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Abstract: Farmers need smart tools to optimize their crops and production. They need other agricultural experts such as 
advisors, accounting companies and also systems and software tools for decision support. The proposed 
solution is a fuzzy decision support Environment for smart farming (Decifarm) intended to ensure better data 
structuration extracted from farms, automated calculations, reducing the risk of missing operations, while 
ensuring data security. We designed a modular architecture to carry out these problems: we first provide crops 
phenological stages from both historical and forecast weather open data as well as historical data from sensors 
previously implemented, located at the parcels, with large amounts of data stored into a No-SQL document 
database; second, we provide control of an automatic water system based on fuzzy logic; finally, a prototype 
of hardware and software environments was designed from open hardware components, open source 
languages and open data, promoting both interoperability and extensibility. 

1 INTRODUCTION 

Agriculture is a strategic area in many countries, one 
main objective being to improve production in both 
quality and quantity, both globally and through 
individual efforts. In addition, agriculture is currently 
facing major challenges such as climate change, 
increasing in the world population, reduction of 
agricultural areas for the benefit of artificial land, 
more and more drastic regulations, etc. (American 
Farm Bureau Federation, 2016). The work of farmers 
benefited from mechanization during the 20th century 
but it is still difficult, with parameters that may be 
predicted, such as wage costs or inputs quantity, but 
also unpredictable ones, such as the weather or 
diseases. Major issues remain the significant use of 
fertilizers without intra-parcel modulation, the high 
risk of error, especially with many types of crops at 
the same time, and then losses in terms of resources 
(energy, water), when their estimated quantities are 
higher than necessary, generating additional costs. 
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In this work, we propose a fuzzy decision support 
Environment for smart farming (Decifarm), aiming at 
providing better information on environment, 
reducing risk of missing operations with automated 
calculation, and, at last, ensuring data security. We 
designed a modular architecture to carry out these 
problems. First, we provide estimations of crops 
phenological stages based on both historical and 
forecast weather open data and data issued from 
sensors located on the parcels, large amounts of data 
being stored into a No-SQL document database; 
second, we provide a an automatic water control 
process based on fuzzy logic; finally, a hardware and 
software prototype was designed based on open 
hardware components, open source languages and 
open data, promoting both interoperability and 
extensibility. 

The remainder of this paper is organized as 
follows. Section 2 presents the background and 
existing solutions. Then, in section 3, we detail our 
proposal and its main components. Section 4 is 
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dedicated to a presentation of the implementation 
with an evaluation of our proposal. Finally, we 
conclude and present our future work in section 5. 

2 BACKGROUND 

In the following, we present sensor networks, the 
Precision Farming (PF) existing solution, and 
mathematical background. 

2.1 Wireless Sensor Networks 

A Wireless Sensor Network (WSN) is an ad hoc 
network, most nodes of which being micro-sensors 
collecting and transmitting independent 
environmental data. The locations of nodes are not 
necessarily predetermined, and sensors may be 
randomly scattered on a geographical area of interest.  

Data are routed to a node recognized as a 
"collection point", called sink node, that can be 
connected to the user network via the Internet, a 
satellite, etc. Users can send requests to other nodes 
of the network, specifying the type of data required 
and then collecting the captured environmental data 
through the sink node (Cambra C. et al., 2017). Joint 
advances in microelectronics, wireless networks and 
software have made possible to produce micro-
sensors with only a few cubic millimetres volume, at 
a reasonable cost. Such an embedded device can 
integrate sensors providing digital measures of 
physical quantities (temperature, humidity, 
vibrations, radiation, ...), a processor with memory, 
input/output peripheral devices as well as a wireless 
transmission module. 

