
Reference Data Abstraction and Causal Relation
based on Algebraic Expressions

Susumu Yamasaki and Mariko Sasakura
Department of Computer Science, Okayama University, Tsushima-Naka, Okayama, Japan

Keywords: Reference Data, Algebraic Structure, 3-Valued Model Theory.

Abstract: This paper is related to algebraic aspects of referential relations in distributed systems, where the sites as
states are assumed to contain pages, and each page as reference data involves links to others as well as its own
contents. The links among pages are abstracted into causal relations in terms of algebraic expressions. As an
algebra for the representation basis of causal relations, more abstract Heyting algebra (a bounded lattice with
Heyting implication) is taken rather than the Boolean algebra with classical implication, where the meanings
of negatives are different in the two algebras. A standard form may be obtained from any Heyting algebra
expression, which may denote causal relations with Heyting negatives. If the evaluation domain is taken from
the 3-valued, then the algebraic expressions are abstract enough to represent referential links of pages in a
distributed system, where the link may be interpreted as active, inactive and unknown. There is a critical
problem to be solved in such a framework as theoretical basis. The model theory is relevant to nonmonotonic
function or reasoning in AI, with respect to the mapping associated with the causal relations, such that fixed
point theory cannot be always routines. This paper presents a method to inductively construct models of
algebraic expressions conditioned in accordance to reference data characters. Then we examine the traverse
of states with models of algebraic expressions clustering at states, for metatheory regarding searching the
reference data in a distributed system. With abstraction from state transitions, an algebraic structure is refined
such that operational aspect of traversing may be well formulated.

1 INTRODUCTION

As in a distributed system, we virtually assume sites
as states where data and contents are involved in,
which are associated with abstract state machine. Re-
garding existing data and contents at a state, they
contain static informations, however, references may
have another aspect to be captured as dynamic in the
sense of being linked with others and having search
effects. It can be also regarded as relational, in the
sense of linkage. As traverses from a state to another,
the state transition behaviors (like actions) should be
formalized abstractly for a whole distributed system.
The traverses of states have been examined as state
transitions from algebraic views. As backgrounds, we
have seen actions in abstract state machine structures
and traverses.

(a) The action is formulated as a key role in strate-
gic reasoning of abstract state machine, as well as
concretized actions as programs in dynamic logic,
acting and sensing failures are discussed as ad-
vanced works (Spalazzi and Traverso, 2000).

(b) Actions are also captured in logical systems from
the viewpoints of sequential process, as in the pa-
pers (Giordano et al., 2000; Hanks and McDer-
mott, 1987).

(c) Procedural action is expressed by denotational ap-
proach in the book (Mosses, 1992). The procedu-
ral method is in accordance with operational im-
plementation for programs to be executed. The
actions may be abstracted, with functional pro-
grams (Bertolissi et al., 2006).

(d) As regards transitions, abstract state machine is
discussed, in the paper (Reps et al., 2005). Re-
garding structure of streams possibly caused by
abstract state transitions, there is the note (Rutten,
2001).

In reasoning with semantics for AI programs and
data representations, logical approaches are often
taken:
(1) Logics with knowledge (Reiter, 2001) are classi-
cal. Based on beliefs and intentions, modal operations
have been applied to mental states (Dragoni et al.,

Yamasaki, S. and Sasakura, M.
Reference Data Abstraction and Causal Relation based on Algebraic Expressions.
DOI: 10.5220/0009825602070214
In Proceedings of the 9th International Conference on Data Science, Technology and Applications (DATA 2020), pages 207-214
ISBN: 978-989-758-440-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

207

1985).
(2) From model theoretic views, the argumentation
may be expressed by means of 3-valued logic to
the semantics for defeasible reasonings to implement
(Governatori et al., 2004).
(3) Mobile ambients (Cardelli and Gordon, 2000;
Merro and Nardelli, 2005) have been formulated with
environments to make communication reasonable.
(4) The papers (Dam and Gurov, 2002; Kozen, 1983)
are classical enough to formulate the proof systems
with fixed points and their approximations.
(5) Compared with default or defeasible logic in AI
programming, defeasibility is beforehand assumed
in the given rules, but the causal relation consisting
of rules by Heyting algebra expressions is simpler
without treating ambiguity of rules containing default
negation.

