
Integrating Lightweight Compression Capabilities into Apache Arrow

Juliana Hildebrandt a, Dirk Habich b and Wolfgang Lehner c

Technische Universität Dresden, Database Systems Group, Dresden, Germany

Keywords: Columnar Data, Data Formats, Apache Arrow, Lightweight Compression, Integration.

Abstract: With the ongoing shift to a data-driven world in almost all application domains, the management and in
particular the analytics of large amounts of data gain in importance. For that reason, a variety of new big
data systems has been developed in recent years. Aside from that, a revision of the data organization and
formats has been initiated as a foundation for these big data systems. In this context, Apache Arrow is a novel
cross-language development platform for in-memory data with a standardized language-independent columnar
memory format. The data is organized for efficient analytic operations on modern hardware, whereby Apache
Arrow only supports dictionary encoding as a specific compression approach. However, there exists a large
corpus of lightweight compression algorithms for columnar data which helps to reduce the necessary memory
space as well as to increase the processing performance. Thus, we present a flexible and language-independent
approach integrating lightweight compression algorithms into the Apache Arrow framework in this paper.
With our so-called ArrowComp approach, we preserve the unique properties of Apache Arrow, but enhance the
platform with a large variety of lightweight compression capabilities.

1 INTRODUCTION

With increasingly large amounts of data being col-
lected in numerous application areas ranging from
science to industry, the importance of online analyt-
ical processing (OLAP) workloads increases (Chaud-
huri et al., 2011). The majority of this data can be
modeled as structured relational tables, thereby a ta-
ble is conceptually a two-dimensional structure orga-
nized in rows and columns. On that kind of data,
OLAP queries typically access a small number of
columns, but a high number of rows and are, thus,
most efficiently processed using a columnar data stor-
age organization (Boncz et al., 2008; Sridhar, 2017).
This organization is characterized by the fact that each
column of a table is stored separately as a contiguous
sequence of values. In recent years, this storage or-
ganization has been increasingly applied by a variety
of database systems (Abadi et al., 2013; Boncz et al.,
2008; Boncz et al., 2005; Stonebraker et al., 2005)
as well as big data systems (Kornacker et al., 2015;
Sridhar, 2017) with a special focus on OLAP.

Besides the development of such novel systems,
we also observe a fundamental revision of the data or-

a https://orcid.org/0000-0001-7198-8552
b https://orcid.org/0000-0002-8671-5466
c https://orcid.org/0000-0001-8107-2775

ganization and formats as a foundation for these sys-
tems, especially for big data systems (Vohra, 2016a;
Vohra, 2016b). Here, the goal is to organize data
optimally for processing and analysis (Vohra, 2016a;
Vohra, 2016b). A recent and novel approach in this
direction is Apache Arrow1 aiming to be a standard-
ized language-independent columnar memory format
for flat and hierarchical data, organized for efficient
analytic operations on modern hardware. The ma-
jor advantage of this specific memory format is that it
acts as a new high-performance and flexible interface
for various big data platforms such as Spark (Zaharia
et al., 2010), Calcite (Begoli et al., 2018), Impala (Ko-
rnacker et al., 2015), or Pandas (Beazley, 2012). That
means, data sets represented in this Apache Arrow for-
mat can be seamlessly shared between different big
data platforms with a zero-copy approach.

Additionally, Apache Arrow also aims to enable
execution engines to take advantage of the latest
SIMD (Single Instruction Multiple Data) operations,
provided by almost all modern processors, for a
highly vectorized and efficient processing of colum-
nar data (Polychroniou et al., 2015; Polychroniou
and Ross, 2019; Ungethüm et al., 2020; Zhou and
Ross, 2002). However, the gap between the comput-
ing power of the CPUs and main memory bandwidth

1Apache Arrow - https://arrow.apache.org/

Hildebrandt, J., Habich, D. and Lehner, W.
Integrating Lightweight Compression Capabilities into Apache Arrow.
DOI: 10.5220/0009820100550066
In Proceedings of the 9th International Conference on Data Science, Technology and Applications (DATA 2020), pages 55-66
ISBN: 978-989-758-440-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

55



on modern processors continuously increases, which
is now the main bottleneck for efficient data pro-
cessing (Boncz et al., 2008). From that perspective,
the columnar data organization is one step to tackle
this gap by reducing the memory accesses to the rel-
evant columns. To further increase the processing
performance in particular in combination with a vec-
torized execution, data compression is a second and
necessary step to tackle that gap as already success-
fully shown in the domain of in-memory column store
database or processing systems (Abadi et al., 2006;
Abadi et al., 2013; Damme et al., 2020; Habich et al.,
2019; Hildebrandt et al., 2016). Here, a large corpus
of specific lightweight data compression algorithms
for columnar data has been developed (Damme et al.,
2019; Hildebrandt et al., 2017; Lemire and Boytsov,
2015) and the application dramatically increased the
performance of analytical queries (Abadi et al., 2006;
Abadi et al., 2013). Unfortunately, Apache Arrow
only supports dictionary compression in that direction
as one specific lightweight compression algorithm.

Our Contribution and Outline. To overcome
the current limitation of Apache Arrow, we present
ArrowComp as an enhanced approach in this paper.
ArrowComp builds on Apache Arrow and integrates
the available large corpus of lightweight compres-
sion algorithms for columnar data in a flexible and
efficient way. Our ArrowComp approach is language-
independent to preserve this important property of
Apache Arrow. In detail, our main contributions in
this paper are:
1. We give a sufficient introduction into Apache Ar-

row as well as into the domain of lightweight data
compression algorithms as a foundation for our
work in Section 2.

2. Based on this introduction, we explain our de-
veloped ArrowComp approach integrating the large
corpus of lightweight compression algorithms
based on a metamodel concept in Section 3. This
metamodel concept enables us (i) to realize the
language independence and (ii) to facilitate the
simple integration of a large number of different
lightweight compression algorithms without hav-
ing to implement each algorithm on its own.

