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Abstract: Computational Music Thinking combines computing education and music education with the goal to 
overcome common aptitudinal and attitudinal challenges. Many students, and teachers, believe that writing 
programs or performing music is beyond their natural abilities. Instead of trying to teach computing and music 
separately, Computational Music Thinking employs the design of interactive notations as a synergistic activity 
to learn simultaneously about computation and music. On the one hand, music can turn abstract computational 
concepts into enjoyable concrete experiences. Computation, on the other hand, can expand students’ notion 
of music education well beyond music performance. A course with elementary school pre-service teachers 
explored the teaching of Computational Music Thinking through a small set of constructs called 
Computational Music Thinking Patterns. These patterns are centered around educational activities to design 
interactive notations in accessible as well as engaging ways. Computational Music Thinking Patterns expand 
our previous work on Computational Thinking Patterns used in game design and simulation authoring 
activities. Data collected from the course suggest highly positive effects on teachers' attitudes towards 
believing that Computational Music Thinking is important to their teaching, that Computational Music 
Thinking helps the comprehension of computer science and that Computational Music Thinking helps the 
comprehension of music.  

1 INTRODUCTION 

In most elementary schools around the world teachers 
are required to teach a wide range of subjects 
including language, math, science, and art including 
music. Recently, some countries such as Switzerland, 
have made computing education, consisting of 
programming and Computational Thinking (CT) 
(Repenning, Lamprou, Petralito, & Basawapatna, 
2019), mandatory. Many schools and teachers 
perceive this as a challenge (Gander et al., 2013) 
because this requirement adds another subject to the 
list of courses to teach. Moreover, unlike the more 
traditional subjects’ teachers typically do not have 
any programming background and, consequently, 
feel ill prepared to teach CT-related courses. Even 
pre-service teachers – most of them are recent high 
school graduates in their twenties – who are being 
trained at a school of education to become teachers, 

typically have no experience in computer science. At 
the School of Education PH FHNW in Switzerland 
pre-service teachers were over 10 times less likely to 
have had previous experience in programming 
compared to the average Swiss population. A dismal 
fraction of 0.2% of these teachers had any 
programming experience. Clearly, the majority of 
pre-service teachers are not planning to become 
teachers because of computation but rather in spite of 
it.  

Hug has started to explore Computational Music 
Thinking (CMT) (Hug et al., 2017) as a notion 
combining programming with music through a small 
set of manageable constructs called Computational 
Music Thinking Patterns that are accessible and 
engaging. By pattern we mean design patterns (Lea, 
1994) that are reusable forms of a solution common 
to design problems. This paper describes five patterns 
common to computation and music. 
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The idea to teach CT as an interdisciplinary 
connection between Computer Science (CS) and 
other subjects is not new (Lee, Martin, & Apone, 
2014) Examples include the connection of CS with 
Math (e.g., (Papert, 1980)), language (e.g. through 
storytelling (Werner, Denner, Bliesner, & Rex, 
2009)), craft (e.g., (Kafai et al., 2014)), Sports (e.g., 
(Floyd & Sorbara, 2019) and art (e.g., (Knochel & 
Patton, 2015). Most of our own experience is rooted 
in game design (e.g., (Repenning, 2014)) and 
simulation building (e.g., (Basawapatna, Repenning, 
Koh, & Savignano, 2014)). Game Design has been 
well received by in-service teachers (Repenning et 
al., 2015) but Repenning found that while most pre-
service school teachers enjoy game design activities 
some are surprisingly skeptical (Repenning et al., 
2019) towards the use of game design activities to 
teach CT. One concern is mostly of a pragmatic 
nature. In spite of game design being immensely 
popular with K-12 students (Alexander, 2014; 
Werner et al., 2009; Kafai, 2006), it is not a subject 
that elementary school teachers are expected to teach. 
However, most elementary school teachers do need to 
teach subjects such as Music. Combining CT with 
Music into CMT is highly compelling to teachers as 
it suggests hitting two birds with one stone. More 
importantly, however, computation and music share 
important conceptual roots that could significantly 
increase students’ fundamental understanding of 
systems and notations.  