Following such backgrounds of algebraic and log-
ical perspectives, this paper is motivated to exam-
ine algebraic approach to the representations of ref-
erence data. Through simple structure of reference
data, algebraic expressions are studied and captured
as causal relations, whose model theories are required
in Heyting algebra. As regards traverses through
states, semiring is characterized for abstract state tran-
sition. The theoretical aspect of Heyting algebra ex-
pressions in this paper contains a specific property in
postfix modal operator of modal mu-calculus (S. Ya-
masaki, in C0MPLEXIS 2020):
(a) Reference data in distributed systems are ana-

lyzed. A simple inductive structure of reference
links is abstracted from the view of deepening al-
gebraic aspects.

(b) Heyting algebra expressions are adopted for ap-
plication to abstractly represent referential struc-
tures. The model theory of algebraic expressions
is hard, since the mapping associated with expres-
sions is nonmonotonic such that classical fixed
point theory cannot be always adopted. Some
prefixpoint may be inductively constructed as a
model. This paper makes refinements in the con-
structions of models for given algebraic expres-
sions. The model theory can be applied to clas-
sical logic, but it is discussed in non-classical
framework over a 3-valued domain. In addition to
non-classical discussions, we just mention a clas-
sical tool to get negation by failure: Qeuries for
algebraic expressions are approximately realized,
by negation as failure rule being sound with re-
spect to models.

(c) State transitions are abstracted into semiring
structure, caused by models of algebraic expres-
sions. In accordance with finite state automata,
star semiring may be given, on one hand (S. Ya-

masaki, in COMPLEXIS 2017). From the view
on nondeterministic alternation of traverses, more
complex semiring may be defined, on the other
hand.
The paper is organized as follows. Section 2 is

concerned with simple observation of structures in
reference data of distributed systems. In Section 3,
Heyting algebra expressions, and the standardization
of expressions are summarized, such that model the-
ory problems may be mentioned and solved. Section
4 presents an algebraic structure in terms of semir-
ing, by constructing the models of algebraic expres-
sion for concatenation and alternation regarding state
transitions. Concluding remarks and related topics are
described in Section 5.

2 STRUCTURE FOR REFERENCE
DATA

2.1 Reference Data

A distributed system is assumed to consist of sites,
where:
(i) the site contains pages, and

(ii) the page denotes references which are linked to
others.
With abstraction from the system containing data

with references to others, assume an abstract and sim-
ple system, where
(a) the sites are denoted as states,

(b) the pages in a site are defined in each state, and

(c) the reference data is organized in each page by a
recursive way, as illustrated below.

Reference name Contents
Reference name1
· · ·
· · ·
Reference namen

Note that the content and recursive references are
separated such that the page is viewed as following
Frege-ontology. It is formally in Backus-Naur Form
described:

Syst ::= nullSyst | s : P;Syst
P ::= nullP | p;P
p ::= r; Con; re f
re f ::= nullre f | r; re f

where:

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

208

(a) nullSyst , nullP and nullre f are the empty strings on
the domain of systems, pages and references, re-
spectively.

(b) Syst is a system variable, and s is a state variable.

(c) Con is a variable denoting a content.

(d) the semicolon “;” denotes a concatenation opera-
tion.

(e) p and r are page and reference variables, respec-
tively, such that P and re f denote a sequence of
pages and a sequence of references, respectively.

Rather than the content of each page, the relation
among references may be compiled in a page, that is,
the page involves a reference followed by a sequence
of references.

We now pay attention to the case assumption of
the page to be active, inactive or unknown, in terms
of the page to be linked, not linked or unknown
in a distributed system of sites. To a reference
(variable) r, the 3-valued domain may be taken to
make assignments:

Reference activity Values
Active (linked) 1

Unknown 1/2
Inactive (not linked) 0

A reference followed by a sequence of references
(possibly the empty) may suggests a causal relation
between the sequence (as a cause) and the reference
(as an effect). The relation is modeled by some pro-
graming, as well.

Related Programming:
A “logic program” with respect to its Herbrand base
may be regarded as containing the predicate pr (with
or without “∼” as a procedure) preceded by the
conjunction of:

pr1, . . . , prm (as a procedural body)

for pr1, . . . , prm (predicates or their negations). The
program may be dealt with in 3-valued logic, where
the negation is interpreted as default negation.