3. As a proof of concept, we implemented an
ArrowComp in C++ as described in 3. Using this
prototype, we present selective experimental re-
sults in Section 4. As we are going to show,
ArrowComp is able (i) to decrease the memory
footprint and (ii) to increase the performance of a
typical aggregation function compared to the orig-
inal Apache Arrow framework.

Finally, we close the paper with an overview of re-
lated work in Section 5 and a conclusion in Section 6.

orderkey quantity shipmode
2789 47 REG AIR
9378 48 SHIP

24519 17 REG AIR
37733 35 SHIP

Figure 1: Running example table.

2 PRELIMINARIES

Before we introduce our ArrowComp approach, this
section provides a brief introduction of the underlying
Apache Arrow framework including a short overview
of lightweight compression algorithms. Finally, we
close this section with a clear motivation why the in-
tegration of lightweight compression algorithms into
Apache Arrow makes sense.

2.1 Apache Arrow

Generally, Apache Arrow aims to be a cross-language
development platform for relational in-memory data.
On the one hand, this platform defines a specification
establishing (i) the physical memory layout respec-
tively format of columns in relational data supporting
efficient analytical processing with SIMD operations
on up-to-date hardware, (ii) the serialization and in-
terprocess communication for data exchange between
different systems containing, for example, the struc-
ture of table schemas or static column respectively
field characteristics like the availability of a name and
a data-type, and (iii) guidelines for the implementa-
tion scope of engines processing the columnar data.
On the other hand, this platform provides implemen-
tations respectively libraries meeting the specification
in different languages like C, C++, Python, Java, etc.
Thus, the cross-language property is achieved through
the explicit separation of specification and imple-
mentation. Moreover, data represented using Apache
Arrow can be used in different big data platforms
such as Spark (Zaharia et al., 2010), Calcite (Begoli
et al., 2018), Impala (Kornacker et al., 2015), or Pan-
das (Beazley, 2012) with a zero-copy approach.

In the following, we (i) introduce some essential
vocabulary in terms of relational data used in the spec-
ification, (ii) explain a subset of the physical memory
layout specification, and (iii) describe the C++ library
serving as a foundation for ArrowComp.

2.1.1 Vocabulary

In principle, the Apache Arrow specification distin-
guishes (table) schemas and Apache Arrow (data) ar-

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

56



Array

DictionaryArray FlatArray

BinaryArray<T>

StringArray

NullArray PrimitiveArray

Boolean
Array

FixedSize
BinaryArray

Decimal128Array

Numeric
Array<T>

ListArray<T> StructArray UnionArray

Figure 2: Simplified inheritance hierarchy of of Apache Ar-
row array types.

rays containing the columnar data respectively pieces
of columnar data. Schemas consist of an optional ta-
ble metadata map and a set of fields. Fields are static
characteristics of table columns, consisting of a name,
a data type, a boolean value indicating if null values
are allowed, an optional metadata map, and, depen-
dent on the data type, further property declarations.
An example table is shown in Figure 1 which we
use as a running example. The table schema consists
of three fields orderkey, quantity, and shipmode.
While the first two fields have the data type uint32,
the type of the third field is String. Moreover, the
fields are not nullable because all values are re-
quired.

2.1.2 Physical Memory Layout of Arrays

Figure 2 depicts a slightly simplified overview of
Apache Arrow array types for storing columnar data.
They can be divided into (i) FlatArrays contain-
ing non-nested data and (ii) arrays containing nested
data types as ListArrays, StructArrays, and
UnionArrays with mixed data types. FlatArrays
can be further divided into NullArrays contain-
ing exclusively null values, PrimitiveArrays with
data of the same physical length for each value
(i.e. int32), and BinaryArrays which are variable-
size types (i.e. String). Moreover, there exists
a DictionaryArray composed of integral columnar
data and a dictionary mapping the original data of
arbitrary type to integer values. Beyond this, user-
defined extension types can be defined for columnar
data, such that for example stored variable binary val-
ues can be interpreted in a defined way. In those cases,
the field’s metadata may contain all further necessary
information and parameters for encoding and decod-
ing.

The physical memory layout depends on the col-
umn data type and nullability. Columnar data may
consist of one or several consecutive memory re-
gions called buffers and primitive characteristic val-
ues. Each array has a length. Columns belonging to

278993782451937733not spec.

3-07-411-815-1263-16

Figure 3: Data buffer with four values padded to 64 bytes.

nullable fields contain a validity bitmap buffer and a
null count. PrimitiveArrays, BinaryArrays, and
DictionaryArrays (marked in gray in Figure 2) own
a single data buffer. Apache Arrow arrays with vari-
able size layout contain a further offset buffer. Nested
and Union layouts contain one or more data and offset
buffers. The internal data buffer structure of nested
arrays can be traced back to non-nested array data
buffers.

For the efficient analytical processing of a huge
amount of data, it is beneficial to store integral (prim-
itive) columnar data as shown in (Abadi et al., 2006;
Abadi et al., 2013; Binnig et al., 2009; Müller et al.,
2014). For our running example table, this is easy for
the fields one and two. The first and second column
with uint32 values would have length 4, null count 0,
possibly a validity bitmap buffer, and the data buffer.
The values are stored consecutively in a multiple of
64-bit to efficiently support SIMD operations. Thus,
padding might be necessary. Figure 3 shows the data
buffer for the first column from Figure 1. Bytes 16 to
63 are padded. For the third column, the Apache Ar-
row dictionary encoding can be applied such that the
value REG AIR is replaced by 0 and the value SHIP is
replaced by 1. As a consequence, we store integral
values in each column and an additional dictionary in
a separate buffer.

2.1.3 C++ Library

The provided C++ library is an implementation of
the Apache Arrow specification and consists of a
stack of 10 different layers. The lowest ones are
the physical layer with the pure memory manage-
ment, the one-dimensional layer (1D Layer with ar-
rays and the two-dimensional layer (2D Layer) im-
plementing schemas, fields, and tables. On top of
those, we have seven further layers, e.g., for I/O and
interprocess communication (IPC). For this paper, the
lower layers are interesting.