In agriculture, micro-sensors may be integrated in 
the soil, and can answer to queries about the state of 
the field (e.g., detect driest areas in order to water 
them first). Digital agriculture is an essential step 
towards precision farming, which is one of the basic 
elements of resource-saving technologies (Skobelev 
P.O. et al., 2019). It requires both data geolocation 
and characterization of intra-plot heterogeneity 
(spatial distribution, number of sensors per plot, …).  
Many environments have been designed, especially in 
the form of Web and/or mobile applications, to meet 
agricultural needs and answer to problems faced by 
farmers in modern agriculture. 

 
4 https://www.terre-net.fr/ 
5 https://www.agriaffaires.com/ 
6 https://www.lameteoagricole.net/ 

2.2 Existing Solutions 

Terre-net 4  offers to follow live news related to 
agriculture while choosing a specific theme: news, 
machinery, culture, market flows. It is also possible 
to get the latest agricultural weather forecast 
(precipitation radar sensor). 

Agriaffaires 5  offers various types of agro-
equipment, forestry, handling or maintenance of 
green spaces and includes a real estate for sale and job 
offers. 

There is a plethora of weather forecast 
applications, but Agricultural Weather 6  stands out 
because it is strictly designed for farmers. 
Information is refreshed every hour, and includes 
forecasts about precipitation, humidity, temperature, 
wind speed and direction, atmospheric pressure and 
cloudy movements, etc. 

Field Navigator7  application is an environment 
for drawing parcels, taking into account obstacles. 
The editor guarantees precision, even in poor 
visibility conditions. 

(Cambra et al., 2019) present a powerful tool 
enabling real-time decisions based on data such as 
variable rate irrigation, or selected parameters from 
field and weather conditions. 

These current solutions, where data is retrieved by 
means of services provided by external companies are 
unsatisfactory to farmers, for several reasons. 

First, such solutions are exclusively based on 
technological advances, yet the farmers’ participation 
in the innovation process and the technology 
customization on their needs appear to be quite 
limited. Next, farmers have generally to adapt to 
standard solutions suited for the greatest market 
share. Therefore, the proposed solutions do not fully 
suit the local heterogeneous agricultural needs. 
Nevertheless, customized solutions realized by 
businesses would be too expensive. 

The role of farmers in the innovation process is 
not clearly defined: proposed solutions (software, 
innovations, data involved, and decisions via a “black 
box”) are often proprietary ones, the farmer being 
considered as an end-user more than as an innovation 
actor, which would promote their autonomy. 

Then, farmers’ collaboration / participatory 
control on hardware / data / knowledge sharing / 
decision support is low. Indeed, providers centralize 
both data and “black box” decision tools, without a 
real collaboration between farmers in a region. In 

7 https://play.google.com/store/apps/details?id=lt.noframe.f
armisfieldnavigator.free&hl=en_US 
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addition, according to the American Farm Bureau 
Federation, farmers are growing awareness and 
concerns about the access to and the use of their farm 
data and the related major shift in role and power 
relationships (American Farm Bureau Federation, 
2016). Finally, (Kritikos, 2017) noticed that “As a 
result of these asymmetries, farmers’ own particular 
needs and rights may be ignored, and inequalities are 
at risk of growing due to data-driven insights, rather 
than be reduced” 

2.3 Weather Data Sources 

Weather data can be extracted from surface synoptic 
observations (SYNOP) circulating on the Global 
Telecommunication System (GTS) of the World 
Meteorological Organization (WMO). The available 
atmospheric parameters are either measured 
(temperature, humidity, wind direction and force, 
atmospheric pressure, precipitation depth) or 
observed (sensitive weather, description of clouds, 
visibility) from the Earth's surface. Data are extracted 
from both Opendatasoft 8  (historical data) and 
Openweathermap 9  (weather forecast) open data 
platforms, via a dedicated Application Programing 
Interface (API). 