We conceptualize CMT as a highly synergistic 
framework supporting students’ interlinked 
understanding of CT and music through the 
exploration of a collection of CMT constructs that we 
call Computational Music Thinking Patterns. These 
patterns, in turn, are extensions of the repertoire of 
Computational Thinking Patterns (Basawapatna, 
2011) originally developed to find universal patterns 
describing phenomenalistic object interactions 
(Michotte, 1963) common to game design and 
simulation building. Some practical definitions of CT 
break it down into low level programming concepts 
such as sequences, conditionals, and iteration 
(Brennan & Resnick, 2012) and even try to assess CT 
performance through instruments counting the 
presence of these concepts in code (Moreno-León, 
Robles, & Román-González, 2015) Frameworks 
based on patterns, in contrast, operate at a higher level 
by conceptualizing combinations of programming 
elements that can add up to a higher goal.  

Learning activities are centered around 
Computational Music Thinking Patterns make 
students design interactive notations. The key idea of 
a notation is the affordance to separate representation 

and interpretation. Figure 1 shows a music box 
containing a cylinder representing a specific song. 
This cylinder can be exchanged with a different one 
to play a different melody with the same 
interpretation mechanism. To use, and more 
importantly to design, these kinds of notations 
provides a deep understanding of powerful ideas that 
are common between music and programming.  

Designing interactive notations provides 
affordances to make learning activities even more 
engaging. Students not only design static 
representations of existing songs but can interact with 
an ongoing process of music playing through mouse 
or keys input changing the notation in real time.  

A Computational Music Thinking pilot course 
was conducted in the Fall of 2019 with 9 pre-service 
elementary teachers. The course covered five 
Computational Music Thinking Patterns: 
Interpretation, Interaction, Chance, Hierarchy and 
Rewrite Rules. In the first part of the 14-week course 
the pre-service teachers learned to implement these 
patterns. In the second part they started to work in 
pairs to develop Zones of Proximal Flow tutorials 
(Basawapatna, Repenning, & Savignano, 2019) to 
teach K-12 students some of these patterns. This 
paper outlines some related work, describes the 
patterns and presents course evaluation results.  

2 RELATED WORK 

There are large bodies of literature in both Music 
education with digital technologies (Ruthmann, 
Heines, Greher, Laidler, & Saulters, 2010; Cano, 
Dittmar, Abeßer, Kehling, & Grollmisch, 2018; King 
& Himonides, 2016) and Computational Thinking 
(Wing, 2006; Grover & Pea, 2013) education. The 
combination of music and computation based on 
programming, however, has received much less 
attention particularly at the elementary school level. 
Discussion of related work here is limited to the 
elementary school level. 

2.1 Combining CT with Music 

The idea of connecting Computational Thinking with 
Music has been explored from multiple angles. 
Algorithmic composition, for instance, explores the 
composition based on formal methods and 
computation. Edwards describes computational 
notations going back to the “Musikalisches 
Würfelspiel” (“musical dice game”, attributed, 
among others, to Mozart) based on chance (Edwards, 
2011). Aleatoric composition was explored in 
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particular in the 20th century, both driven by the 
artistic questioning of musical traditions and the 
advent of computers, and the related use of 
computation as means of composing and generating 
music (Schulze, 2000). The core mechanism is for 
computers to play sounds based on rules, which are 
based on musical principles. Sequences of sounds, for 
instance melodies, are represented as functions 
playing a series of (pitched, tonal) sounds. Music can 
be composed by composing functions, i.e., functions 
calling other functions. This composition process can 
be done virtually, that is by writing code representing 
functions calling other functions, or tangibly, by 
arranging physical objects into compositions. These 
objects, in turn, may be passive such as traditional 
LEGO bricks representing a music notation (Baratè, 
Ludovico, & Malchiodi, 2017) or active such as the 
tangible music blocks in the Algo.Rythm system 
based on Arduino circuit boards (Peng, 2012). 