In Figure 4, we see our running example table with
a schema describing the properties of the three fields
and three corresponding columns. Moreover, the im-
plementation in the lower three layers is highlighted.
In the C++ library, it is possible to assemble one col-
umn from (i) several arrays (chunks) with the same
data type or (ii) by one single array as depicted in
the 1D Layer of Figure 4. For each array (chunk),
a separate buffer within the Physical Layer is al-
located. The C++ library of Apache Arrow imple-

Integrating Lightweight Compression Capabilities into Apache Arrow

57



Field Table

Schema

Column
Chunk

Memory
Buffer

ArrayChunk

Table Schema Metadata

Field

Column

name=l orderkey
type=uint32
nullable=false
metadata=NULL

upper
Layers

2D Layer

1D Layer

Physical
Layer

Figure 4: Illustration of the lower three layers of the Apache
Arrow C++ library for our running example.

ments the class attributes of the lower layer classes
(and nearly everything else) as shared pointers such
that often no copies are necessary for data processing.

2.2 Lightweight Integer Compression

Generally, the basic idea of data compression is to in-
vest more computational cycles to reduce the physical
data size. This computational effort can be amortized
by an increased effective bandwidth of data transfers
to storage mediums. This general concept is suc-
cessfully applied in many areas, among which com-
plex analyses of columnar data are just one example
(Abadi et al., 2006; Habich et al., 2019; Hildebrandt
et al., 2016; Zukowski et al., 2006). In this area, loss-
less compression is generally preferred.

Depending on the storage medium, different
classes of lossless compression can be distinguished.
On the one hand, classical heavyweight algorithms,
such as Huffman (Huffman, 1952), arithmetic coding
(Witten et al., 1987), variants of Lempel-Ziv (Ziv and
Lempel, 1977; Ziv and Lempel, 1978), and Snappy
(Google, 2019) support arbitrary data, but are rather
slow. Thus, they are usually employed to amortize
disk access latencies. On the other hand, lightweight
compression algorithms, which have been developed
especially for columnar data (Abadi et al., 2006;
Hildebrandt et al., 2016; Lemire and Boytsov, 2015),
are much faster while still achieving superb compres-
sion rates (Damme et al., 2017; Damme et al., 2019).
This combination makes them suitable for in-memory
columnar processing (Abadi et al., 2006; Damme
et al., 2020; Habich et al., 2019).

Lightweight compression algorithms usually fo-
cus on integer sequences, which is a natural match for
columnar data, since it is state-of-the-art to represent
all values as integer keys from a dictionary (Binnig
et al., 2009). The unique properties of lightweight
compression algorithms result from their exploitation
of certain data characteristics, such as the data dis-
tribution, sort order, or the number of distinct val-
ues in a column (Damme et al., 2017; Damme et al.,
2019). Owing to that, a large variety of lightweight in-
teger compression algorithms has been proposed and

a recent study showed that there is no single-best one
(Damme et al., 2017; Damme et al., 2019).

Examples of lightweight compression include
variants of run-length encoding (RLE) (Abadi et al.,
2006; Roth and Van Horn, 1993), frame-of-reference
(FOR) (Goldstein et al., 1998; Zukowski et al., 2006),
differential coding (DELTA) (Lemire and Boytsov,
2015; Roth and Van Horn, 1993), dictionary cod-
ing (DICT) (Abadi et al., 2006; Binnig et al., 2009;
Roth and Van Horn, 1993; Zukowski et al., 2006),
and null suppression (NS) (Abadi et al., 2006; Lemire
and Boytsov, 2015; Roth and Van Horn, 1993). To
better understand these basic variants, we will briefly
explain each of them. FOR and DELTA represent
each integer value as the difference to either a cer-
tain given reference value (FOR) or to its predeces-
sor value (DELTA). For decompression purposes, we
have to store the reference values in FOR. DICT re-
places each value by its unique key in a dictionary,
whereby this technique can be used to map values of
any data type to integer values (Binnig et al., 2009).
The dictionary has to be stored for decompression as
well. The objective of these three well-known basic
variants is to represent the original integer data as a
sequence of small integers, which is then suited for
actual compression using the NS technique. NS is the
most studied lightweight compression technique. Its
basic idea is the omission of leading zeros in the bit
representation of small integers. Finally, RLE tackles
uninterrupted sequences of occurrences of the same
value, so-called runs. Each run is represented by its
value and length.

2.3 Lessons Learned

To sum up, Apache Arrow is an interesting platform
as it provides a standardized language-independent
columnar in-memory format, organized for efficient
analytical operations on modern hardware. It already
includes dictionary coding to map arbitrary data types
to integer values. However, Apache Arrow lacks sup-
port for more sophisticated lightweight integer com-
pression algorithms which are suitable (i) to reduce
the memory footprint and (ii) to speedup the colum-
nar data processing. To overcome that shortcoming of
Apache Arrow, we developed an approach to integrate
the large corpus of lightweight into Apache Arrow.

3 ArrowComp FRAMEWORK

In (Damme et al., 2017; Damme et al., 2019), the
authors clarify the large corpus of lightweight inte-
ger compression algorithms and experimentally prove

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

58



that there is no single-best one but the decision de-
pends on data characteristic and hardware proper-
ties. For this reason, it does not make sense to inte-
grate only some lightweight integer compression into
Apache Arrow, which would only limit the benefits.
To achieve the full potential, the complete corpus of
algorithms has to be integrated. However, this inte-
gration has to be language-independent to preserve
this unique property of Apache Arrow. To satisfy
these challenges, our ArrowComp approach is based on
two basic pillars:
1. We already developed a metamodel to spec-

ify lightweight integer compression algorithms
in a descriptive, language-independent, and non-
technical way (Hildebrandt et al., 2017).

2. We evolved the specification of each column
to a self-describing compressed column. That
means, each column includes a description about
the (de)compression as metadata using our meta-
model.