2.4 Mathematical Foundations 

2.4.1 Fuzzy Logic 

The fuzzy set theory has been initially introduced by 
L. Zadeh (Zadeh, 1965). It may be seen as an 
extension of the classic set theory to imprecisely 
defined sets and provides the basis for fuzzy logic. A 
fuzzy set F of a set E is defined by a membership 
function 𝜇ி  from E to ሾ0; 1ሿ, which associates each 
element x of E its membership degree  𝜇ிሺ𝑥ሻ, to the 
subset F, i.e.: x belongs "more or less" to F. When this 
membership function is normalized (i.e. a 𝑥  value 
from E such as 𝜇ிሺ𝑥ሻ ൌ 1  exists), 𝜇ிሺ𝑥ሻ  is then 
interpreted as the chance that F takes the value 𝑥 
(𝜇ிሺ𝑥ሻ is then a possibility distribution). We call it a 
“type 1 fuzzy set”. In practice, we associate symbolic 
variables (e.g. words in everyday language such as 
"small", "large", etc.) to fuzzy subsets, then called 
“linguistic variables”, thus automating reasoning 
during the implementation of fuzzy systems. 
Linguistic predicates (Zadeh, 1975) enable to reason 
on fuzzy (i.e. imprecise) concepts issued from 
experts’ advices. To automate the aggregation 

 
8  https://data.opendatasoft.com/explore/dataset/donnees-

synop-essentielles-omm%40public/table/?sort=date  

process of these linguistic predicates, classical fuzzy 
operators, namely T-norms and T-conorms (e.g. min 
and max operators) are usually used. 

2.4.2 Choquet Integral 

Choquet's integral (Choquet, 1953) is widely used in 
multi-criteria decision support. With respect to a 
commonly made hypothesis, we consider here that 
the decision maker can formulate the possible 
dependencies between factors taken two by two. 
Under this hypothesis, the associated capacity is 2-
additive and the Choquet’s integral may be expressed 
using formula (1): 

𝐶ℎ𝑜𝑞𝑢𝑒𝑡µሺ𝑥ଵ, 𝑥ଶ, … 𝑥ሻ= ∑ ሺ𝛾. 𝑥ሻ െ
ୀଵ

ଵ

ଶ
∑ 𝐼ห𝑥 െ 𝑥ห,∈ே  

(1)

With: 
𝑥: input value for criterion i 
𝛾: average contribution of criterion i to the result. 
𝐼 : coefficient corresponding to a positive or 

negative interaction between criteria i and j. 
More general expressions of Choquet's integral 

exist (Grabisch, Labreuche, 2008), but the interest of 
this writing comes from its simplicity of 
interpretation, clearly appearing as a generalization of 
the classical weighted sum which may lead to certain 
contradictions (Capet, Delavallade, 2013). 

3 A FUZZY DECISION SUPPORT 
ENVIRONMENT FOR SMART 
FARMING 

3.1 Challenges and Approach 

Farmers need not only third parties to help them in 
making decisions and optimizing their crop 
production, but also systems and applications able to 
provide answers to several questions, as illustrated by 
the figure 1 below. 

 

Figure 1: A synthesis of problems faced by farmers. 

9 http://openweathermap.org/api  
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The proposed solution consists in designing a 
decision support environment for smart farming, 
based on open source / open data / open hardware, and 
specifically dedicated to farmers.  

This environment is composed of three modules, 
which are 1) the sensor network, 2) the module in 
charge of detecting phenological stages, and 3) the 
module in charge of estimating required watering 
duration. Unlike others low-cost systems like 
(Cambra et al., 2017), our irrigation control system 
provides automating reasoning thanks to linguistic 
predicates managed by agricultural experts. 

Our environment relies on the AgriLab® 
platform, a “new generation” agronomic laboratory 
which is, among others, a rapid prototyping platform 
in digital technologies (robotics, collaboration 
platforms, big data processing and decision support 
tools) and in agroequipments. This platform, which 
promotes the culture of knowledge sharing, is part of 
the worldwide movement of free knowledge 
exchange for a more sustainable agriculture.  

