
A Conceptual Framework for a Flexible Data Analytics Network

Daniel Tebernum and Dustin Chabrowski
Fraunhofer Institute for Software and Systems Engineering,

Keywords: Data Analytics, Distributed System, Edge Computing, Data Provenance, Architecture.

Abstract: It is becoming increasingly important for enterprises to generate insights into their own data and thus make
business decisions based on it. A common way to generate insights is to collect the available data and use
suitable analysis methods to process and prepare it so that decisions can be made faster and with more confi-
dence. This can be computational and storage intensive and is therefore often outsourced to cloud services or
a local server setup. With regards to data sovereignty, bandwidth limitations, and potentially high charges, this
does not always appear to be a good solution at all costs. Therefore, we present a conceptual framework that
gives enterprises a guideline for building a flexible data analytics network that is able to incorporate already
existing edge device resources in the enterprise computer network. The proposed solution can automatically
distribute data and code to the nodes in the network using customizable workflows. With a data management
focused on content addressing, workflows can be replicated with no effort, ensuring the integrity of results and
thus strengthen business decisions. We implemented our concept and were able to apply it successfully in a
laboratory pilot.

1 INTRODUCTION

Nowadays, data is crucial when it comes to fasten pro-
cesses, optimizing business models, and uncovering
knowledge that could lead to an advantage over com-
petitors (Otto and Österle, 2016). Many companies
see data as a resource they can mine, process, and
then use to their advantage. Often, data is analyzed
to detect hidden patterns or to get better insights into
it (Miloslavskaya and Tolstoy, 2016). It is therefore
essential that enterprises have a data friendly environ-
ment, where they can exploit the full potential of their
data anytime and in the most flexible way. When it
comes to harnessing their own data, enterprises face
a variety of challenges. One can be the mere amount
of available data, that is at the same time rapidly in-
creasing. Ernst & Young claim that the “exponential
data growth is a fundamental problem that is contin-
uing to overwhelm most businesses, and it is accel-
erating” (Cudahy et al., 2016). Besides volume, also
variety and velocity in data can be a huge challenge.
In literature, these properties are often mentioned un-
der the term Big Data (Chen et al., 2014). But even if
the available data does not meet all requirements de-
fined by the big data term, it can still be a hard task
to get the needed insights into ones own data (Gan-
domi and Haider, 2015). Strategies like outsourcing

data and its processing to a cloud service are not al-
ways feasible and financially reasonable. Also, a lim-
ited upstream capacity can be an obstacle when work-
ing with terabytes of data. Another strategy may be
to build a local cluster that implements concepts like
a data lake to run data processing pipelines. Here,
too, possible costs for obtaining suitable hardware
have to be taken into account. In addition, the data
must first migrate to these systems. This may cre-
ate unwanted duplicates that require additional stor-
age capacity. On top of that, there is a risk that re-
sources will be wasted, since much of the data in a
data lake could be abandoned or forgotten, thus creat-
ing so-called data swamps (Buyya et al., 2018). A fur-
ther challenge for enterprises becomes apparent when
looking at the topic of data sovereignty. Both strate-
gies mentioned above can be vulnerable in this case.
By uploading business relevant data to the cloud, it
needs to be clearly defined to what extent the enter-
prise’s own data sovereignty has been preserved when
third parties have access to it (De Filippi and Mc-
Carthy, 2012). It should also be noted that the idea
of data sovereignty is not limited to the outer bound-
aries of an enterprise. The exchange of data between
internal departments can already be an insurmount-
able obstacle because of sensible data or licensing is-
sues. When using data for business decisions, addi-

Tebernum, D. and Chabrowski, D.
A Conceptual Framework for a Flexible Data Analytics Network.
DOI: 10.5220/0009827402230233
In Proceedings of the 9th International Conference on Data Science, Technology and Applications (DATA 2020), pages 223-233
ISBN: 978-989-758-440-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

223

tional guarantees in reproducibility have to be made.
Data processing must be repeatable at any time in or-
der to strengthen the confidence in decision-making.
Finally, for data-driven enterprises, it must be en-
sured that the environment for working with data is
robust and highly available. Central cloud and even
local services may be subject to malfunctioning mak-
ing data-driven enterprises vulnerable to operational
downtimes. For instance, in the year 2017, 600 flights
were cancelled due to a failure, resulting in a loss of
$112 million1.

To overcome these problems, we suggest that
data-driven enterprises extend their existing data pro-
cessing environment by including the already avail-
able computing and storage resources at the edge of
the computer network. This should be done in such
a way that both the edge devices and local servers
or cloud resources can be seamlessly integrated into
one network. Our main contribution in this paper is
therefore a conceptual framework that describes how
to build a system that is flexible in terms of supported
devices and executable code and thus forming a data
analytics network. It is intended to be a template that
addresses the challenges mentioned above and offers
features such as availability, robustness, scalability,
flexibility, and reliability when working with data. In
the following we will further motivate the need for
such a solution based on an enterprise use case. We
will then list the relevant requirements and present our
concept. A specific implementation of our concept
will be developed and evaluated to show that we met
our requirements. Finally, we compare our approach
to existing solutions from literature and practice and
discuss our results.