To show the feasibility and to evaluate our approach,
we implemented a prototype of ArrowComp based on
the C++-library of Apache Arrow. In the following,
we describe each pillar and our implementation in
more detail.

3.1 Metamodel for (De)Compression

To specify lightweight integer compression algo-
rithms in a language-independent approach, we al-
ready presented an appropriate metamodel in (Hilde-
brandt et al., 2017). Our metamodel consists of five
main concepts processing a stream or batch of values
and it defines a data compression format. Each con-
cept contains mainly functions consuming streams or
batches and generating other streams, batches, or sta-
tistical parameters. The model for each algorithm is
a compression concept. Each compression contains
(1) a tokenizer, a function which determines how
many consecutive values belong to the next batch,
(2) a parameter calculator, a set of functions,
which determine and encode statistical parameters,
(3) an encoder, a tuple of functions calculating the
encoding of a batch or a further compression model,
such that compression models can be nested, and (4)
a combiner that determines the serialization of en-
coded batches and parameters.

Figure 5 depicts a concrete example using a sim-
ple null suppression algorithm SIMD-BP128 (Lemire
and Boytsov, 2015). The basic idea of SIMD-BP128
is to partition a sequence of integer values into batches
of 128 integer values and compress every value in a
batch using a fixed bit width (namely, the effective
bit width of the largest value in the block) (Lemire

1 compression(SIMD -BP128 ,

2 tokenizer(in => 128),

3 parametercalculator(width , in.max.bw),

4 compression(

5 tokenizer(in => 1),

6 parametercalculator(),

7 encoder(in => in.bin (width)),

8 combiner(in => in)

9 )

10 combiner (in => in o width)

11 )

Figure 5: SIMD-BP128 metamodel instance.

and Boytsov, 2015). That means, the compression
is achieved by omission of leading zeros in the bit
representation of each integer value. As shown in
Figure 5, the corresponding metamodel instance of
SIMD-BP128 includes only this non-technical infor-
mation. In detail, the first tokenizer (line 2) parti-
tions the incoming sequence of integers denoted as in
into batches with a size of 128 values. The subsequent
parameter calculator (line 3) determines the bit
width of the largest value using a function in.max.bw
and this bit width is stored in a variable width. Then,
a new compression part (line 4) starts with a sec-
ond tokenizer (line 5) partitioning the batches in
new batches of size one, so that the encoder (line
7) can represent each value with the determined bit
width (in.bin(width)). In this case, we do not need
any further parameters and thus, we use an empty
parameter calculator (line 6). Last but not least,
the combiners (lines 8 and 10) specify the concate-
nation of the compressed representation, whereby the
used bit width per batch is included in the compressed
representation (line 10). This information is neces-
sary for a successful decompression.

For ArrowComp, we straightforwardly extended
our metamodel to be able to specify the decompres-
sion algorithm in the same way as well. Since the
specific parameter values for the compression, such
as the used bit width per batch, are always included
in the compressed data, they only have to be ex-
tracted instead of being calculated using a parameter
calculator. Then, this information is used in the
encoder to decompress the values.

To sum up, with our metamodel approach, we are
able to specify the compression as well as decom-
pression procedure for a large set of lightweight com-
pression algorithms in a descriptive and language-
independent manner. Moreover, our metamodel con-
sists of only five specific concepts which are enough
for that lightweight integer compression domain.

Integrating Lightweight Compression Capabilities into Apache Arrow

59



3.2 Self-describing Column

Since data properties have a significant influence on
the choice of the best-fitting lightweight compres-
sion algorithm (Damme et al., 2017; Damme et al.,
2019), each column has to be considered separately.
However, this also means that we have to specify for
each column with which algorithm it is compressed
and how it has to be decompressed. Moreover, this
specification has to be done in an implementation-
independent form so that the same format can be uti-
lized by different systems or libraries. To achieve that,
we decided to include the metamodel instances for
compression and decompression in the corresponding
field metadata of the columns in Apache Arrow. We
borrow this approach from the extension types idea
as presented in Section 2.1. Figure 6 illustrates our
approach for the first column.

To sum up, our general concept is to store the com-
pressed column together with a description to spec-
ify and generate the compression as well as decom-
pression procedure (compressed data together with
(de)compression algorithms). From our point of view,
this is the most flexible approach to make data in-
terchangeable between different systems. However,
this also means that the systems have to be able
to interpret and to execute the descriptions of the
(de)compression procedures. To achieve that, we pro-
pose that the separation of specification and imple-
mentation has to be applied for algorithms as done
with our metamodel approach.

Furthermore, our self-describing column ap-
proach seamlessly interacts with the already available
dictionary encoding of Apache Arrow. Based on that,
can fully utilize the potential of the lightweight inte-
ger compression algorithms for all kinds of data types
by (i) encode the values of each column as a sequence
of integers using dictionary encoding and (ii) apply
lightweight lossless integer compression to each se-
quence of integers resulting in a sequence of com-
pressed column codes.

3.3 Implementation

To prove the feasibility and applicability of our ap-
proach, we implemented an ArrowComp prototype
based on the C++ library of Apache Arrow. For this
prototype, the following challenges arose: (i) integrat-
ing metamodel instances into metadata, (ii) convert-
ing metamodel instances to efficient executable code,
(iii) provision of access to the compressed data. In the
following, we present our solutions for that as sum-
marized in Figure 6.

ArrayChunk

Table Schema Metadata

Field

Column

name=l orderkey
type=uint32
nullable=false
metadata=

upper
Layers

2D Layer

1D Layer

Compression Layer

”compression”

{
”comp”:{

”tok”:{...},
”params”:{...},
”comp”:{...},
”comb”:{...}
}
}”

Memory
Buffer Physical

Layer

Figure 6: ArrowComp layer structure providing compressed
columnar storage and processing capabilities.

3.3.1 Metadata Integration

To integrate the metamodel instances for compres-
sion and decompression, we decided to include those
descriptions in the corresponding field metadata of
the columns. As we already mentioned above, we
borrowed this integration concept from the extension
types idea from Apache Arrow. In our current im-
plementation, we describe the metamodel instances
as JSON objects, because the algorithms are usually
composite tree structures which perfectly match to
JSON.