3.2 Sensor Networks 

Data are very expensive in the agriculture domain. 
Expert companies often refuse to make their data 
available, even for research. In addition, in order to 
test our fuzzy decision support system, we need a 
certain degree of accuracy, which open source data 
sets cannot provide in agriculture. That’s why we 
decided to collect our own data for more availability 
and flexibility, according to our needs. 

The main idea is to create a network of sensors 
attached to agricultural plots to measure physical 
variables, enabling to periodically store them 
remotely via a long range and low consumption 
communication protocol in open hardware. In the 
following parts, data are extracted from “do-it-
yourself” humidity and temperature sensors network, 
based on open hardware and open data.  

3.3 Detecting Phenological Stages  

Phenological stage (φ) is a significant indicator 
providing information about the growth rate of a 
plant. It may be captured in different ways: in 
addition to direct visual inspection of plants, there are 
examples of calculations based on growing degree 
days (GDD), on satellite images or images captured 
by drones (e.g. normalized difference vegetation 
index (NDVI)). After their analysis, we can then 
compute the level of chlorophyll and detect the 
phenological stages. 

3.3.1 Proposed Environment 

We opted for a detection of phenological stages via 
GDD in order to be as close as possible to the farmer's 
concerns. In fact, plants grow cumulatively in stages 
strongly influenced by the ambient temperature. This 
method is widely used in the world of agriculture to 
identify the growth stages of crops, to predict the 
occurrence of pests dates, the date of flowering, the 
date of maturity of crops, so that the farmer to 
respectively process, provide inputs (fertilizer, water) 
and harvest at the right time. 

The originality of our approach is both to 
periodically extract data from open source historical 
data APIs, and sensors located in their fields. GDD 
are also calculated in advance from weather forecasts. 

The calculation method consists in applying a 
formula to minimum and maximum temperature for a 
given day and adding them as long as the crop year 
progresses, from sowing to harvest. The 
correspondence between GDD values and 
phenological stages (example: germination, 
emergence, 1 leaf, 3 leaves, early tillering, late 
tillering) differ according to the types of culture 
(maize, corn, etc.). The formula is (2): 
 

GDDi = ((Tmini + Tmaxi ) /2) – Tbase (2)

With: 
Tmini: minimum temperature on day i ; 
Tmaxi: maximum temperature on day i ; 
Tbase: zero vegetation temperature. 
 
Figure 2 illustrates the process of phenological 

stages detection based on two input data sources: on 
the one hand, data extracted from the database which 
stores the historical values of temperature sensors 
(Sensor), and, on the other hand, the temperature data 
get through APIs invocation (SYNOP model). 
Phenological stages φi are computed from 
temperature values.   

 

Figure 2: Process of phenological stages calculation. 

3.3.2 Analysis 

Farmers can look at the phenological stages of their 
crops and modify TBase after authentication on the 
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Web platform. Figure 3 shows the corresponding use 
case diagram: 

 
Figure 3: Phenological stages use case diagram. 

When a user requests the phenological stage 
interface, the GDD is computed from the two data 
sources (API and Sensor) with the same formula. 

3.4 Calculating Watering Duration 

In this part, we propose a fuzzy system to calculate 
watering duration, expressed in minutes. 

3.4.1 Proposed Approach 

A fuzzy system takes real variables as input. It 
processes them through a fuzzification interface to 
obtain fuzzy input variables. The inference 
mechanism applies fuzzy rules to fuzzy input 
variables and finally sends them to a defuzzification 
interface to get real output variables. 

We apply this principle on the watering system, 
which may take several input factors such as nature 
of soil, soil humidity, weather forecast, temperature, 
the slope of the soil, time, etc.  In the case of only 2 
factors: soil humidity and air temperature, inference 
rules apply according to the following rules (3): 

 IF temperature is {t_value} AND 
soil_humidity is {h_value} THEN 
watering_duration is {w_value} 

(3)

Inference rules associated to values are 
summarised into table 1: 

Table 1: Inference rules for watering duration. 