2 USE CASE EXAMPLE

Here, we illustrate an enterprise use case that is based
on an existing real world scenario. It will motivate
why a flexible and scalable data analytics network,
capable of using existing edge devices, may be desir-
able for data-driven enterprises. The involved enter-
prise is an active player in the pharmaceutical sector.
It carries out its own development and research and
also produces its own medications. Due to this multi-
tude of activities, a great amount of data is generated
on a daily basis. It is stored locally on end devices
of the employees, a central network share, or in the
cloud. The data is already being used for daily work
in various departments. But often, it is consumed

1https://www.datacenterknowledge.com/archives/2017/
05/30/british-air-data-center-outage-feeds-outrage-at-airli
ne-cost-cuts

where it is generated, resulting in data and knowl-
edge silos. Within the company, it often appears that
interesting and relevant data to one’s own work can
only be found by accidental contact with people from
other departments. This is particularly important for
the employed data scientists that want to gather more
insight into the data and extract knowledge from it.
As we know from literature, data scientists tend to
spend around 80% of their working time in finding
suitable data, maybe more (Deng et al., 2017). The
enterprise is fully aware of this problem and would
like to introduce a so-called data catalog. Data cat-
alogs store metadata about data and thus are able to
provide a helpful search functionality. Metadata can
contain many different types of information. From
technical information like file format and file size,
textual descriptions, and statistical analysis to infor-
mation about the data owner and the data’s application
areas. In general, “metadata is key to ensure that re-
sources will survive and continue to be accessible into
the future” (NISO Press, 2004). The more meaningful
metadata is available, the better the search functional-
ity in the data catalog operates. However, due to the
large amount of data, it is no longer realistic to in-
sert metadata into the catalog by hand. Still, a lot of
metadata can be extracted using automated solutions.
Some methods are quite trivial, while others can be
highly complex. In any case, there will be a very large
number of metadata services, since each type of data
has different requirements for the extraction of meta-
data.

In combination with the potential sensitivity of the
data, a cloud-only solution is not preferred. The com-
pany’s employees are equipped with personal com-
puters, which are far from being fully utilized and
therefore have free computing and storage resources.
These resources should help to retrieve the metadata
for the data catalog. However, existing servers or
cloud capacities should not be completely left out,
as they could be included in more complex calcula-
tions. Since business decisions can be made on the
basis of metrics from the data catalog, the extraction
of metadata should also be reproducible. Further-
more, some data is only accessible to a small circle
of people. The extraction of metadata can therefore
not be performed on any computer, but only on des-
ignated machines. The IT department of the company
therefore wants a uniform concept for the integration
of the different types of end devices into a company-
wide analysis network. In particular, the fact of regu-
larly joining and leaving devices, possible errors and a
feasible scaling of the solution should be considered.
The metadata extraction services are implemented by
different teams and require different domain knowl-

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

224

edge. Therefore, the implementation of these services
should focus on the functionality, i.e. on the what, and
not on the how.

3 REQUIREMENTS

In this section, the most important requirements for
our solution are presented, that, at the same time, de-
fine the objectives we want to reach. The require-
ments are derived from a literature analysis with focus
on data analytics platforms (see Chapter 7) in combi-
nation with the already mentioned challenges in the
previous two chapters. Table 1 shows the require-
ments in a structured way. In the following we will
provide a more detailed explanation of these require-
ments.

Devices that participate in the analytics network
should be able to perform any kind of given analy-
sis task, as long as these tasks are in general techni-
cally compliant to our system (FR1). This reduces the
number of different types of participants in the net-
work, which, in turn, minimizes overall complexity.
Each device itself decides how much computing and
storage resources should be donated to the network
(FR2). If it is known that the resources of a device
must be utilized more regularly, this can be taken into
account in the configuration for the analysis network.
In general, however, the goal is that particularly un-
derutilized devices in the enterprise network should
donate their resources (NFR1) so there will be no
limitations in daily business and no additional costs
for hardware. The targeted solution should therefore
be able to support a wide range of different hardware
and operating systems (NFR2). This will also avoid
the need to develop specific solutions for each type
of device. With every additional device joining the
network, the probability of them leaving it increases,
whether intentionally or due to an error. It is the re-
sponsibility of the system to deal with such events ap-
propriately in a self-orchestrating way, thus allowing
the leaving and joining of devices at any time (Hoque
et al., 2017) (FR3). To derive maximum benefit from
the network, it should not be specialized in process-
ing a particular type of data (FR4). This is mainly to
enable a high level of domain independence. Appli-
cations for data analysis are often structured so that
the programming language for the application logic,
the data format, or the runtime environment are pre-
defined. In order for the network to remain of interest
in the future and to lower the entry barrier for devel-
opers, no major restrictions should be placed on the
choice of programming language (NFR3). Looking
at analyses, they are rarely atomic and must necessar-

ily be performed by a single device. Often analyses
can be divided into sequential and parallel steps. The
description of an analysis is therefore to be defined
using a workflow notation, which in turn is to be used
as a recipe by the network to perform the analysis it-
self (FR5). By composing workflows of smaller tasks,
developers can also easily reuse already existing solu-
tions. As certain responsibilities and capabilities still
need to be established in a decentralized network, an
effective orchestration of the resources becomes a ma-
jor challenge (Hoque et al., 2017). Therefore, our
solution must be able to identify free capacities and
distribute tasks in our analytics network appropriately
(NFR4). In addition to the pure orchestration of re-
sources, the distribution of data and code necessary
for the analyses is also to be automated (FR6). Since
the network is expected to handle a large amount of
data, the distribution of data and code must be able
to scale practically (NFR5). Sometimes, one does
not want to distribute data or even code into a net-
work that is not trusted one hundred percent. We al-
ready discussed the need for data sovereignty. The
system must be able to restrict the execution loca-
tions and distribution of data and code (FR7). It
should be noted that the result of an analysis is not
very useful if it cannot be reproduced anymore (Deel-
man and Chervenak, 2008). While this is a common
thing when it comes to scientific workflows (Liu et al.,
2015), this is also crucial for data-driven enterprises,
as their business decisions are powered by generated
data insights. Thus, capturing the whole environment
of such processes is required to enable this essential
feature (Nekrutenko and Taylor, 2012) (FR8). To re-
duce the dependency and costs of upstream traffic to
external cloud services, the system must be powerful
enough to distribute code and data as well as schedul-
ing tasks solely inside the network (NFR6). Since this
comes along with a number of potential error sources,
failure and fault tolerance must be provided to execute
analyses effectively (NFR7).