The use of Computational thinking has also been 
proposed specifically in music education (Ruthmann 
et al., 2010; Greher & Heines, 2014). The main 
motivation and goal also here are to support STEAM 
(STEM education with Arts added: Science, 
Technology, Engineering, Art, Math) education and 
promoting related digital skills in the arts, but with a 
stronger focus on musical learning. Greher & Heines 
for instance propose Scratch for musical 
programming. Their pedagogy makes use of 
preparatory exercises, which employ visual symbols 
drawn on paper representing musical actions, that 
then are executed by children with musical 
instruments or objects. When programming musical 
code with Scratch, however, they have to rely on 
abstract representations of musical processes.  

This work also builds on previous work by some 
of the authors exploring approaches to CMT with 
secondary school children in a workshop setting (Hug 
et al., 2017). This work showed that children were 
highly motivated to use visual programming 
environments to create music and attitudes both 
towards music and CS improved. 

2.2 Approaches to Programming 

With a target audience of elementary school students, 
a key challenge in supporting algorithmic 
composition is the difficulty of dealing with text-
based programming languages and abstractions of 
musical processes. For instance, SonicPI (Sam 
Aaron, 2016; Samuel Aaron, Blackwell, & Burnard, 
2016) is a powerful life coding environment suitable 
even for upper primary school classes but relies on a 
specific set of commands aimed exclusively at 

providing musical functions. Blocks-based 
programming languages such as AgentSheets, Alice, 
Scratch and AgentCubes help to overcome syntactic 
challenges (Alexander Repenning, 2017). Many 
blocks-based programming languages, including 
AgentCubes and Scratch, feature music functions 
such as MIDI sound tools to trigger sounds. Other 
languages such as the Blockly-based tool created by 
Baratè et al. (Baratè, Formica, Ludovico, & 
Malchiodi, 2017) feature functions to compose 
melodies. The goal of this system is to facilitate re-
coding (Nake & Grabowski, 2017) activities where 
students are provided a given song which then they 
have to re-code by using composing functions 
including loops. Another approach is presented by 
EarSketch (Freeman & Magerko, 2016; Xambó, 
Freeman, Magerko, & Shah, 2016) which presents a 
“Computational Music Remixing” environment 
which combines the familiar multitrack environment 
for playback of audio with coding facilities that can 
be used for rule-based playback. 

2.3 Interactive Notation Design as 
Emergent Principle 

Our approach to CMT integrates the creation of 
symbols representing musical actions of varying 
complexity with the actual coding process. Through 
the use of the programming environment 
AgentCubes, which employs a blocks-based coding 
environment, but also supports the creation of visual 
sprites that become rule-based agents, it is possible to 
combine the best of two worlds, which turned out to 
be a key benefit of the system during the course. We 
call the emerging underlying principle “Interactive 
Notation Design” (IND) and use it as the main 
activity that students engage in to become 
Computational Music Thinkers. The focus on 
notation is similar to the LEGO Music Notation 
project (Baratè, Formica, et al., 2017). Unlike with 
the LEGO Music Notional project, however, 
notations are not provided for the students. Instead, 
students are expected to become Computational 
Music Thinkers by experimenting with their own 
interactive notations. These notations could be one, 
two or even three dimensional. Students design 
notations by drawing their own symbols and define 
the meaning of their notation through programming. 
Moreover, students design interactive notations 
including the affordance to interact with the notation 
at run time. That is, while the music is playing users 
could change the notation by editing, that is moving 
and changing symbols, in real time. Students can also 
program interactive symbols that are symbols 
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reacting to user input such as key events from 
keyboards or external input devices such as Makey 
Makeys. 

3 INTERVENTION: DESIGNING 
INTERACTIVE NOTATIONS 

Nine pre-service elementary school teachers studying 
at the School of Education participated in an elective 
course where they were taught five different 
Computational Music Thinking Patterns. These pre-
service teachers are, technically speaking, bachelor’s 
degree students. Henceforth, and for the sake of 
brevity the paper refers to them simply as students. 
The course itself consisted of 14 lessons. Each lesson 
briefly introduced each Computational Music 
Thinking Patterns with the necessary theory and 
historical background from music and computation. 