3.3.2 Converting to Executable Code

To modify and to process columnar data, the meta-
model instances of compression and decompression
have to be converted to executable code. To achieve
that, there are two possible ways: (i) code generation
out of the metamodel or (ii) by provision of an im-
plemented library with the required functionality. In
general, both ways are feasible, but we decided to im-
plement a library as an additional layer between the
Physical Layer and the 1D Layer of Apache Ar-
row as illustrated in Figure 6. The task of this library
is to compress and to decompress columnar data ac-
cording to the descriptions in the corresponding meta-
data of the column in a transparent way. That means,
the 1D Layer does not know that the columnar data is
stored in a compressed way at the Physical Layer.

In general, our library is based on C++ tem-
plate metaprogramming. In more detail, every meta-
model concept such as compression or tokenizer
is realized as a template which can be parameter-
ized and tailored using function inlining. Then, these
templates are orchestrated as specified in the meta-
model instances The advantage of this approach is
that we can directly derive a library implementation
out of a JSON-represented compression or decom-
pression algorithm using a regular compiler. Since
most lightweight integer compression implementa-
tions have been proposed for vectorization with vector
registers of size 128-bit (Damme et al., 2019; Lemire

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

60



Algorithm
Advisor

Algorithm
Integration

Functionality
Provision

Dynamic
Loading

Data
Processing

Data
Analyzation

Algorithm
Specification

Algorithm
Parsing

Model
Analyzation

Code
Generation

Code
Compilation

Load
Library

Extracting
Contents

Function
Execution

Unload
Library

Data
Metrics

columnar
data

JSON
String

Algorithm
Model
JSON
Object

Analyze Tree

Source Code
libgeneration.cpp

Shared Object
libgeneration.so

File Handle

Function
Pointer

columnar
data

compress
decompress

getValue

Figure 7: Runtime steps during the life time of a data format object (i) to integrate algorithms, (ii) to provide the algorithmic
functionality, and (iii) to load and to execute the generated code.

and Boytsov, 2015), our templates currently support
this vector register sizes as well.

Moreover, we introduced a new data format class
in ArrowComp. This new data format corresponds to
the model instance. Figure 7 summarizes all steps
during the lifetime of a data format object. When a
data format is instantiated (line 4 in Figure 8), the in-
put JSON Strings specifying the compression and de-
compression algorithms are parsed to JSON objects.
To generate the corresponding executable code, the
metamodel descriptions are analyzed in a next step.
This includes the calculation of positions and lengths
of bit strings, which have to be encoded, the applica-
tion of case distinctions and loop unrollings as well as
the determination of the output granularity like word
granularity or byte granularity. Afterward a couple of
functions is compiled to a file belonging to the special
data format and a shared library is constructed. This
library is loaded dynamically at run time, such that the
library functions are accessible by a (function) pointer
and can be applied for data processing like compres-
sion, decompression, as well as value access as dis-
cussed as next.

3.3.3 Providing Access

The construction of a compressed array and reading
of a sequence of integer values is shown in Figure 8.
Apache Arrow uses a so-called builder to construct an
Apache Arrow array. The builder organizes the incre-
mental building of different buffers corresponding to
different data types, calculates null counts, etc. To
store compressed data in ArrowComp, the builder for
a compressed array has to know the compressed data
format. This is done by setting the (de)compression
JSON-objects for the data format for a specific field

1 // setting the table schema

2 vector <shared_ptr <Field >> schema =

{field("orderkey", uint32()) ,...};

3 // setting (de)compression infos

4 auto mycomp = arrowcomp::setFormat <UInt32Type >

(schema ->field(0), JSON -String

Compression , JSON -String Decompression);

5 // building data arrays

6 auto builder = arrowcomp::builder(mycomp);

7 // execution of compression code

8 builder.Append (2789);

9 builder.Append (9378);

10 arrow::Status st = builder.Finish();

11 // reading compressed data

12 auto vals (new arrowcomp::

CompressedArray <UInt32Type >(builder));

13 // decompression of a single value

14 auto val = vals ->Value(1); // == 9378

Figure 8: Modifying and reading compressed arrays.

(line 4). Then, the builder gets this information as
input (line 6), whereby the required code for com-
pression and decompression will be initialized. Af-
terward, we can append single values to the column
and these values are transparently compressed using
the specific compression algorithm (lines 8-10).

To read the values of a compressed column, we
access the values in a regular uncompressed way (line
14). In the background, our introduced Compression
Layer is responsible for the decompression to return
uncompressed values to the application. Important to
note, our Compression Layer does not decompress
the entire column, but only in pieces that fit in the
cache hierarchy. In that way, we can efficiently exe-
cute sequential access on the entire column with de-
compressing only small parts. To realize random ac-
cess efficiently, we need to determine which part of

Integrating Lightweight Compression Capabilities into Apache Arrow

61



the compressed column has to be decompressed.
In most cases, the compressed data is organized

in batches. That means, the number of values in one
batch is fix, e.g., 128 values in SIMD-BP128, but the
physical data size varies, because a different bit width
is used for each block. Here, we can exploit chunked
arrays, such that each batch is mapped to exactly one
chunk. A second case is, that the compressed data
is organized in blocks with a constant physical data
size, but the number of values varies. Examples are
word-aligned algorithms with a 2- to 4-bit header that
encodes the number and bit lengths of the bit-packed
values or RLE. Here, an index tree structure can be
applied, such that the block which contains the value
at a given position can be found in a constant time.
Depending on the block size, exploiting chunks or
offsets can be advantageous. However, these data for-
mats are more suitable for sequential than for random
access.

In a third case, the compressed data is not orga-
nized in blocks and all values have the same length.
Here random access is trivial. The fourth and last case
includes variable-length compressed values, which
are not organized in blocks. These data formats are
also more suitable for sequential than for random ac-
cess, but here it would be possible to organize a fixed
number of values in chunks. An orthogonal approach
to access variable-length data is to store the length in-
formation and the data itself separately, such that only
the length information has to be iterated to find the
value you are looking for. This can be specified with
a multi-output combiner in our metamodel.