4 CONCEPTUAL FRAMEWORK

4.1 Analysis Tasks

As described in the previous section, we want to give
the opportunity of participating in our analytics net-
work to as many computers in the network as possi-
ble. The solution should not be coupled to a specific
hardware architecture and should support the most
common operating systems. For this purpose, it is
necessary to create an abstraction layer that allows
the encapsulation of executable code. Typically, there

A Conceptual Framework for a Flexible Data Analytics Network

225

Table 1: List of requirements to the Data Analytics Network.

Abbrev. Requirement

FR1 Nodes inside the network can execute heterogeneous analysis tasks.
FR2 Nodes can specify how much computation power and storage they want to donate.
FR3 Nodes can join and leave at any time.
FR4 Generic types of data can be processed.
FR5 Analyses are defined and executed as workflows.

Fu
nc

.R
eq

.

FR6 Distribution and execution of tasks and data in the analytics network must be done autonomously.
FR7 The scheduling can be restricted to privacy, responsibility, and data governance constraints.
FR8 Workflows are fully reproducible with guarantees on the data and code used.

NFR1 Existing but idle company resources can be incorporated.
NFR2 Analyses can be run on heterogeneous devices.
NFR3 There are no programming language restrictions for implementing analysis tasks.
NFR4 Available resources should be orchestrated in an efficient way.
NFR5 Analysis code and data is distributed in a scalable way.

N
on

-F
un

c.
R

eq
.

NFR6 Upstream traffic to external cloud services can be reduced.
NFR7 A failure and fault tolerance provides high availability and robustness.

are two methods to achieve this. The first method is
classical virtualization. This creates a guest system
on the host system in which any code can run encap-
sulated. However, this method is often too compu-
tational and memory intensive, as it usually requires
the virtualization of a complete operating system. An-
other possibility is the packaging of code inside a con-
tainer environment. This provides a more lightweight
form of virtualization that reuses existing components
of the operating system. These packages, sometimes
called container images, also have an advantage when
it comes to distribution, as they are smaller and thus
have lower bandwidth cost. In essence, a container
image can be handled like a regular file and thus
be easily distributed. In addition, this technology is
widely supported (Morabito et al., 2015). Because of
these properties, we decided to use container images
as an important part of our concept (FR1, NFR2). By
utilizing container images, we can also cover the re-
quirement of being programming language indepen-
dent (NFR3). Within a container, arbitrary environ-
ments can be created and thus also different compilers
or interpreters can be used. This is intended to keep
the analytics network attractive for different types of
developers, as there is no need to learn a specific lan-
guage. In addition, this encapsulation adds an addi-
tional isolation between the host system and the ex-
ecuted analytics code. To reschedule a failed task at
any time and without side-effects, the Analysis Task
(see Fig. 1 center) itself needs to be stateless and
idempotent (FR8, NFR7). Because of this, we can
avoid the need of capturing, distributing, and recreat-
ing previous states from other nodes.

A complete analysis rarely consists of a single task
but requires various operations on a dataset. There-
fore, this set of tasks is assembled with a workflow

model based on a directed acyclic graph (DAG). The
DAG is expressive enough to incorporate sequences,
conditions, and parallelism as well as tasks and data
dependencies. For scientific workflows, this model is
often already sufficient as long as the workflow can
be reproduced (Liu et al., 2015). To describe such
workflows, we use a declarative Workflow Definition
file (see Fig. 1 left top) (FR5).

As a general concept, we chose files to contain
the input and output data of an Analysis Task. Con-
sidering the existing amount of heterogeneous data
sources, the ubiquity of files allows to integrate a
wide range of data types (FR4). For example, tabu-
lar data, documents, and multimedia can be persisted.
This even applies to native technologies like relational
or document-oriented databases and key-value stores.
To include streaming data, e.g. for IoT analytics,
these would be batched into files. In general, anything
that can be represented as a file can be processed by
the analytics network.

4.2 Analytics Network Orchestration

The management of the available network resources is
done by an Orchestration Component (see Fig. 1 left).
It is responsible for distributing Analysis Tasks to the
Worker Nodes (see Section 4.3) in the network in a
meaningful way. To make this possible, the Worker
Nodes need to inform the Orchestration Component
in regards to their hardware properties, like memory
and processing capability, their current working sta-
tus, and their working load. Based on this, the Or-
chestration Component is responsible for finding an
adequate Worker Node to place an Analysis Task on
(FR2, FR6, NFR4).

In order to allow the Orchestration Component to

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

226

Workflow
Definition

«end device»
StorageNode

«end device»
StorageNode

«end device»
StorageNode

«container»
StorageHandler

«container engine»

«end devices»
StorageCluster

«end device»
WorkerNode

«end devices»
WorkerCluster

«end device»
WorkerNode

«end devices»
GenericServer

«end devices»
GenericServer

«network paradigm»
P2PNetworkLayer

AnalysisImageFiles AnalysisResultFilesFiles

«end devices»
GenericServer

«container»
UploadHandler

«container»
AnalysisTask

«container engine»

«container»
DownloadHandler

«end device»
WorkerNode

«application»
Orchestration
Component

WorkflowEngine
ResourceOrchestrator

Actor

«owns»

P2PAdapter

«provides storage»

P2PAdapter

«provides» «provides»

«manages»

 «controls»

«replicates»

«replicates»

«injects»

Figure 1: Architecture of the conceptual framework.

determine how analyses are to be performed and dis-
tributed in the network, it utilizes a Workflow Engine.
This component receives a Workflow Definition as in-
put and parses its structure. Based on this model, the
Workflow Engine ensures that the tasks are executed in
the described order and receive their input data. The
Workflow Definition can also contain certain restric-
tions where to place a task which is taken into con-
sideration during the scheduling process (FR7). For
instance, this can be a selection of some machines
or specific hardware requirements. In addition, the
Workflow Engine actively observes the status of the
individual tasks and their host machines to provide
basic fault tolerance (NFR7). A common scenario
in edge computing is the unexpected downtime of a
node. If this happens, the orchestrator can reschedule
the task (FR3). Since the Analysis Tasks are stateless
and idempotent, this is a safe operation. Because this
is the only centralized component in our concept, it
is recommended to incorporate replication strategy to
avoid this possible bottleneck.