The connection between thinking in music and CT 
gives students new insights into both topics. They 
learn that music is also based on rules that can be 
made explicit. Scales and chords are built according 
to certain rules, rhythms function according to 
hierarchies of emphases, pieces of music are divided 
into hierarchical parts. On the other hand, 
programmed agents can trigger and influence musical 
actions. Melodies or rhythms can be programmed, or 
random sound sequences can be invented. The 
students learn and experience playfully connections 
between music and programming. 

The students develop musical games for children 
based on the five patterns. This enables the children 
to learn about music and about programming by 
trying and playing. 

In a second step, students explore the pedagogy of 
CMT, i.e., the experience of how to teach CMT, by 
writing and evaluating ZPF tutorials (Zone of 
Proximal Flow Tutorials (Basawapatna et al., 2019). 
To build successful ZPF tutorials students must think 
about how to provide tiered instructions supporting 
differentiation. These ZPF tutorials enable children to 
build and program their own worlds in AgentCubes. 

The students learn in terms of content about the 
relationship between music and computational 
thinking. They learn and know rules for programming 
music. Methodically, students learn forms of project-
like learning, explorative learning and the concept of 
Productive Failure (Kapur, 2008). They mainly work 
independently in small project groups and are 
supported by the lecturers only as needed. 

Participants start with simple programming of 
agents in AgentCubes using the first CMT pattern 

“interpretation”. They distinguish between a form of 
notation (representation) and rules of execution 
(interpretation). For many students it was new that 
music can be represented not only in classical 
notation, but also as pins on a cylinder (music box), 
as bars in a sequencer program or as holes in a paper 
strip. For programming, a distinction had to be made 
between the note and the player. In a sequence of 
symbols, the note represents a sequence of sounds. 
The player interprets the symbols according to certain 
rules and moves through the sequence. First, 
individual sounds were assigned to the symbols, then 
chords or changing sounds. Even through these 
simple programming, very different musical works 
became possible. 

In the following lessons the students were 
introduced to all five CMT patterns and developed 
their own projects. The projects were presented in the 
group and received feedback for further work. The 
sequence and contents of the lessons are shown in 
Table 1 below. 

Table 1: Computational Music Thinking Course Outline. 

Week Theory Practice 

1 Introduction: 

Music and Computational 

Thinking 

Recreation of a simple melody 

with five notes. 

Creation of different kinds of 

agents in AgentCubes 

2 CMT Pattern 1: Interpretation 

Creation of Symbols and Rules of 

interpretation 

Creation and programming an 

own melody 

3 CMT Pattern 1: 

Interpretation cont.  

Playtime 

Programming different 

Possibilities (Melodies and Chords)

4 CMT Pattern 2: Interaction

Musical elements and parameters 

Musical form 

Small interaction Projects: Using 

keyboard commands and 

interfaces (Makey Makey) to 

influence the music live. 

5 CMT Pattern 3: Chance Programming probabilities 

(%change) Music pieces became 

unpredictable and therefore more 

interesting. 

6 CMT Pattern 4: Hierarchy 

Pentatonic Sound Systems 

The pieces of music followed a 

certain form (Rondo) A B A C A 

D. The individual parts A B C etc. 

then control a certain sequence of 

sounds. 

7 CMT Pattern 5: Rewriting rules Programming of larger pieces like 

a blues or song accompaniment 

with chord progressions or more 

complex pieces of music 

Start with Pitch Project 

8 Layers in music: Melody, 

Harmony, Rhythm, Bass 

Presentation Pitch Project

Peer Review 

CSME 2020 - Special Session on Computer Supported Music Education

644



 

Table 1: Computational Music Thinking Course Outline 
(cont.). 