2.2 Causal Relation in Terms of
Algebraic Expressions

Heyting algebra (HA) (A,
∨
,
∧
,⊥,>) equipped with

the partial order v and an implication⇒ is assumed
as follows:

(i) ⊥ and > are the least and the greatest elements
of the algebra (set) A, respectively, with respect to
the partial order v.

(ii) the join
∨

and meet
∧

are defined for any two
elements of A.

(iii) as regards the implication⇒,

c v (a⇒ b) iff a
∧

c v b.

The element a⇒⊥ is denoted as “not a” (a nega-
tive) for a ∈ A, where not ⊥ = > and not > = ⊥. As
is well known, we note some algebraic properties on
the HA with parentheses of operation-priority repre-
sentation:

((a⇒ b)
∧
(b⇒ c))v (a⇒ c),

av not (not a),

as well as

(a
∧
(a⇒ b))⇒ b

are always equivalent to the top element, such that

not (a
∨

b) = not a
∧

not b.

Therefore the expression a⇒ b may be regarded as
representing a causal relation between the cause de-
noted a and the effect denoted b. The implication⇒
is more abstract than the classical (e.g. propositional)
logic one.

The causal relation is now taken into considera-
tion, for the denotation of reference data, by more
general form of the HA expression. The expression
F (over the underlined set A of the algebra) of the fol-
lowing form is regarded as a causal relation to abstract
reference data: ∧

j (l
j
1
∧
. . .

∧
l j
n j ⇒ l j)

where l j
i denotes a or a⇒⊥ (not a) for a ∈ A.

Assume in the following that (a) the implication
is based on Heyting algebra, and (b) the evaluation
of not a (with respect to the value of a for a ∈ A)
follows the rule:

a not a
1 0

1/2 0
0 1

where 0v 1/2v 1.

Transformation of Expressions:
In an Heyting algebra (A,

∨
,
∧
,⊥,>), any expression

Ex1 derives some expression Ex2 of the form:∧
j (l

j
1
∧
. . .

∧
l j
n j ⇒ l j),

Reference Data Abstraction and Causal Relation based on Algebraic Expressions

209

where l j
i and l j are an expression a or not a (denoting

av⊥), for a ∈ A, such that

Ex2 v Ex1.

By the method in a language system (S. Yamasaki,
in COMPLEXIS 2020), we may have got such a stan-
dardization to transform a given expression Ex1 to
Ex2. If there is some model of Ex2 in 3-valued do-
main, then it may be also the model of Ex1. In this
sense, the expression Ex2 is worthwhile being ob-
tained, as a standard form.

3 MODELS OF ALGEBRAIC
EXPRESSIONS

With respect to a denotation of pages in a state (site)
containing refernce data, the expression F (over the
underlined set A of the algebra) of the form:∧

j (l
j
1
∧
. . .

∧
l j
n j ⇒ l j)

is represented as a set of the rules

{l j
1
∧
. . .

∧
l j
n j ⇒ l j| j = 1,2, . . .}.

It may be regarded as a set of causal relations of the
form l j

1
∧
. . .

∧
l j
n j ⇒ l j, with the HA implication ⇒,

where the outer meet is assumed in the evaluation of
the set (the whole expression). The set of rules is also
referred to by the same name F in the following.

3.1 Conditioned Algebraic Expressions
in 3-Valued Domain

To have a theory of HA expressions applicable to de-
notations of reference data, we here have restrictions
on the set of rules:

(a) Given a set, the left hand of⇒ for a or not a (with
its right hand) is unique, if the rule “. . .⇒ a” or
“. . .⇒ not a” exists.

(b) For each a ∈ A, there is no case that both the rules
“. . .⇒ a” and “. . .⇒ not a” are defined.

(c) The model of a given expression (a set) is consid-
ered in 3-valued domain.

We present prefixed point as model of the expres-
sion F , over the 3-valued domain {0,1/2,1}. With
the set A for a conditioned expression F , a mapping

ΨF : 2A×2A→ 2A×2A,
ΨF(I1,J1) = (I2,J2),

can be defined with order of componentwise subset
inclusion.

The Mapping ΨF :
Note that the left hand part is unique for each right

hand of the implication ⇒. Because the conditioned
form is assumed, in order to denote reference data
structure.