4.3 Task Execution Environment

If an Analysis Task was implemented according to the
previous mentioned conceptual definition, we need an
environment for execution. Computers that want to
provide computing power and meet the requirements
for running Analysis Tasks can contact the Orchestra-
tion Component (FR1, FR3, NFR1). When a task

is assigned to a so-called Worker Node (see Fig. 1
center), it fetches the specific Analysis Task encap-
sulated by an analysis image and runs the respective
container. The assignment is done by the orchestra-
tor component. To keep data management operations
off the analysis image, two other containers are used
additionally. This allows developers to simply imple-
ment the Analysis Tasks without requiring knowledge
about the I/O handling. Thus, before the actual Analy-
sis Takes place, a Download Handler (see Fig. 1 cen-
ter) is spawned to provide the required input data. Af-
ter the analysis is completed, an Upload Handler (see
Fig. 1 center) is created to send the resulting files to a
Storage Cluster (see Section 4.4). That way, the data
can be made accessible for subsequent tasks of the
workflow, since after finishing a task, a Worker Node
restores its pristine state. We decided this way be-
cause of several reasons. On the one hand, we wanted
to prevent possible side effects when running over a
long period of time. On the other hand, we want
to claim a node’s resources only as long as needed
(NFR4). It is important to note that the Upload Han-
dler is optional if the output data is not returned to
the analytics network for further workflow execution.
For example, this can be useful when the last task is
executed on the actor’s machine.

A Conceptual Framework for a Flexible Data Analytics Network

227

4.4 Data Management

At the core of our conceptual framework, we want
to establish a common data management. The data
management is responsible for transferring and stor-
ing the data we work within our analytics network.
As already pointed out in the requirements, we are fo-
cusing on file-based data. Therefore, we need a data
management system that is particularly good at han-
dling files. To keep the load off a central storage,
we integrated a decentralized P2P network for the
distribution based on a distributed hash table (DHT)
(NFR6). The data on the nodes within the network is
identified with a cryptographic hash function whose
value is stored on the DHT. Peers then use the DHT
to find the data for a given hash value and can re-
trieve it from potential multiple peers. A peer that
provides data can preprocess it before sharing it in
the network, thus ensuring its data sovereignty. Since
analysis images and the data itself can be stored as
files, we can address all required assets for a workflow
with this approach (NFR5). By using only content-
addressed files, we ensure that a given workflow al-
ways deals with the same data and code which en-
ables a reproducible execution (Nekrutenko and Tay-
lor, 2012) (FR8). An additional aspect that needs to be
covered is the storage of intermediate and, if desired,
final results of a workflow. Since an edge device is not
as reliable as a server, we integrated a storage clus-
ter for longterm persistence. Powerful and reliable
devices can provide their free disk space by spawn-
ing a Storage Handler container and join a cluster of
such Storage Nodes (see Fig. 1 right). The cluster
is accessible via P2P and replicates the data between
its nodes, resulting in a scalable and reliable storage
system (NFR5). Regardless of the storage location,
the files are always content-addressed to ensure re-
producible actions later on.

4.5 Overall Picture

Now, we want to present how the individual compo-
nents interact. At first, we have an actor who defines
a Workflow Description that specifies which data is to
be analyzed using which Analysis Task in which or-
der. Furthermore, the actor can configure on which
node the tasks will be performed, hence enabling lo-
cal preprocessing of the data e.g. by specifying owned
machines (FR7). By definition, this machine has to be
a Worker Node to participate in the analytics network.
Subsequent tasks could share this data using the P2P
network. Then, the actor submits the Workflow Def-
inition to the Orchestration Component to start the
process. The component splits the workflow in indi-

vidual tasks that are to be executed by Worker Nodes.
The Orchestration Component triggers requirements
matching Worker Nodes and tells them which data
and which analysis image they have to utilize. After
downloading the image and data, the node executes
the task (FR1). Depending on the workflow, the result
is either stored on the machine or replicated by the
Storage Cluster provided by the P2P Network. While
a workflow is processed, the Orchestration Compo-
nent keeps track of all tasks with their generated out-
put data. Since the data management uses content ad-
dressing for analysis code and data, these assets are
always uniquely and reliably identified. In addition,
tasks can be restarted at any time because of their
idempotency. These features enable to generate a re-
producible workflow by extending the original Work-
flow Definition with the content-addressed identifier
of the intermediate and final results (FR8).

5 IMPLEMENTATION

In this section, we will describe what specific tech-
nologies we used to implement our conceptual frame-
work. Our selection represents only one possible con-
figuration. It is in the very nature of the conceptual
framework to deal with other technologies as well.
However, it is possible that when selecting other tech-
nologies, much more adaptation may be required to
meet the concept. Where appropriate, we name alter-
native technologies and explain why we have chosen
a particular one.

First, we need to decide for a container technol-
ogy. In order to provide the same image for heteroge-
neous architectures, we make use of an image index.
This index is a higher-level manifest containing a list
of references pointing to an image manifest for a spe-
cific platform. Since this feature is included in the
OCI specification2, any compliant container engine
is sufficient, for example containerd, rkt, or Docker.
We chose the latter for building the images because of
Docker’s support for ARM-builds on x86-machines.