Week Theory Practice 

9 Hierarchy in rhythm (Measure, 

metre, rhythm) 

Presentation of Project sketches 

Decision for final projects 

10-12 Introduction: ZPF Tutorials

Evaluation: Interviews 

Work on own Project

Presentation and feedback 

13   Presentation Project 

Peer Review 

14 Evaluation: Questionnaire 

Introduction: Other Programs 

for Music 

  

All learning activities are based on the design of 
interactive notation and evolve from simple rule 
replication (procedural programming) to the 
development of new rules (declarative 
programming). 

3.1 Five Computational Music 
Thinking Patterns 

Below are the detailed descriptions of five 
Computational Music Thinking Patterns used in the 
course. No claims are made that this list is exhaustive.  

3.1.1 Pattern #1: Interpreter 

The interpreter pattern is the main Computational 
Music Thinking Pattern. It is very powerful in itself 
but also serves as the basis for most of the other 
Computational Music Thinking Patterns. To that end, 
it makes sense in this paper, but also when teaching 
students, to spend more time introducing this pattern. 

 

Figure 1: A music box (example from around 1900) 
combines notation with interpretation. 

The interpreter is used to represent a basic melody, 
rhythm or program as a sequence of symbols which 

can be executed. In music, the interpreter pattern can 
be viewed as an abstraction of a music box (Figure 1). 
Music boxes, in turn, are a form of automation. A 
music box is a musical instrument producing musical 
notes by sensing the presence of pins on a revolving 
cylinder or disk. The presence of a pin will trigger a 
sound by putting tiny metal rods, which are tuned as 
tones of a scale, into vibration. These tuned rods are 
arranged in a comb. Abstractly, the pins on a cylinder 
serve as notation that gets interpreted by the music 
box. Automation and abstraction are key components 
of Computational Thinking (Wing, 2006). In 
computing, computer programs are sequences of 
instructions that are interpreted. Again, there is the 
idea of a notation that gets interpreted. Independent 
of their manifestations–either as physical 
manifestations such as cylinders, disks, and punch 
cards found in 19th century music boxes, or as virtual 
manifestations such as text based and blocks-based 
programming languages found in 21th century 
programming languages–the fundamental idea of 
interpretation is the same in music and computing. 

 

Figure 2: Computational Music Thinking Pattern #1. 
Interpreter: https://go.fhnw.ch/QCQzJK. 

To build an interpreter a student first designs a 
number of symbols by drawing 2D or 3D shapes (see 
World in Figure 2) representing individual sounds. 
For instance, students would design three symbols to 
represent the three basic sounds of a djembe drum: 
bass, tone, and slap. Then, students arrange these 
symbols into one, two or even three-dimensional 
notations. For instance, they could arrange the 
djembe sound symbols into a one-dimensional left to 
right sequence representing a rhythm or even a basic 
melody. Finally, students program a so-called player 
agent (Repenning, Smith, Owen, & Repenning, 2012) 
by writing simple rules to interpret the melody like 
this:  

IF I see the bass symbol THEN I play the 
bass sound, and I move to the right.  

A rule is needed for each symbol and one more rule 
is needed when there is no symbol. When the program 
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is run the player agent will play the melody and move 
from left to right. Students can change the melody by 
rearranging symbols even while the music is playing.  

Figures 2-6 illustrate the CMT patterns. They are 
meant to work as slides and not as paper Figures. 
Each pattern follows a simple color-coding scheme: 
blue describes agents with their interactions; green 
describes real world analogies; red describes 
snapshots of the programming world and code. Some 
patterns do not feature all these parts. Some of their 
content, particularly the code, requires readers to 
zoom. We present the first, and most important 
pattern in two column mode for readability but will 
have to keep the remaining ones in one column mode 
due to paper size limitations. Alternatively, links 
below each pattern Figure provide full access to slides 
including the project links and the full source code.  