Assume (I1,J1) for a given set of rules, where I1 is
regarded as the set of elements assigned to 1, and J1
is as the set of elements assigned to 0. For each a∈ A,
within the rules of F :

(1) In case that there is a rule (in the set)

b1
∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a:

if any bi is in I1 (1 ≤ i ≤ n), and any c j is in J1
(1≤ j ≤ m), then a ∈ I2.

(2)(a) In case that there is no rule, whose right hand
of the implication⇒ is a (that is, a may be only
in the left hands of rules): a ∈ J2.

(b) In case that there is a rule
b1

∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a:

if some bi is in J1 (1≤ i≤ n), or some c j is not
in J1 (1≤ j ≤ m), then a ∈ J2.

(c) In case that there is a rule
d1

∧
. . .

∧
dl

∧
not e1

∧
. . .

∧
not ek⇒ not a:

if any di is not in J1 (1≤ i≤ l), and any e j is in
J1 (1≤ j ≤ k), then a ∈ J2.

If ΨF(I,J)⊆c (I,J) (with the componentwise sub-
set inclusion ⊆c) and I ∩ J = /0, then (I,J) can be a
model of F , that is, F is evaluated as 1.

Note: If I ∩ J = /0, then I0 ∩ J0 = /0 for (I0,J0) =
ΨF(I,J). It is because of the restriction of the expres-
sion F . That is, both a and not a are not definable.
Since the mapping ΨF is not monotonic, the method
by (pre-)fixpoint of ΨF is not always available as a
modelling of the given expression F .

Proposition 1. Assume a pair (I,J) ∈ 2A× 2A for a
given expression (a set of rules) with the element set
A. If ΨF(I,J)⊆c (I,J), then the pair (I,J) is a model
of F.

Proof. Let ΨF(I,J) = (I0,J0). Following the defini-
tion of the mapping ΨF , we make the exhaustive ex-
amination. For any a occurring in F , there are three
types of rules.
(i) In case of (1), if the left hand of the rule (where
the left hand may be the empty) is evaluated as 1 by
(I,J), then the right hand a ∈ I0 is in I, evaluated as 1.
(ii) In case of (2): (a) if no a may occur in the right
hand of a rule, a ∈ J0 is evaluated as 0 for the pair
(I,J) to consistently be a model.
(b) if the left hand of the rule is evaluated as 0 (with
case of (b)), then the right hand a ∈ J0 ⊆ J is in J,

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

210

evaluated as 0. (c) if the left hand of the rule (where
the left hand may be the empty) is evaluated as not 0,
then the right hand not a (a ∈ J0) is evaluated as 1.
Because a ∈ J.

Thus all the rules are evaluated as 1, with respect
to the relations between left and right hands of the
implication. This concludes the proposition.

In what follows, we suppose the set A (for HA
expressions) and the expression F in a set of rules.

We have got a procedure with respect to construc-
tion of some model (I,J), if ΨF(I,J) ⊆c (I,J).

Predicates of Success and Failure for Query:
With respect to query a to be an effect for the expres-
sion, the predicates of success SucF(a) and failure
FailF(a) may be inductively defined for a ∈ A and
a given expression (a set of rules) F as follows.

(1) If there is a rule

b1
∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a

such that SucF(bi) for any 1 ≤ i ≤ n, and
FailF(c j) for any 1≤ j ≤ m, then SucF(a).

(2)(a) If there is no rule, whose right hand of the im-
plication⇒ is a, then FailF(a).

(b) If there is a rule
b1

∧
. . .∧bn

∧
not c1

∧
. . .

∧
not cm⇒ a

such that FailF(bi) for some 1 ≤ i ≤ n, or not
FailF(c j) for some 1≤ j ≤ m, then FailF(a).

(c) If there is a rule
d1

∧
. . .

∧
dl

∧
not e1

∧
. . .

∧
not ek⇒ not a

such that not FailF(di) for any 1 ≤ i ≤ l, and
FailF(e j) for any 1≤ j ≤ k, then FailF(a).

Proposition 2. . Assume a pair (I,J) ∈ 2A× 2A for
an expression F over the set A, such that

I = {a | SucF(a)} and J = {b | FailF(b)}.
Then ΨF(I,J) ⊆c (I,J).