4 EVALUATION

We conducted our experimental evaluation on a ma-
chine equipped with an Intel i7-6600U at 2.6 GHz
providing the vector extension SSE with a vector reg-
ister size of 128-bit. The capacities of the L1, L2,
and L3-caches are 32KB, 256KB, and 4096KB, re-
spectively. The system has 2 cores, however, we only
investigate the single-thread performance. The size of
the ECC DDR4 main memory is 19GB and all exper-
iments happened entirely in-memory. We compiled
our source code using g++ with the optimization flag
-O3 on a 64-bit Linux operating system.

To show the benefit of our ArrowComp compared
to Apache Arrow, we evaluated (1) the data sizes of
compressed and uncompressed arrays and (2) the run-
times of sum and lookup queries on uncompressed
and compressed arrays. In our evaluation, we limit
our focus on representative lightweight integer com-
pression algorithm variants of SIMD-BP128 (cf. Fig-

ure 5). Moreover, we generated different columns
with different bit widths per column, 3, 10, 16 (resp.
different data ranges per column, (0 : 23), (0 : 210), and
(0 : 216)). In detail, we compare five different column
implementation types, marked by different colors:

� uncompressed data, stored in one chunk resp. one
single memory region,

� uncompressed data, divided in chunks resp. mem-
ory regions containing 128 data values,

� compressed data, binary packed with a given
number of bits per data value in one single chunk,

� compressed data, statically binary packed with a
given number of bits per data value, chunk-wise,
such that each chunk contains 128 values, and

� compressed data, dynamically binary packed with
a given number of bits per data value, chunk-wise,
such that each chunk contains 8 bit containing the
bit width used in this chunk, and 128 values.

We combined each of the three bit widths data sets
with each of the five column types, such that for the
experiments a table with 15 columns was used. In
general, the unchunked uncompressed columns serve
as the baseline for the unchunked compressed data
and the chunked uncompressed columns serve base-
line for the chunked (statically and dynamically) com-
pressed columns. Statically compressed columns al-
low only one bit width per column. Dynamically
compressed columns would principally allow differ-
ent bit widths per chunk as proposed by SIMD-BP.

4.1 Data Sizes

The size of compressed data depends on (1) the num-
ber n of uncompressed integers, (2) the bit width b,
and (3) the question, if the used bit width is stored
additionally or not. If n is no multiple of 128, we use
padding bits to complete the whole block. In this case,
we do not store a bit width (�/�), the size (int Bytes)
is calculated with s− =

d n
128 e·128·b

8 + smeta. In the other
case, due to storing a bit width per 128 values (�),
the size is calculated by s+ =

d n
128 e·(128·b+8)

8 + smeta.
Moreover, we have to include the size smeta of algo-
rithm descriptions which is in the of 640 to 680 KB
for the used algorithms. The sizes for unchunked resp.
statically compressed columns with and without the
size of the algorithm descriptions are depicted in Fig-
ure 9(a) for column sizes 0 to 1500 values. The com-
pression factor c (compressed data size/uncompressed
data size) in dependence of the data size is shown in
Figure 9(d). As we can see, with increasing column
sizes, we can dramatically reduce the memory foot-

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

62



(a) Physical size of unchunked columns (b) Execution times for sum calculations (c) Execution times for lookups

(d) Compression factor for unchunked
columns

(e) Speedup for sum calculations
.

(f) Slowdown for lookups
.

Figure 9: Evaluation of data sizes and execution times for sum aggregation and lookup queries.

print for all compressed variants depending on the bit
width.

4.2 Run Times

To compare the runtimes of the sum aggregation (se-
quential access) and the lookup (random access), we
varied the column sizes from 128 ·214 to 25 ·128 ·214

logical integer values. Figure 9(b) shows the exe-
cution times for sum aggregation for uncompressed
and compressed, unchunked and chunked columns.
The execution time increases linearly in all cases.
Execution times over unchunked columns (�/�) are
faster than those on chunked columns (�/�/�). The
comparison of the aggregation over unchunked un-
compressed and compressed data (�) shows that, de-
pending on the bit width, we can speed up the sum
aggregation up to a factor of 2.5 (see Figure 9(e).
The comparison of the aggregation over chunked un-
compressed and compressed (�/�) columns shows
that the processing yields a speedup of 1.5 for com-
pressed values. And there is nearly no differ-
ence between statically and dynamically compressed
columns, which means, that it is possible to hold dif-
ferently compressed data in one column without a
lack of performance.

For the lookup (random access), different posi-
tions in a column are given to extract the corre-
sponding value. Similar to the sum aggregation ex-

periment, column sizes are increased. The experi-
ments were done with a warm cache, that is why the
first measurements differ from the rest. Figure 9(c)
shows, that the lookup does not depend on the column
size. The fastest access can be measured by process-
ing the uncompressed columns (�/�). Because, for
compressed columns (�/�/�), the physical positions
have to be calculated, which leads to an additional
overhead. Lookups on dynamically compressed col-
umn (�) are the most expensive queries, because the
bit width of each chunk has to be extracted before the
values can be accessed. Lookups on statically com-
pressed column (�) are less expensive than on the 1-
chunk column, because the access of the right 128-
value block is faster. An exception is bit width 16
in the unchunked column (�), because compiler opti-
mizations lead to a better performance due to less bit-
shifting operations and a minimal calculation amount
to determine the physical position of the value. All in
all, we are around 5% to 13% slower in lookups if we
used compressed columns (see Figure 9(f)).