Rule 
nr 

Premise 1: 
temperature 
is… 

Premise 2: 
soil humidity 
is… 

Consequent: 
watering 
duration is…

1 Boiling hot Dry  Long 
2 Hot Moist Medium
3 Hot Dry Long 
4 Boiling hot Moist Medium 
5 Freezing cold Moist Short 
6 Freezing cold Wet  Short 
7 Cold  Dry Long 
8 Mild Moist Medium 
9 Mild Dry  Long 
10 Cold Wet  Short 

Temperature values are in the range [0 ... 50] 
(degrees Celsius). For soil humidity, the values 
belong to [0… 35], and finally watering time, values 
are between 0 and 100 minutes. The following figures 
4, 5, and 6 illustrate the used membership functions 
based on fuzzy logic applied to irrigation: 

 

Figure 4: Temperature fuzzy input. 

 

Figure 5: Humidity fuzzy input. 

 

Figure 6: Watering duration fuzzy output. 

3.4.2 Analysis 

The application enables the farmer to consult the 
watering time, to receive alerts, to look at weather 
forecasts, API and sensor data. 
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Figure 7 illustrates the corresponding relative use 
case diagram: 

 
Figure 7: Watering duration use case diagram. 

The fuzzy logic algorithm takes the last recorded 
soil temperature and soil humidity values as input to 
calculate the required watering duration (in minutes). 

4 PROOF OF CONCEPT 

This chapter deals with the design and production of 
a prototype. 

4.1 Technical Choices 

The Arduino Uno WiFi Rev 2 is designed around the 
new ATmega4809, u-blox Nina W102 WiFi module 
and an integrated inertial measurement unit. 

The DHT11 sensor10 measures both humidity and 
temperature. It is able to measure temperatures from 
0 to + 50 ° C with an accuracy of +/- 2 ° C and relative 
humidity rates from 20 to 80% with an accuracy of 
+/- 5%. A measurement can be made every second. 

The communication protocol depends on which 
characteristics you base yourself when making your 
choice, namely: memory requirement, battery life, 
number of nodes, transfer speed, range, etc. 

Many communication protocols exist. For the 
prototype, we chose Wifi despite its limited range, 
UniLaSalle's experimental plots being located within 
a radius of a few hundred meters only. In the future, 
we will probably use Zigbee which consumes less 
energy and supports a larger number of nodes, since 
we don't manage very large datasets in real-time. 

A far as software is concerned, we choose Flask, 
an open-source Python web development framework, 
and MongoDB, a database created in 2009, 
commonly defined as a NoSQL document database, 
and storing data as documents in a JSON format. 

Python is an open source interpreted 
programming language created in 1991 by the 

 
10 https://learn.adafruit.com/dht 

programmer Guido van Rossum. Scikit-Fuzzy is a 
library of fuzzy logic algorithms written in Python 
language. We chose Spyder as Integrated 
Development Environment (IDE). 

We designed C program for Arduino with the 
Arduino IDE, with both WiFiNINA.h and DHT.h 
libraries. 

4.2 Sensors Network and Detection of 
Phenological Stages 

This part is devoted to the “Detection of phenological 
stages” part of the prototype. 

Figure 8 shows the class diagram. It is based on 
two entities which are "measure" (data retrieved from 
sensors) and "calculatedValue" (GDD). 

 
Figure 8: Phenological stages class diagram. 

The base temperature (Tbase) depends on the 
chosen culture by users. After choosing their culture, 
users can consult GDD and the corresponding 
phenological stages. Every 24 hours at midnight, a 
job recovers the temperature values from the previous 
day, calculates the GDD and determines the 
corresponding phenological stages, from the 
information given in the literature. 8 temperature 
values per sensor and per day are extracted from the 
database (i.e. one measurement every 3 hours). The 
maximum and minimum temperatures are determined 
for each day and the degree-days are calculated from 
the date of sowing.  