Proof. Let ΨF(I,J) = (I0,J0). (1) Assume that a∈ I0.
Then there is a rule

b1
∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a

such that bi ∈ I for any 1 ≤ i ≤ n, and c j ∈ J for any
1 ≤ j ≤ m. By the assumed definitions of I and J,
SucF(bi) for any 1≤ i≤ n, and FailF(c j) for any 1≤
j ≤ m. It follows that SucF(a). That is, a ∈ I. Thus
I0 ⊆ I.
(2) When a ∈ J0, then there are cases as follows.
(a) In case that there is no rule, whose right hand of
the implication is a, a ∈ J.
(b) In case that there is a rule

b1
∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a

such that some bi is in J (1 ≤ i ≤ n), or some c j is
not in J (1 ≤ j ≤ m): It follows that there is some
FailF(bi) (1 ≤ i ≤ n), or not FailF(c j) for some 1 ≤
j ≤ m. Then FailF(a), and a ∈ J.
(c) In case that there is a rule

d1
∧
. . .

∧
dl

∧
not e1

∧
. . .

∧
not ek⇒ not a

such that any di is not in J (1 ≤ i ≤ l), and any e j
is in J (1 ≤ j ≤ k): By the definitions of I and J,
not FailF(di) for any 1≤ i≤ l, and FailF(e j) for any
1≤ j ≤ k. Therefore FailF(a), and a ∈ J.

In the above cases, a ∈ J on the assumption that
a ∈ J0. Therefore J0 ⊆ J. This completes that

(I0,J0)⊆ (I,J)

The significance of the above proposition is just
soundness of the predicates of SucF(a) and FailF(b)
with respect to a model (I,J) of the given expression
F , where the pair (I,J) is really organized by the pred-
icates.

3.2 Procedural Query

The predicate “not FailF(a)” is not so practical,
where it is of use in the inductive definition of the
predicate FailF(a). It is primarily from nonmono-
tonicity of the mapping ΨF associated with a given
expression F as causal relation. To make it more
practical, we have simple predicates for queries con-
cerning the expression F . The predicates sucF(a) and
f ailF(a) are definable, such that

(i) if sucF(a) then SucF(a) and “not FailF(a)”, and

(ii) if f ailF(a) then FailF(a).

Formally, the predicates are defined inductively in
a similar manner.

(1) If there is a rule

b1
∧

bn
∧

not c1
∧
. . .

∧
not cm⇒ a

such that sucF(bi) for any 1≤ i≤ n, and f ailF(c j)
for any 1≤ j ≤ m, then sucF(a).

(2)(a) If there is no rule, whose right hand of the im-
plication⇒ is a, then f ailF(a).

(b) If there is a rule
b1

∧
. . .

∧
bn

∧
not c1

∧
. . .

∧
not cm⇒ a

such that f ailF(bi) for some 1 ≤ i ≤ m, or
sucF(c j) for some 1≤ j ≤ m, then f ailF(a).

(c) If there is a rule
d1

∧
. . .

∧
dl

∧
not e1

∧
. . .

∧
not ek⇒ not a

such that sucF(di) for any 1 ≤ i ≤ l, and
f ailF(e j) for any 1≤ j ≤ k, then f ailF(a).

Reference Data Abstraction and Causal Relation based on Algebraic Expressions

211

The predicates are in accordance with reasoning
of “negation as failure”.

(a) If a query of a succeeds, then a query of “not a”
fails.

(b) If a query a fails, then a query “not a” succeeds.

These predicates are sound with respect to a
model (I,J) constructed by the predicates SucF(a)
and FailF(b), and related by the mapping ΨF .

Proposition 3. Assume an expression F over the set
A of algebraic elements. Let

I = {a | SucF(a)} and J = {b | FailF(b)}.
We have that:

(i) if sucF(a) then a ∈ I.
(ii) if f ailF(a) then a ∈ J.

Proof. By the inductive definition and induction on
proof,

(a) if sucF(a) then SucF(a),
(b) if f ailF(a) then FailF(a), and
(c) SucF(a) and FailF(a) are exclusive.

Thus if sucF(a) then not FailF(a). This may conclude
the proposition.

Adjusting (Procedure for Query):
A procedure may be constructed, in accordance

with the definitions of the predicates sucF(a) and
f ailF(b).

By induction on the definitions of predicates sucF(a)
and f ailF(b), and on the following derivations
〈a? suc〉 and 〈b? f ail〉, we can see that:

sucF(a) iff 〈a? suc〉, and
f ailF(b) iff 〈b? f ail〉.