3.1.2 Pattern #2: Interaction 

Interaction (Figure 3) enables users to actively 
engage with the music making process. That is, the 
computer does not just autonomously play previously 
composed songs from beginning to end but reacts to 
input from the user. This kind of interaction can 
unfold at different levels. For instance, at a low level, 
a user could press one key causing the computer to 
produce one sound. To make this more entertaining 
computer keyboards can be replaced with Makey 
Makeys (Graves, 2014) which could be connected to 
various pieces of fruit in order to create something 
called the Banana Piano. Using drum sounds instead 
of piano sounds could turn a Banana Piano into a 
drum kit where the touch of each fruit plays a 
different drum kit sound. However, at a higher level 
of abstraction, one would want to establish a more 
sophisticated mapping between input and output. One 
input should result in many outputs. A groovebox, for 
instance, is an electronic or digital musical instrument 
featuring pads (large keys optimized for music 
applications) that can trigger entire sequences of 
sounds.  

 

Figure 3: Computational Music Thinking Pattern #2. 
Interaction: https://go.fhnw.ch/2sbSd3. 

The interaction pattern, extending the interpreter 
pattern, features an interactive symbol reacting to user 
input. For instance, this symbol could represent a 
traffic light, controlled by the user, toggling between 
two states: red and green. The player agent would be 
blocked when seeing a red traffic light. It would have 
to wait for the user to press a key to make the light 
turn green. Traffic light symbols can be put 
anywhere, typically at the beginning of a sequence, 
but also anywhere in the midst of a sequence to 
control music. Notations, extended by interactive 
symbols such as the traffic light, turn into powerful 
interactive notations enabling users to control music. 

3.1.3 Pattern #3: Chance 

Chance (Figure 4) in computational music production 
often is seen as means to provide elements of surprise 
and stimulate creativity and thus plays an important 
role in computational music thinking both at 
composition time as well as performance time in 
particular in post-war “aleatoric” music (Boehmer, 
1988; Schulze, 2000). Chance is relatively simple to 
compute but harder to employ meaningfully in music. 
For instance, a sequence of MIDI instruments playing 
at random pitches is not likely to result in great 
sounding melodies. Early uses of chance in music 
include random dice compositions attributed, for 
instance to Mozart (Cope, 1989) mapping the sum of 
two dice to a number, between 2 and 12, used as an 
index to play one out of 11 different sequences of 
sounds. A simple extension to our notation is the 
introduction of random split symbol-making the 
player moves up or down, with equal chance, to a 
different sequence of symbols. Splits could be further 
combined into a binary tree of random choices.  

 

Figure 4: Computational Music Thinking Pattern #3. 
Chance: https://go.fhnw.ch/eu7o1y. 

3.1.4 Pattern #4: Hierarchy 

Hierarchies (Figure 5) are fundamental concepts in a 
wide variety of fields not only music and CS. A 
hierarchy is a representation differentiating at least 
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two different levels. A higher level may contain, or 
control, a lower level. In music, a hierarchical 
notation would allow a higher level of representation 
to control a lower level. An analogy reaching back to 
musical boxes (Figure 1) would expand on the notion 
of triggering a sound. A master music box would 
control a number of subservient music boxes. 
Metaphorically speaking, instead of a pin on the 
musical cylinder triggering a single sound it would 
trigger one of these subservient music boxes. These 
subservient music boxes, in turn, would play an entire 
melody. Hierarchies can be nested. That is, the lower 
level could serve as the higher level to an even lower 
level and so on.  

Hierarchical control distinguishes two important 
cases: synchronous and asynchronous control. 
Synchronous control of music boxes suggest that the 
master box triggers a subservient music box and then 
awaits the completion of the song. Only then does it 
continue moving its cylinder. Asynchronous control, 
in contrast, does not wait for the completion of the 
song of the subservient music box. To reflect this 
interaction our notation must provide at least two 
levels of interpretation. A higher-level player 
interprets high level symbols. Instead of just playing 
a sound this interpretation of the higher level activates 
a low-level player. In the synchronous case the high-
level player and the low-level player need to 
implement some form of handshaking so that the 
high-level player can wait for the low-level player to 
finish a loop. In the asynchronous case no 
handshaking is needed. The high-level player simply 
continues. The hierarchy pattern can be used, for 
instance, to explore the musical notion called the 
rondo. A rondo is a musical form combining 
recurring sequences of music serving as main themes, 
sometimes called refrains, with contrasting themes, 
sometimes called episodes. These various themes are 
represented as character symbols, e.g., A and B. A 
rondo is then expressed as sequences of these 
symbols. Classical rondos include ABA, ABBA, 
ABACA, or ABACABA. Figure 5 outlines some 
basic rondos. These rondos are played synchronously. 