After configuration of the sensor network, the 
next step is to display historical data, as illustrated in 
figure 9. 

 
Figure 9: Historical data from sensors. 
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To compare with the values of the sensors, we extract 
data from APIs (temperature, humidity and precipitat-
ion) to provide several data sources to users (figure 10): 

 
Figure 10: Data get from the opendatasoft API (SYNOP). 

The interface below (figure 11) displays graphs 
with GDDs and phenological stages: 

 
Figure 11: Graphs interface (GDDs and phenological 
stages). 

Phenological stages depend on temperature values 
coming from different sources (sensors and API) 
which do not always deliver the same values. We 
shall therefore let the user choose the reliability of 
each sources himself, so that he/she can finally 
choose the most suitable phenological stage. For this, 
users must first assign values from 1 to 10, according 
to their preferences, to evaluation criteria, as shown 
in the table below: 

Table 2: Characteristics of data sources according to an 
expert. 

Criteria 1 2 3 4 5 6 7 8 9
C1        

C2          

C3          

C1&C2          

C1&C3          

C2&C3          

With Ci: evaluation criteria such as proximity, error, etc. of 
data sources.  

Experts can assess data sources by the means of 
these criteria. Table 3 shows an example of data 
sources evaluation: 

Table 3: Data sources evaluation. 

Data source Properties Evaluation 

Sensor C1 

C2 

C3 

0.8 

1 

0.5 

API C1 

C2 

C3 

0.2 

0 

0.8 

We have applied Choquet's integral to order data 
sources according to the user's preferences. 
Phenological stages detection is an essential criterion 
to know not only the growth rate of the plant but also 
to give an idea on the actions to do. 

4.3 Calculation of the Watering 
Duration 

This section is devoted to the “calculation of the 
watering duration” part of the prototype, based on 
fuzzy logic. 

Figure 12 shows the class diagram. It is based on 
two entities which are "measure" (data retrieved from 
sensors) and "computed value" (fuzzy system). 

 

Figure 12: Watering duration class diagram. 

4.3.1 Implementation 

To display the recommended watering duration, we 
designed an algorithm based on fuzzy logic, which 
takes the soil temperature and humidity values as 
input. The interface presenting the required watering 
duration is illustrated in figure 13. 
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Figure 13: Watering rules. 

We defined our fuzzy rules, fuzzification and 
defuzzification thanks to the "Sikkit fuzzy" python 
library. Here is an extract of the code, from the 
watering class: 

Watering is strongly linked to humidity and 
temperature, but it could be interesting to add input 
variables which can also affect the watering duration 
such as the inclination of the soil, its nature (clay, 
sandy, humus, silty, etc.). 

5 CONCLUSION 

Nowadays, computerization of a domain is no longer 
considered as an evolution because we are used to 
finding IT everywhere. The need for computerization 
is justified by the need to have systems that replace 
humans to perform complex calculations, instant 
operations, store, archive, ... Finally, these systems 
operated to help us make our decisions, like the fuzzy 
decision support environment that we designed: 
indeed, its purpose is to guide the users to follow their 
crop stages and take the necessary precautions to 
guarantee better production in both quality and 
quantity. It is structured around three main 
components: a sensors network, phenological stages 
detection and watering duration calculation, based on 
fuzzy logic. 

The hardware environment, based on open 
hardware, was chosen to respect the constraints of 
maintenance, cost and scalability. We chose Web-
based technologies and Python as software 
environment for reasons of availability and 
extensibility of the environment. Indeed, to add a 
module that analyses satellite images or drones 
images to follow crops, we can simply integrate a 
python code into a Flask application which limits any 
interoperability problems. 

In the future, we will propose the following 
evolutions: estimate the final production from the first 
phenological stages, add a module for analysing 
satellite images to reinforce the detection of the 

phenological stages and add other input variables to 
calculate the watering duration. 
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