(1) With a given expression F , query of the sequence
“X?” is assumed, where X = y1; . . . ;yn (n≥ 0) with yi
being a or not a for a ∈ A and with the concatenation
operation “;” (which is treated as

∧
), where in case

of “n = 0”, X is null (the empty query). A sequence
query may be denoted as y;X? (with y being b or not b
for b∈A, and with X a sequence query), or Y ;X? with
Y and X sequence queries.
(2) The notations 〈X? suc〉, and 〈X? f ail〉 stand for
the cases of the query X? to be a success, and a fail-
ure, respectively.

There are 2 routines of succeeding, and failing deriva-
tions for queries to be analyzed.

(i) 〈null? suc〉.
(ii) 〈x;X? suc〉, if x = a (for a ∈ A) and there is Y ⇒ x

in F such that 〈Y ;X? suc〉.

(iii) (a) 〈x;X? suc〉, if 〈a? f ail〉 for x = not a, and
〈X? suc〉.
(b) 〈x;X? suc〉, if 〈a? f ail〉 for x = not a where
there is some Y ⇒ x in F with 〈Y ? suc〉, and
〈X? suc〉.

(iv) 〈x;X? f ail〉, if there is no part with x = a ∈ A be-
ing the right hand of “⇒” in F , or 〈X? f ail〉.

(v) 〈x;X? f ail〉, if x = a (a ∈ A) such that 〈Y ? f ail〉
for some Y (where Y ⇒ x in F), or 〈X? f ail〉.

(vi) (a) 〈x;X? f ail〉, if x = not a such that 〈a? suc〉, or
〈X? f ail〉.
(b) 〈x;X? f ail〉, if x = a such that 〈Y ? suc〉 for
some Y (where Y ⇒ not a in F), or 〈X? f ail〉.

4 SEMIRING STRUCTURE

As in the setting of a language system (S. Yamasaki,
in COMPLEXIS 2020), when traversing the states
(sites), pages from a state are concatenated to other
pages of another state. This observation can be ab-
stracted to some algebraic structure from expressions
F1, F2,

Given a logical or algebraic expression F over the
set A, we may have a pair

(I,J) ∈ 2A×2A,

which is assumed as a 3-valued model of F , and can
be regarded as defining state changes (transitions).

With the set A, we can have denumerable expres-
sions F1, F2, . . ., causing state changes, which are in
accordance with causal relations in a distributed sys-
tem. (state transitions). Then the 3-valued models of
expressions F1, F2, . . . may be assumed as the pairs

(I1,J1), (I2,J2),

By means of the set concatenation “·” (which gets
the set of sequences obtained from taken elements of
sets), we might have

(I1,J1)• . . .• (In,Jn)
= (I1 · . . . · In
−{w | some element of w of I1 · . . . · In

is in J1∪ . . .∪ Jn},
J1∪ . . .∪ Jn),

with multiplication “•” to express the sequence
formation.

In this paper, we newly have a semiring with
respect to the view of human computer interaction. It
is different from the star semiring constructed in the
case (S. Yamasaki, in COMPLXIS 2017). Reflecting
state transitions with models, alternations are denoted

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

212

in terms of algebraic aspects. With alternation
aspects, let RA (R, for short with the assumption of
the set A) be the set of “direct sums” of the form
Σl(pSeql ,nSetl) with l ranging indexes, where each
pair (pSeqk,nSetk) is supposedly consistent, with
a model of an expression Fk over A. From imple-
mentation views, the “sum” means nondeterministic
selections as alternation so that it contains more
complexity. Therefore human computer interaction
may be of use, to control determinations. It is a
compact representation that this section is to aim at,
with respect to nondeterministic complexity. Keeping
such complexity of what the sum contains, we newly
have a formality of semiring structure as follows.

The operations + (addition–alternation) and ◦
(multiplication–composition) on R are defined:
(1)

Σi(pSeqi,nSeti)+Σ j(pSeq j,nSet j)
= Σk=i, j(pSeqk,nSetk).