For the P2P network, we were looking for a
content-addressed data exchange. The Interplanetary
Filesystem (IPFS)3 supports both of these properties
and offers a variety of APIs to integrate it into a sys-
tem. On each node in the network, we deployed an in-
stance of an IPFS-powered component, which works
as an adapter for serving and loading the data from
the network. These instances are also containerized
for an easy deployment. Other local containers can

2https://github.com/opencontainers/image-spec/blob/m
aster/image-index.md

3https://ipfs.io/

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

228

retrieve data from the network by sending a HTTP
request to this component, which fetches the desired
data via IPFS. Since we want to access and store anal-
ysis images in the same way, we also implemented an
image registry interface in the component. It is com-
pliant with the OCI specification and translates regu-
lar calls to an image registry, e.g. downloading a sin-
gle layer, to corresponding IPFS fetch requests. This
enables the container engine to pull an image as usual
while it gets served from the P2P network. A mod-
ification of the container client is not needed. Since
both assets are provided by IPFS, we can use their
content-addressed identifiers in the workflow defini-
tions to ensure a very strong reproducibility. The stor-
age cluster was build with the same technology. On
reliable nodes with sufficient disk space, we deployed
IPFS to form a cluster4 for automatic replication and
availability. There, intermediate and final results as
well as analysis images can be stored and retrieved.
While we chose IPFS in version 0.4.20 because of its
low entry barrier and wide range of available APIs,
other technologies like DAT5 or Chord (Stoica et al.,
2001) could also be great candidates in this case.

As described, the analytics network needs a way
to orchestrate the containers on the various nodes in
the network. This includes container placement ca-
pabilities and resource limitations when scheduling
tasks as well as configuring new nodes and dealing
with outages. Kubernetes6 is a well-known orches-
tration tool for managing containerized applications
as a cluster. It follows the client-server-architecture
and manages a set of worker nodes by a master node.
Workloads are described as declarative configurations
and are read by so-called controllers, that watch the
current cluster state and adjust it by taking actions
to match the desired state. The basic scheduling unit
for containers are so-called pods, which package one
or more related containers. Typically, Kubernetes is
used in cloud environments making use of powerful
hardware and network. Since this is not guaranteed
in our case, we aimed for a distribution designed for
use in edge computing scenarios. K3S7 was a per-
fect match for this as it includes core features only
and packages them as a single binary, which speeds
up the deployment and management process greatly.
This way, each client can act as a Kubernetes node
allowing us to make full use of Kubernetes orchestra-
tion features. By configuring resource limitations and
placing labels on the nodes, the scheduling process
can be adjusted to our needs. For instance, we could

4https://cluster.ipfs.io
5https://www.datprotocol.com
6https://kubernetes.io
7https://k3s.io

represent department boundaries within the nodes or
mark nodes with extra powerful hardware to assign
complex analysis tasks on these systems later on. In-
deed, other famous container orchestration solutions
like Apache Mesos8 or Nomad9 could be chosen, too.
However, for our use case Kubernetes and K3S of-
fered the best mix of a lightweight and powerful or-
chestration tool with a great engagement of developer
communities and companies.

Since the resource orchestration and the workflow
orchestration are deeply coupled, we need a container
native solution for managing our workflows and dis-
tributing the tasks. In addition, we want to use our
own data management system to provide P2P capabil-
ities and enable local preprocessing before sending it
to a storage, while still defined as a workflow. The re-
quirement of a dynamic composition of custom work-
flows instead of pre-defined analytic pipelines lead us
to Argo10. Workflows are defined as a DAG in form
of a custom Kubernetes resource. Argo’s own con-
trollers then take care of instructing Kubernetes to
create the pods according to the workflow. We ex-
tended the system in several places. First, we inte-
grated our data management system so that content-
addressed IDs can be specified for the images and
data. Second, we customized Argo’s submission of
workflows to generate an extra definition of the work-
flow containing all the IDs of the images and the (in-
termediate) results. This workflow can finally be re-
submitted to reproduce the original workflow as it re-
lies on the same data. At last, we added support for
the workflow engine to deal with a sudden outage of
a node so that retry strategies can take place.

6 EVALUATION

We evaluated the system on a laboratory pilot by us-
ing a testworkflow for a text analysis, shown in Figure
2. Its objective is to extract the text from a local PDF
document and process it with various analysis tasks,
for instance keyword extraction and summary genera-
tion. In the last step, the generated analysis results are
merged into a single result document. With this ex-
perimental setup we imitate a possible metadata ex-
traction for a data catalog as described in Chapter
2. The tasks were implemented as multi-architecture
images using Java, Node.js, and Python (NFR3) and
dealt with different data formats (e.g. PDF, TXT, and
JSON) (FR4). Indeed, other analytic workflows can

8http://mesos.apache.org
9https://www.nomadproject.io

10https://argoproj.github.io

A Conceptual Framework for a Flexible Data Analytics Network

229

Detect Language

Calculate Metrics

Extract Keywords

Create Summary

Combine

Extract Raw Text
and

Metadata

Result

 PDF

Figure 2: DAG of our evaluation workflow.

