does not match the hash provided in the
IntFile;

• Returns success if there are not any error.

By using the CSP parameter script-src, we ensure
that all the imported scripts come from an external
source (i.e., there is no inline script). Furthermore,
our plugin enforces the SRI checking from a trusted
hash pool. Some Javascript methods cannot be mon-
itored, such as importScript() in a WebWorker. These
loading methods do not provide any way to check the
integrity, so we recommend to avoid them.

5.6 Error Handling

All checks are done in the background context of the
script before rendering the page. We have no way
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Table 1: Average timings (in seconds) and relative changes
of the plugin overhead.

10 scripts 100 scripts 1000 scripts
No Integrity Attribute 0,373 2,28 24,18
With SRI 0,355 2,312 24,874
With Our Plugin 0,401 2,554 26,393
Relative Change 13% 11% 6%

to provide any user feedback since the method run-
time.sendMessage() is not instantiated in the user con-
text. The only way we found is to build an error page
providing information to the user on why the check
failed (IntFile was not up-to-date, signature verifi-
cation failed, some hashes were incorrect...) and to
prompt the error message afterward. The user can
then choose to override this error and to force the page
reloading.

5.7 Performance Analysis

Since the plugin interferes with the browsing expe-
rience of the user, we must limit its impact on the
browser efficiency. To check the validity of Javascript
inside the document, we use a method running in the
background context of our plugin and blocking the
request. This method does not interfere with other
requests or other tab activity in the browser. To ob-
serve the impact of the plugin on the page loading
time, we have made a benchmark by measuring it (in
seconds) with Firefox Development Tools on a couple
of pages. The plugin might impact the performances
at two steps of the algorithm: during the background
DOM building and while checking the page compli-
ance with the rules in the site-manifest. Both of them
are only executed on watched pages, meaning the im-
pact on non-supervised sites is just the time to check
if the domain belongs to the list of watched web-
sites. This benchmark is made with a local server dis-
tributing pages on a Firefox version 65.0 browser exe-
cuted on a computer with Intel Core i7-8550U proces-
sor and 16 GB of RAM for different types of pages.
To generate a pool of scripts, we have locally down-
loaded the library "jquery-3.3.1.min.js" (85 KB), and
added one space at the end of the latter file. Con-
sequently, the associated hashes are distinct for each
script. The results are summarized into Table 1.

These results show that the average overhead from
the plugin has a low impact on the browsing. We
run benchmarks on an unrealistic number of scripts to
amortize the imprecision of the Mozilla Firefox De-
velopment Tools timer. In practice, the difference of
behavior during the browsing is imperceptible for the
user.

6 CONCLUSION

In this article, we propose protocols to ensure the in-
tegrity of web scripts with a malicious web server.
These protocols allow a developer to deploy their pro-
gram on outsourced services, such as a cloud, without
having to grant any trust. Although focused on the
web applications, our protocols provide general solu-
tion, easily adaptable to distribution of any applica-
tions.

Our solution suggests several improvements. A
fine-grain management of versioning might be desir-
able, along with a dedicated implementation. How-
ever, this might partly be answered using a publicly
verifiable key management. Generalizing the type of
objects taken into account, as iFrames or images, is
an interesting enhancement regarding the compatibil-
ity of the plug-in. Managing multiple integrity files
along with chaining signatures seems to be a reason-
able approach to solve this issue. As seen in the im-
plementation, some way of loading Javascript (ex: im-
portScript()) cannot be checked as they do not provide
a specific way to include SRI hashes. We must focus
on these methods to ensure that an insecure Javascript
cannot be loaded by any script.
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