(2)
Σi(pSeqi,nSeti)◦Σ j (pSeq j,nSet j)
= Σi, j(pSeqi · pSeq j
−{uv| u ∈ pSeqi,v ∈ pSeq j,

u is not consistent to nSet j},
−{uv| u ∈ pSeqi,v ∈ pSeq j,

v is not consistent to nSeti},
nSeti∪nSet j),

where
(i) the sequence uv is constructed by concatenation

of sequences u and v,
(ii) by saying that u and v are not consistent to

(the sets) nSet j and nSeti, respectively, it means
that u and v contain some element in nSet j and
nSeti, respectively, and

(iii) the operation · is the set concatenation consist-
ing of concatenated sequences.

Note: The operation ◦ preserves “consistency” of
each pair in a resultant direct sum.

Identities with respect to + and ◦:
We can have identities with respect to the addition

and multiplication in terms of alternation and compo-
sition, respectively, if we care the direct sum of the
“form” Σi(pSeqi,nSeti).
(i) Σi(pSeqi,nSeti) is denoted /0Σ, if the direct sum is

the empty. It is the identity with respect to +.
(ii) The empty sequence in A∗ is represented by ε.

({ε}, /0) is the identity with respect to ◦.

We finally have a semiring R regarding consistent
sequences caused by models of expressions, in terms
of the following propositions:

Proposition 4. The structure 〈RA,+,◦, /0Σ,({ε}, /0)〉
is a semiring.

Proof. We can see the conditions of a semiring as fol-
lows.

(i) The operation + is defined so that commutative
and associative laws may obviously hold. With
the identity /0Σ, 〈R,+, /0Σ〉 is a commutative
monoid (a commutative semigroup with the
identity).

(ii) The operation ◦ is associative, so that
〈R,◦,({ε}, /0)〉 is a semigroup with the iden-
tity ({ε}, /0), that is, a monoid.

(iii) Left and right multiplications over addition are
both distributive:

Σi(pSeqi,nSeti)
◦(Σ j(pSeq j,nSet j)+Σk(pSeqk,nSetk))
= (Σi(pSeqi,nSeti)◦Σ j(pSeq j,nSet j))
+(Σi(pSeqi,nSeti)◦Σk(pSeqk,nSetk)).

(Σ j(pSeq j,nSet j)+Σk(pSeqk,nSetk))
◦Σi(pSeqi,nSeti)
= (Σ j(pSeq j,nSet j)◦Σi(pSeqi,nSeti))
+(Σk(pSeqk,nSetk)◦Σi(pSeqi,nSeti)).

(iv) /0Σ ◦Σi(pSeqi,nSeti) = Σi(pSeqi,nSeti)◦ /0Σ = /0Σ.
That is, annihilation holds for ◦, with the identity
/0Σ regarding +.

5 CONCLUSION

The primary contribution of this paper is to take Heyt-
ing algebra expressions as representations of causal
relations with model theories to be newly established.

(a) The form of the expressions is restricted to a rep-
resentation of reference data as static link, which is
specific in the class of expressions as terms possi-
bly occurring in postfix modal operator of modal mu-
calculus, or as programs in a language system (S. Ya-
masaki, in COMPLEXIS 2020). In this sense, this
paper is viewed as an application of the algebraic ex-
pressions as terms or programs in the previous papers.
(b) The causal relations are abstractions of the static
links between data with references to each other
in distributed systems, where practices are not con-
cretized but abstracted with model theories. The
model theories are based on 3-valued domain, where
a nonmonotonic mapping is virtually associated with

Reference Data Abstraction and Causal Relation based on Algebraic Expressions

213

expressions with Heyting implication and negatives.
For a prefixpoint of the mapping, some inductive con-
struction is presented. We then have models for a
given expression conditioned to some representation
forms. This model theory is relevant to those in logic
programming (Yamasaki, 2006), but more general
than, with respect to strict negation. As a software
technology to analyze algebraic expression queries,
negation as failure rule is applied as sound procedure.

As another result, a semiring structure is formally
constructed with respect to state transitions virtu-
ally caused by dynamic traverses through reference
links, which is related to automata theory (Droste
et al., 2009) rather than context-free language aspects
(Winter et al., 2013). The semiring involves non-
determinism by direct sum of objects derived from
models, which require human interaction to selec-
tion of suitable objects. The abstract representation
involves nondeterministic alternation of transitions
from a state, to which human interaction may be im-
plemented which transition to select.