be implemented too, if they can be modeled as de-
scribed in 4.1 (FR1, FR5). To demonstrate the lo-
cal preprocessing capabilities, we enforced the ex-
ecution of the initial extraction task of a document
on its underlying node (FR7). As a testsystem, we
built a small cluster, mainly consisting of Raspberry
Pi Model 3B+. In addition, we included several x86-
PCs and could demonstrate cross-architecture support
(NFR2). However, for the actual performance eval-
uation, we restricted the execution to the Raspberry
Pis with no resource limits (FR2). We chose these
boards to represent the entire worker cluster to ensure
same specifications and have reproducible results. It
should be emphasized that an external storage was not
required (NFR6), but could be integrated. Then, we
submitted 60 instances of testworkflows and tracked
the overall execution time for various worker cluster
sizes (NFR2). In addition, we used a dynamic clus-
ter that gains one worker every 15 minutes by starting
Raspberry Pis gradually. The results are visualized
in Figure 3 and show that the required time and clus-
ter size are in reciprocal proportion (FR6, NFR4). It
also reveals that the systems adopts new workers auto-
matically and includes them in the scheduling process
(FR3, FR6, NFR1). Furthermore, we tested whether
the system is able to continue workflows when nodes
randomly crash and stay offline. To simulate such
scenario, we forced a shutdown on random worker
node while executing a task of a workflow. With our
extension, the workflow engine was capable of rec-
ognizing these situations and rescheduling the tasks
to live worker nodes (NFR7). The last tested feature
was reproducibility. First, we let the system generate
a reproducible workflow definition of a testworkflow.
Then, we submitted this definition once with modi-

0 20 40 60 80 100 120 140 160
time [min]

1

2

3

4

5

dyn.

Nu
m

be
r o

f W
or

ki
ng

 N
od

es

Figure 3: Worker Node scaling evaluation.

fied and once with the original input data. The system
behaved as expected, as the first submission failed
while the last one succeeded and produced same re-
sults (FR8). While evaluating the prototype, we no-
ticed that loading larger files (≥ 1MB) via the P2P
network from the IPFS cluster took an unexpected
high amount of time. In fact, our tests revealed a de-
creased performance up to 75% compared to a direct
download with HTTP. Such problems when reading
large files from remote nodes in IPFS have also been
reproduced in another work (Shen et al., 2019). As
this is clearly an implementation problem from IPFS
0.4, it can maybe be overcome by updating to version
0.5 or by swapping IPFS in favor of DAT or other P2P
frameworks utilizing content addressing. Therefore,
fulfilling NFR5 in a bigger scale is a pending task.

7 RELATED WORK

Based on a literature analysis, we found a number
of related works in the academic world and industry
that aimed to either provide a holistic analysis plat-
form or focus on data analysis workflows with guar-
antees to certain execution properties. Due to the
sheer amount of existing solutions, we have selected
the most promising ones and classified them in re-
gards to their analysis workflow properties. The re-
sulting comparison is shown in Table 2. It should be
noted, that a comparison between all those systems
solely based on performance is not expedient due to
the wide range of their differences and qualities. Even
when using containerized tasks, it is difficult to estab-
lish an equal starting point because of different ways
of distributing, used storage systems or processing
model. Therefore we will only compare on the basis
of the properties and features provided.

Especially in life sciences like bioinformatics and
biomedicine, the ability to execute scalable, repro-
ducible, and data-intensive workflows is an essential
task (Nekrutenko and Taylor, 2012) (Novella et al.,

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

230

Table 2: Related work comparison.
Nextflow KNIME SnakeMake Galaxy Airflow Pachyderm Data Civilizer Kubeflow Our Solution

Workflow editor no yes no yes no no yes no no
Workflow model DAG DAG DAG DAG DAG DAG DAG DAG DAG
Data sovereigntya no no no no no nob no no yes
Distribution level task task task task task task n.a. task task
Containerized tasks yes noc yes yes yes yesd no yesd yesd

Language restriction no Java no no no noe Python no noe

Reproducibility mediumf mediumg strongh strongh weak strongh medium strongh very strongi

Automatic failover yes yesj no no yes yes no yes yes
Execution on
edge devicesk no no no no no no no no yes
Decentral distribution
of code and data no no no no no no no no yes

a Data can be preprocessed on their origin node without initial upload to a platform.
b Import to Pachyderm’ storage required. c A KNIME instance is containerized, not a single task. d First-level sup-
port for containers. e Tasks must be defined as container images. f Hash is not based on content. g Not clearly
documented how data is tracked. h Images are tracked by name and not by content. i Image and data are tracked
by hash. j Only whole workflow. k System designed to be executed on a cluster of heterogenous (edge) devices.

2019). Therefore, various systems and platforms,
such as Galaxy (Afgan et al., 2016), SnakeMake
(Köster and Rahmann, 2012), Nextflow (Di Tommaso
et al., 2017), and Pachyderm (Novella et al., 2019)
were designed to aid researchers and ease analytic
processes. All of these systems have in common that
the workflow are modelled as DAGs by using a cus-
tom domain specific language (DSL). Galaxy is re-
markable for a sophisticated graphical user interface
to compose such workflows. While this component is
clearly designed for scientific workflows, NextFlow
offers a more general workflow editor. This is a fea-
ture our system is clearly missing but left out inten-
tionally for the sake of this work’s scope. In systems
like Galaxy, SnakeMake, and NextFlow, the tasks can
not only be executed locally but on a distributed clus-
ter as well. It should be noted that a shared filesystem
for all cluster nodes is required and is not provided
by the platform itself. Such kind of storage can cause
performance problems and the data must first be up-
loaded there. In contrast, Pachyderm and our system
distribute their workload with Kubernetes, but also
integrate their own data management solution. This
component is responsible for the storage, provenance,
and provisioning of data. While our data management
is fully decentralized, Pachyderm relies on a central-
ized repository where data must be stored before start-
ing a workflow. Our decentralized management al-
lows devices to preprocess data locally before making
it public to a distributed workflow. To our knowledge,
this data sovereignty property is missing in other sys-
tems. An interesting feature of Pachyderm’s repos-
itory is the splitting of incoming data into datums
when initially loaded. In our concept, this functional-
ity could be integrated in advance through a separate
workflow for data splitting. However, it is not compa-
rable because stream processing is deeply integrated

into Pachyderm. This dataflow programming model
is also used by NextFlow to assemble processes to
a pipeline. Other systems like SnakeMake and our
solution rely mainly on task parallelism. By utiliz-
ing containers, analysis code and its dependencies can
be packaged in a lightweight and encapsulated way
which is required for reproducible research (Novella
et al., 2019). The container virtualization for tasks
can be used in nearly all systems, but the integration
varies greatly as these containers are often not a first-
class citizen but a way to package scripts. In Pachy-
derm and our approach, running a container is the na-
tive and only way to perform a task, thus achieving
a certain degree of encapsulation during the execu-
tion. Managing the input and output data is sepa-
rated by the data management component so devel-
opers only need to implement data processing con-
tainers. While all those systems offer a certain grade
of reproducibility, it differs in quality as truly repro-
ducible workflows have to be executed with the same
code and data. When the code is not directly provided
as a script but encapsulated in an external container
image, a system needs to ensure it is identical by its
content and not by its tag. By using content addresses
for images and data, our system tracks these assets in
a reliable, uniform, and precise way.