3.1.5 Pattern #5: Rewrite-rules 

Graphical rewrite-rules (Figure 6) are declarative 
music notations. In blues, chord rewrite-rules, have 
been used to create chord progressions producing 
boogie woogie. Patterns 1 to 4 define music 
procedurally. That is, procedural notations include an 
explicit notion of control flow suggesting where the 
computation currently is, what to do next and, most 
importantly, how to do it. The player agent can be  

 

Figure 5. Computational Music Thinking Pattern #4. 
Hierarchy: https://go.fhnw.ch/6EDCPo. 

viewed as the state of the computation indicating how 
far along one is to interpret a notation. Through the 
process of interpretation, the player explicitly maps 
the symbols to instructions such as playing a certain 
sound. Declarative programming, captured by pattern 
5, in contrast, describes desired outcomes without 
specifying how to get there by capturing logic as 
IF/THEN rules. In music a graphical rewrite rule 
establishes a mapping between sequences of sounds 
that have been played with sequences of sounds that 
will be played. In other words, a rule describes  

IF I heard sound 1, followed by sound 
2, followed by sound …  
THEN I will play sound a, followed by 
sound b, followed by sound c…  

Figure 6 shows two rules. The blocks on the left-hand 
side of the red arrow denote sounds played in the past. 
Blocks on the right-hand side of the arrow denote 
sounds that will be played in the future. Rules are 
tested from top to bottom. If there is a rule that 
matches, that is it’s  

IF sequence of sounds matches exactly 
the sequence of sounds just played 
THEN the then sequence of sounds will 
be played.  

 

Figure 6: Computational Music Thinking Pattern #5. 
Rewrite-Rules: https://go.fhnw.ch/Evwjtl. 

Both, the user, by pressing keys, and the system, by 
executing rules, can produce new sounds. User 
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suggested sounds have a higher priority than system 
suggested sounds. Users and the system react to each 
other similar to musicians participating in a jam 
session.  

3.1.6 Implementing Patterns 

Computational Music Thinking Patterns are a 
growing collection of combinable constructs that can 
be implemented in AgentCubes but also any other 
Computational Thinking Tool (Repenning, 
Basawapatna, & Escherle, 2016; Repenning, 
Basawapatna, & Escherle, 2017) supporting sound 
output, mouse and keyboard input. Combinations of 
patterns can produce hierarchies that feature chance, 
chance controlled by interaction, or rewrite-rules 
including chance. Some patterns are simpler to 
implement than others. The interpreter, chance and 
interaction patterns could be implemented by all 
students with very little code. The handshaking of the 
hierarchy pattern proved too complex for students 
with no programming experience. Finally, the 
rewrite-rule pattern requires complex programming 
implementing an entire rule-based programming 
language. Activities based on rewrite-rules were 
limited to students experimenting with their own 
rules and not writing their own rule interpreter. This 
was because the implementation of a rule interpreter 
system requires advanced programming 
understanding, e.g., the understanding of recursion, 
which our students did not have.  

4 METHODS 

The paper is based on a variety of data collected 
during the 2019 fall semester: Survey data, interviews 
and course evaluation data. The following sections 
describe in detail the methods used for the study. 
Students’ participation in the study was voluntary. 

4.1 Procedure 

The course comprised 14 sessions. Survey data were 
collected from the participants during the first and last 
sessions. All surveys were conducted on a computer 
in the classroom. For each course the first (pre) 
electronic survey was completed by participants in 
the beginning of the first introductory lesson, which 
represents the baseline pre-data of this study. The 
same participants completed a second (post) 
electronic survey at the end of the last session (after 
14 weeks), representing the post-data. Interviews 
were conducted with the students in the same final 

session. Finally, a course evaluation (survey data) 
was run by the university for all courses including this 
one.  