Nevertheless, OLAP queries usually do a lot of se-
quential access instead of random access. Thus, the
integration of lightweight integer compression into
Apache Arrow is very beneficial to reduce the mem-
ory footprint as well as to speed up the sequential
access. Moreover, our self-describing compressed
columns have a slightly higher memory consumption
compared to only compressed columns, but this over-

Integrating Lightweight Compression Capabilities into Apache Arrow

63



Figure 10: Data formats for disk and main memory storage.

head is negligible. As discussed in Section 3, ran-
dom access can be supported in different ways. Nev-
ertheless, more research in this direction is needed
and compact data structures as presented in (Navarro,
2016) represent an interesting opportunity.

5 RELATED WORK

Related Work in this domain is manifold and our de-
scription is oriented according to the basic data flow
process associated with an analytical application as
shown in Figure 10. In this process, the data to be
analyzed must be read from persistent storage and
loaded into the main memory at first. Then, the sec-
ond step is the processing step, where the actual anal-
ysis takes place. Both steps have different require-
ments and bottlenecks, so that different file formats
exist for the persistent storage as well as the manage-
ment in main memory as presented in Sections 5.1
and 5.2. As already described, Apache Arrow belongs
to the file formats for the main memory. Additionally,
there exists already some Apache Arrow-centric work
as presented in Section 5.3.

5.1 Storage-oriented Formats

There are several storage-oriented file formats such as
Apache Parquet (Vohra, 2016b), Apache Avro (Vohra,
2016a), or Apache ORC (Apache, 2020). These
formats are widely used in the Hadoop ecosystem.
While Apache Avro focuses on a row-based data for-
mat, Apache Parquet and Apache ORC are colum-
nar formats like Apache Arrow. Because disk access
is the bottleneck of conventional disk-based systems,
the goal of those data storage architectures is to im-
prove the disk access. This can be done by appropri-
ate heavyweight data compression formats, which are
characterized by there genericity and higher computa-
tional effort. For example, Apache Parquet supports
snappy, gzip, lzo, brotli, lz4, and zstd to compress
columnar data (Vohra, 2016b).

5.2 Processing-oriented Formats

Main memory or processing-oriented formats can be
row-based for OLTP workloads, column-based for
OLAP workloads, like Apache Arrow or Pandas, as
well as hybrids. For example, Pandas is a python
library for data analysis and manipulation. Here,
heavyweight compression (gzip, bz2, zip, and xz) is
used to reduce the amount of data for persistent stor-
age in output formats like CSV, JSON, or TSV. For
in-memory usage, no obvious compression is imple-
mented. While reading the disk-oriented input for-
mat, the user can cast integral columns to datatypes
like int64, int32, int16, or int8 and initiate a kind
of binary packing. Furthermore, columns can be load
with the categorial datatype. Here, DICT is applied.
And there exists a sparse series data type, which sup-
ports a null value suppression.

5.3 Apache Arrow-centric Work

The authors of (Peltenburg et al., 2019) created a
Parquet-to-Arrow converter, which they implemented
in FPGA. In their proposed scenario, the disk-oriented
files are stored on fast accessible NVMe SSD’s, which
leads to the fact, that not the access to persistent stor-
age but the conversion of file formats (persistent to
in-memory) is a new bottleneck. The converter gets
Apache Parquet files as pagewise input and constructs
in-memory data structures in the Apache Arrow for-
mat using their Fletcher framework (Peltenburg et al.,
2019).

With ArrowSAM (Ahmad et al., 2019), Apache
Arrow is used to store SAM data (biological
sequence-aligned to a reference sequence). The au-
thors process genom data and apply several algo-
rithms. To execute a parallel sorting algorithm, they
split the genom data chromosome-wise in batches,
which are added to the so-called Apache Arrow
Plasma Object Store, a shared memory, that can be
accessed by different clients without process bound-
aries.

6 CONCLUSION AND FUTURE
WORK

Besides the development of a novel big data system,
we also see a fundamental revision of the data orga-
nization and formats as a foundation for these sys-
tems. Here the goal is to organize data optimally for
processing and analysis. In this context, Apache Ar-
row is a novel and highly interesting platform by pro-
viding a standardized language-independent colum-

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

64



nar in-memory format, organized for efficient analyt-
ical operations in modern hardware. It already in-
cludes dictionary coding to map arbitrary data types
to integer values. However, Apache Arrow lacks sup-
port for more sophisticated lightweight integer com-
pression algorithms which are suitable to (i) reduce
the memory footprint and (ii) to speedup the columnar
data processing. Thus, we presented an approach to
integrate the large corpus of lightweight into Apache
Arrow in this paper. We experimentally showed that
this integration leads to a decreased memory footprint
an increased performance of an aggregation function
compared to uncompressed data.

The next step in our ongoing research work is the
integration of more compression algorithms with dif-
ferent properties to generalize and optimize our inte-
gration approach. Another point of ongoing work is
to deduce the decompression abstraction correspond-
ing to compression metamodel. Thus, the genera-
tion of decompression code can be automated with-
out the explicit knowledge of a decompression algo-
rithm. Future work also includes the integration of
some data hardening algorithms respectively error-
detecting codes. This can be done by applying the
metamodel as well. Last but not least, we plan to ex-
haustively evaluate the benefit of our approach with
big data systems using Apache Arrow.

REFERENCES

Abadi, D., Boncz, P. A., Harizopoulos, S., Idreos, S., and
Madden, S. (2013). The design and implementation
of modern column-oriented database systems. Foun-
dations and Trends in Databases, 5(3):197–280.

Abadi, D. J., Madden, S., and Ferreira, M. (2006). Integrat-
ing compression and execution in column-oriented
database systems. In SIGMOD, pages 671–682.

Ahmad, T., Peltenburg, J., Ahmed, N., and Al Ars, Z.
(2019). Arrowsam: In-memory genomics data pro-
cessing through apache arrow framework. bioRxiv,
page 741843.

Apache (2020). Apache avro: the smallest, fastest columnar
storage for hadoop workloads. https://orc.apache.org/.
Accessed: 2020-03-06.

Beazley, D. M. (2012). Data processing with pandas. ;lo-
gin:, 37(6).