More general data analytics platforms are Kon-
stanz Information Miner (KNIME) by (Berthold et al.,
2009) and Data Civilizer (Deng et al., 2017). Both
systems are designed as a data management and work-
flow system to support data scientists in their daily
work. By offering visualization, data cleaning and
preprocessing, and analytics capabilities as well as
workflow management (Rezig et al., 2019; Berthold
et al., 2009), they cover a much broader range of
features as our solution does. While custom analy-
sis tasks can be created, KNIME prescribes its own

A Conceptual Framework for a Flexible Data Analytics Network

231

framework in Java, utilizing the Eclipse IDE environ-
ment that has to be learned and used. Inside a task,
arbitrary commands can be executed, e.g. to create
and run a container (Fillbrunn et al., 2017). With
the newer versions of KNIME the workflows can also
be distributed. The Data Civilizer relies on a table-
in table-out interface while all other systems are less
restricted as they deal with generic file types. In addi-
tion, data civilizer provides a GUI for editing work-
flows in conjunction with an I/O Specification for
their workflow tasks. To our knowledge, a distributed
and containerized execution is not covered. In con-
trast to KNIME and Data Civilizer, our approach does
not include ready-to-use data wrangling and analytics
tools. However, if such tools are packaged as con-
tainer with a file-in file-out interface, they can be in-
tegrated seamlessly.

When dealing with workflow systems, Apache
Airflow11 is a commonly used candidate. As an or-
chestration tool, it only controls and schedules the
actual tasks of a workflow on workers and does not
include a data management system. Workflows repre-
sent a DAG and are described with a Python DSL.
Therefore, it maps mostly to the workflow engine
component in our system. In comparison to Argo, it
does not integrate deeply into Kubernetes, but it of-
fers to execute tasks as pods. It is also possible to run
Airflow operators within an Argo workflow12. A sys-
tem that even includes Argo as its workflow engine
is Kubeflow. Kubeflow is a platform to perform and
deploy machine learning workflows in a scalable and
portable way on Kubernetes. Kubeflow Pipelines13 is
its submodule for orchestrating, running, and visual-
izing workflows. To our knowledge, there is no extra
mechanism for reproducible workflows. Instead, the
metadata of a workflow, e.g. used containers as well
as input and output data, is recorded in a metadata
database for later inspection of provenance. In con-
trast to our system, it relies on a central repository as
storage.

An unique aspect of our systems seems to be
the inclusion of edge devices for running analysis
tasks and thus harvest existing idle resources. While
other solutions may be able to integrate edge devices
through additional effort and adjustments, this is al-
ready a fundamental part of our considerations.

11https://airflow.apache.org
12https://github.com/argoproj/data-pipeline
13https://www.kubeflow.org/docs/pipelines/overview/pi

pelines-overview

8 DISCUSSION & CONCLUSION

This paper provides a conceptual framework and an
associated prototypical implementation of a flexible
data analytics network. By including edge devices,
we achieve local preprocessing and are able to use the
power of existing idle resources. In order to make the
analyses more valuable and trustworthy, they are im-
plemented as reproducible workflows, as long as all
tasks are idempotent. For instance, our solution can
not guarantee a reproducible workflow if a task breaks
this rule and does something like an anonymization
that replaces data with random values. A possibil-
ity to overcome such issues is to use a separate prior
workflow that is responsible for preprocessing. The
resulting data can be used for a subsequent work-
flow, which in turn is reproducible again. The eval-
uation revealed that the requirements of building a
flexible and reliable network for data analytics, which
integrates edge resources dynamically, could be met.
Since we could only test our system in a small scale,
an evaluation in an enterprise network is a pending
task we want to cover in follow-up work. Before do-
ing so, however, it is necessary to check and solve the
performance problems that were discovered when us-
ing IPFS. Another question that arises when inspect-
ing the system’s architecture is the limits of the cen-
tralized orchestration component. Although it can be
operated in a high availability mode, it leaves a some-
what stale impression. While most of our other con-
ceptual components are P2P driven and highly scal-
able, the orchestration component’s scalability may
become a limiting factor for the whole system. If fea-
sible, we want to expand the concept in the future so
that the nodes in the analysis network divide up work-
flows by consensus. Considering the current imple-
mentation, the development of a custom scheduler for
Kubernetes could be a reasonable approach to cope
with increasing numbers of worker nodes (Rausch
et al., 2019).

A screening of related work revealed many good
ideas, which are not present in our solution so far, but
can be added at a later stage or by using specific work-
flow tasks. One interesting functionality is to split the
data into smaller pieces at the beginning of an analy-
sis to enable data parallel processing. For well-known
file types specific preprocessing strategies could be
provided. For instance, the rows of a CSV file could
be initially extracted by a designated task. Another
important feature, especially for end-users, would be
a graphical editor to compose workflows. Currently,
users are required to have deep knowledge about the
available images and how they can be arranged in a
meaningful way. By providing an intuitive graphical

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

232

user interface, the system can be used by a greater
range of users with varying technical skills. Lastly, it
should be noted that the usage of the network is not
limited to analysis tasks. For instance, long-running
services could be run while making use of the uniform
deployment of software on diverse devices which the
system provides. For instance, a workflow could de-
ploy or update a service as the last task of an analysis.