As related works on logical frameworks possibly
for AI, we should learn concepts and ideas as follows.
They may be hints on advancements to be considered,
as regards practical aspect of this paper:

(a) The paper (Beddor and Goldstein, 2018) presents
the belief predicate with the credence function of
agents, concerning epistemic contradictions. The
contradictions of complexity may be avoided by
grades of such a function.
(b) There is a paper (P. Kremer, 2018) presenting
second-order propositional frameworks, with epis-
temic and intuitionistic logic. It may be relevant to
the extension of this paper with HA expressions to
more facility of complex expressiveness.
(c) With the second-order (quantified) propositions,
the paper (Goranko and Kuusisto, 2018) involves
dependence and independence concepts, which may
control implementations of programs or queries if
data base is designed with such concepts of represen-
tation complexity.
(d) “Distributed knowledge” is discussed (Naumov
and Tao, 2019), with quantified variables of quantifies
ranging over the set of agents. Concerning applica-
tions of the second-order predicates to knowledge, the
paper (Kooi, 2016) contains the concept of knowing.
Distributive knowledge processing is of more com-
plexity even for the state constrained programs.
(e) For an extension of propositional modal logic
without quantification, the paper (Fitting, 2002) in-
troduces relations and terms with scoping mechanism
by lambda abstraction. It is considered as presenting
functional programming included in modal logic.

REFERENCES

Beddor, B. and Goldstein, S. (2018). Believing epistemic
contradictions. Rev.Symb.Log., 11(1):87–114.

Bertolissi, C., Cirstea, H., and Kirchner, C. (2006).
Expressing combinatory reduction systems
derivations in the rewriting calculus. Higher-
Order.Symbolic.Comput., 19(4):345–376.

Cardelli, L. and Gordon, A. (2000). Mobile ambients. The-
oret.Comput.Sci., 240(1):177–213.

Dam, M. and Gurov, D. (2002). Mu-calculus with ex-
plicit points and approximations. J.Log.Comput.,
12(1):119–136.

Dragoni, A., Giorgini, P., and Serafini, L. (1985).
Mental states recognition from communication.
J.Log.Program., 2(4):295–312.

Droste, M., Kuich, W., and Vogler, H. (2009). Handbook of
Weighted Automata. Springer.

Fitting, M. (2002). Modal logics between propositional and
first-order. J.Log.Comput., 12(6):1017–1026.

Giordano, L., Martelli, A., and Schwind, C. (2000).
Ramification and causality in a modal action logic.
J.Log.Comput., 10(5):625–662.

Goranko, V. and Kuusisto, A. (2018). Logics for proposi-
tional determinacy and independence. Rev.Symb.Log.,
11(3):470–506.

Governatori, G., Maher, M., Autoniou, G., and Billington,
D. (2004). Argumentation semantics for defeasible
logic. J.Log.Comput., 14(5):675–702.

Hanks, S. and McDermott, D. (1987). Nonmonotonic logic
and temporal projection. Artifi.Intelli., 33(3):379–
412.

Kooi, B. (2016). The ambiguity of knowability.
Rev.Symb.Log., 9(3):421–428.

Kozen, D. (1983). Results on the propositional mu-calculus.
Theoret.Comput.Sci., 27(3):333–354.

Merro, M. and Nardelli, F. (2005). Behavioral theory for
mobile ambients. J.ACM., 52(6):961–1023.

Mosses, P. (1992). Action Semantics. Cambridge University
Press.

Naumov, P. and Tao, J. (2019). Everyone knows that
some knows: Quantifiers over epistemic agents.
Rev.Symb.Log., 12(2):255–270.

Reiter, R. (2001). Knowledge in Action. MIT Press.
Reps, T., Schwoon, S., and Somesh, J. (2005). Weighted

pushdown systems and their application to interproce-
dural data flow analysis. Sci.Comput.Program., 58(1-
2):206–263.

Rutten, J. (2001). On Streams and Coinduction. CWI.
Spalazzi, L. and Traverso, P. (2000). A dynamic logic

for acting, sensing and planning. J.Log.Comput.,
10(6):787–821.

Winter, J., Marcello, B., Bonsangue, M., and Rutten, J.
(2013). Coalgebraic characterizations of context-free
languages. Formal Methods in Computer Science,
9(3):1–39.

Yamasaki, S. (2006). Logic programming with default,
weak and strict negations. Theory Prac.Log.Program.,
6(6):737–749.

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

214