Begoli, E., Camacho-Rodrı́guez, J., Hyde, J., Mior, M. J.,
and Lemire, D. (2018). Apache calcite: A founda-
tional framework for optimized query processing over
heterogeneous data sources. In SIGMOD, pages 221–
230.

Binnig, C., Hildenbrand, S., and Färber, F. (2009).
Dictionary-based order-preserving string compression
for main memory column stores. In SIGMOD, page
283–296.

Boncz, P. A., Kersten, M. L., and Manegold, S. (2008).
Breaking the memory wall in monetdb. Commun.
ACM, 51(12):77–85.

Boncz, P. A., Zukowski, M., and Nes, N. (2005). Monetd-
b/x100: Hyper-pipelining query execution. In CIDR.

Chaudhuri, S., Dayal, U., and Narasayya, V. R. (2011). An
overview of business intelligence technology. Com-
mun. ACM, 54(8):88–98.

Damme, P., Habich, D., Hildebrandt, J., and Lehner, W.
(2017). Lightweight data compression algorithms: An
experimental survey (experiments and analyses). In
EDBT, pages 72–83.

Damme, P., Ungethüm, A., Hildebrandt, J., Habich, D.,
and Lehner, W. (2019). From a comprehensive ex-
perimental survey to a cost-based selection strategy
for lightweight integer compression algorithms. ACM
Trans. Database Syst., 44(3):9:1–9:46.

Damme, P., Ungethüm, A., Pietrzyk, J., Krause, A., Habich,
D., and Lehner, W. (2020). Morphstore: Analytical
query engine with a holistic compression-enabled pro-
cessing model. CoRR, abs/2004.09350.

Goldstein, J., Ramakrishnan, R., and Shaft, U. (1998).
Compressing relations and indexes. In ICDE, pages
370–379.

Google (2019). Snappy - a fast compressor/decompressor.
https://github.com/google/snappy.

Habich, D., Damme, P., Ungethüm, A., Pietrzyk, J.,
Krause, A., Hildebrandt, J., and Lehner, W. (2019).
Morphstore - in-memory query processing based on
morphing compressed intermediates LIVE. In SIG-
MOD, pages 1917–1920.

Hildebrandt, J., Habich, D., Damme, P., and Lehner, W.
(2016). Compression-aware in-memory query pro-
cessing: Vision, system design and beyond. In
ADMS@VLDB, pages 40–56.

Hildebrandt, J., Habich, D., Kühn, T., Damme, P., and
Lehner, W. (2017). Metamodeling lightweight data
compression algorithms and its application scenarios.
In ER, pages 128–141.

Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. Proceedings of the In-
stitute of Radio Engineers, 40(9):1098–1101.

Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T.,
Ching, C., Choi, A., Erickson, J., Grund, M., Hecht,
D., Jacobs, M., Joshi, I., Kuff, L., Kumar, D., Leblang,
A., Li, N., Pandis, I., Robinson, H., Rorke, D., Rus,
S., Russell, J., Tsirogiannis, D., Wanderman-Milne,
S., and Yoder, M. (2015). Impala: A modern, open-
source SQL engine for hadoop. In CIDR.

Lemire, D. and Boytsov, L. (2015). Decoding billions of in-
tegers per second through vectorization. Softw., Pract.
Exper., 45(1):1–29.

Müller, I., Ratsch, C., and Färber, F. (2014). Adaptive
string dictionary compression in in-memory column-
store database systems. In EDBT, pages 283–294.

Navarro, G. (2016). Compact Data Structures - A Practical
Approach. Cambridge University Press.

Peltenburg, J., van Straten, J., Wijtemans, L., van Leeuwen,
L., Al-Ars, Z., and Hofstee, P. (2019). Fletcher: A

Integrating Lightweight Compression Capabilities into Apache Arrow

65



framework to efficiently integrate FPGA accelerators
with apache arrow. In FPL, pages 270–277.

Polychroniou, O., Raghavan, A., and Ross, K. A.
(2015). Rethinking SIMD vectorization for in-
memory databases. In SIGMOD, pages 1493–1508.

Polychroniou, O. and Ross, K. A. (2019). Towards prac-
tical vectorized analytical query engines. In Da-
MoN@SIGMOD, pages 10:1–10:7.

Roth, M. A. and Van Horn, S. J. (1993). Database compres-
sion. SIGMOD Rec., 22(3):31–39.

Sridhar, K. T. (2017). Modern column stores for big data
processing. In Reddy, P. K., Sureka, A., Chakravarthy,
S., and Bhalla, S., editors, BDA, pages 113–125.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cher-
niack, M., Ferreira, M., Lau, E., Lin, A., Madden,
S., O’Neil, E. J., O’Neil, P. E., Rasin, A., Tran, N.,
and Zdonik, S. B. (2005). C-store: A column-oriented
DBMS. In VLDB, pages 553–564.

Ungethüm, A., Pietrzyk, J., Damme, P., Krause, A., Habich,
D., Lehner, W., and Focht, E. (2020). Hardware-
oblivious SIMD parallelism for in-memory column-
stores. In CIDR.

Vohra, D. (2016a). Apache avro. In Practical Hadoop
Ecosystem, pages 303–323. Springer.

Vohra, D. (2016b). Apache parquet. In Practical Hadoop
Ecosystem, pages 325–335. Springer.

Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arith-
metic coding for data compression. Commun. ACM,
30(6):520–540.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster computing with
working sets. In Nahum, E. M. and Xu, D., editors,
HotCloud.

Zhou, J. and Ross, K. A. (2002). Implementing database op-
erations using SIMD instructions. In SIGMOD, pages
145–156.

Ziv, J. and Lempel, A. (1977). A universal algorithm for
sequential data compression. IEEE Trans. Inf. Theor.,
23(3):337–343.

Ziv, J. and Lempel, A. (1978). Compression of individual
sequences via variable-rate coding. IEEE Trans. In-
formation Theory, 24(5):530–536.

Zukowski, M., Héman, S., Nes, N., and Boncz, P. A.
(2006). Super-scalar RAM-CPU cache compression.
In ICDE, page 59.

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

66