ACKNOWLEDGEMENTS

This work was funded by the Fraunhofer-Cluster of
Excellence »Cognitive Internet Technologies«.

REFERENCES

Afgan, E., Baker, D., van den Beek, M., Blankenberg,
D. J., Bouvier, D., Cech, M., Chilton, J., Clements,
D., Coraor, N., Eberhard, C., Grüning, B. A., Guer-
ler, A., Hillman-Jackson, J., Kuster, G. V., Rasche,
E., Soranzo, N., Turaga, N., Taylor, J., Nekrutenko,
A., and Goecks, J. (2016). The galaxy platform for
accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic acids research, 44
W1:W3–W10.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Köt-
ter, T., Meinl, T., Ohl, P., Thiel, K., and Wiswedel,
B. (2009). Knime-the konstanz information miner:
version 2.0 and beyond. AcM SIGKDD explorations
Newsletter, 11(1):26–31.

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R.,
Simmhan, Y., Varghese, B., Gelenbe, E., Javadi, B.,
Vaquero, L. M., Netto, M. A., et al. (2018). A mani-
festo for future generation cloud computing: Research
directions for the next decade. ACM Computing Sur-
veys (CSUR), 51(5):105.

Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey.
Mobile networks and applications, 19(2):171–209.

Cudahy, G., Flynn, C., Liu, J., Padmos, D., and Wanger, G.
(2016). Digital supply chain: it’s all about that data.

De Filippi, P. and McCarthy, S. (2012). Cloud computing:
Centralization and data sovereignty. European Jour-
nal of Law and Technology, 3(2).

Deelman, E. and Chervenak, A. (2008). Data management
challenges of data-intensive scientific workflows. In
2008 Eighth IEEE International Symposium on Clus-
ter Computing and the Grid (CCGRID), pages 687–
692.

Deng, D., Fernandez, R. C., Abedjan, Z., Wang, S., Stone-
braker, M., Elmagarmid, A. K., Ilyas, I. F., Madden,
S., Ouzzani, M., and Tang, N. (2017). The data civi-
lizer system. In Cidr.

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P.,
Palumbo, E., and Notredame, C. (2017). Nextflow en-
ables reproducible computational workflows. Nature
biotechnology, 35(4):316–319.

Fillbrunn, A., Dietz, C., Pfeuffer, J., Rahn, R., Landrum,
G. A., and Berthold, M. R. (2017). Knime for re-
producible cross-domain analysis of life science data.
Journal of Biotechnology, 261:149 – 156. Bioinfor-
matics Solutions for Big Data Analysis in Life Sci-
ences presented by the German Network for Bioinfor-
matics Infrastructure.

Gandomi, A. and Haider, M. (2015). Beyond the hype: Big
data concepts, methods, and analytics. International
Journal of Information Management, 35(2):137–144.

Hoque, S., de Brito, M. S., Willner, A., Keil, O., and
Magedanz, T. (2017). Towards container orchestra-
tion in fog computing infrastructures. 2017 IEEE 41st
Annual Computer Software and Applications Confer-
ence (COMPSAC), 02:294–299.

Köster, J. and Rahmann, S. (2012). Snakemake—a scal-
able bioinformatics workflow engine. Bioinformatics,
28(19):2520–2522.

Liu, J., Pacitti, E., Valduriez, P., and Mattoso, M. (2015). A
survey of data-intensive scientific workflow manage-
ment. Journal of Grid Computing, 13(4):457–493.

Miloslavskaya, N. and Tolstoy, A. (2016). Big Data, Fast
Data and Data Lake Concepts. Procedia - Procedia
Computer Science, 88:300–305.

Morabito, R., Kjällman, J., and Komu, M. (2015). Hyper-
visors vs. lightweight virtualization: A performance
comparison. In 2015 IEEE International Conference
on Cloud Engineering, pages 386–393.

Nekrutenko, A. and Taylor, J. (2012). Next-generation
sequencing data interpretation: Enhancing repro-
ducibility and accessibility. Nature reviews. Genetics,
13:667–72.

NISO Press (2004). Understanding metadata. National In-
formation Standards, 20.

Novella, J. A., Emami Khoonsari, P., Herman, S., White-
nack, D., Capuccini, M., Burman, J., Kultima, K.,
and Spjuth, O. (2019). Container-based bioinformat-
ics with pachyderm. Bioinformatics, 35(5):839–846.

Otto, B. and Österle, H. (2016). Corporate Data Quality.
Springer.

Rausch, T., Hummer, W., Muthusamy, V., Rashed, A., and
Dustdar, S. (2019). Towards a serverless platform
for edge AI. In 2nd USENIX Workshop on Hot Top-
ics in Edge Computing (HotEdge 19), Renton, WA.
USENIX Association.

Rezig, E. K., Cao, L., Stonebraker, M., Simonini, G., Tao,
W., Madden, S., Ouzzani, M., Tang, N., and Elma-
garmid, A. K. (2019). Data civilizer 2.0: A holistic
framework for data preparation and analytics. Proc.
VLDB Endow., 12(12):1954–1957.

Shen, J., Li, Y., Zhou, Y., and Wang, X. (2019). Under-
standing i/o performance of ipfs storage: A client’s
perspective. In Proceedings of the International Sym-
posium on Quality of Service, IWQoS ’19, New York,
NY, USA. Association for Computing Machinery.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
and Balakrishnan, H. (2001). Chord: A scalable
peer-to-peer lookup service for internet applications.
ACM SIGCOMM Computer Communication Review,
31(4):149–160.

A Conceptual Framework for a Flexible Data Analytics Network

233