4.2 Participants 

The sample comprises a total of nine pre-service 
primary-level teacher students, six male and three 
females. The students were in their fifth semester and 
all but two had previously taken the obligatory CS 
module consisting of two courses one in the subject 
of CS and one in the CS didactics.  

4.3 Measures 

The pre- and post-surveys consisted of 22 identical 
items and contained three groups of questions (see 
Table 2): attitude (abb. Att.), skills, and aptitude (abb. 
Apt.). A set of twelve 4-point Likert- scale items 
(1=strongly disagree, 4=strongly agree) consisted of 
questions with regards to the participants’ attitudes 
and contained three subgroups: attitude towards 
music (five items (Q1, Q2, Q7, Q11, Q17), e.g. 
“Learning music is boring for me”), attitude towards 
CS (four items (Q3, Q8, Q12, Q21), e.g. “I think that 
CS is difficult for me to learn”) and attitude towards 
the combination of CS and music (three items (Q4, 
Q5, Q6), e.g. “I believe that the combination of CS 
and music helps to better understand music”). A 
second set of seven 4-point Likert- scale items 
(1=strongly disagree, 4=strongly agree) consisted of 
questions with regard to the participants’ skills and 
consisted also of three subgroups: CS skills (two 
items (Q16, Q19), e.g. “I can program”), music skills 
(four items (Q14, Q15, Q18, Q20), e.g. “I play an 
instrument”) and skills combining music and CS (one 
item (Q13): “I make music with the computer”). 
Finally, a set of two 4-point Likert- scale items 
(1=strongly disagree, 4=strongly agree) consisted of 
questions with regards to the participant’s self-
reported aptitude. One with regards to music (Q9): “I 
consider myself unmusical” and one with regards to 
CS (Q10): “I don't consider myself a computer whiz”. 
The survey also contained one open-ended question: 
What do you understand by the term "Computational 
Music Thinking"?  

The interviews consisted of eight open ended 
questions that complimented the survey and focused 
on motivational aspects.  

During the implementation of the course, all 
courses at the School of Education were also 
evaluated. This evaluation was of a general nature and 
mostly targeted the quality of the course and the 
teaching. It asked about the design of the course, the 
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pace, difficulty and scope of the material, the quality 
of the lecturers and the focus on the students. The 
survey consisted of 24 5-point Likert-scale items 
grouped in five groups: course (nine items), speed, 
difficulty and amount of material (three items), 
lectures (six items), students (five items) and overall 
evaluation (one item). Because we did not conduct 
this evaluation, we do not have access to the data but 
only to the results, some of which we present here.  

5 RESULTS 

At the beginning of our course the participants 
indicated on a Likert-Scale from 1 to 4 that music is 
very important for them (Q1: M =3.89) and that both 
music and CS are quite important for their job as 
teachers (Q2, Q3, M= 3.33) while the combination of 
the two seems to be less important (Q4, M = 2.78). 
The students had a positive attitude towards the 
learning benefits of the combination of music and CS. 
They seem to believe however, that the combination 
helps to understand music more (Q6, M= 3.22) than 
it helps to understand CS (Q5, M= 3). They further 
believed that CS (Q8, M=2.67) is more difficult to 
learn than music is (Q7, M=2). They do not think they 
are non-musical (Q9, M=1.56) but they think on 
average that they do not have computer affinity (Q10, 
M= 2.44). They find learning music (Q11, M=1.89) 
less boring than learning CS (Q12, M=2.22). With 
regards to music skills, our students indicated good 
skills with regards to playing an instrument (Q14, 
M=3.22), but they indicate less than average skills 
with regards to understanding music (Q18, M=2.33) 
and more than average with music theory knowledge 
and good singing (Q20, Q15 M=2.78). Furthermore, 
even though they indicated an average fascination 
with computers and technology (Q21, M=2.56), their 
computer gaming skills are average (Q16, M=2.33) 
and their programming skills are low (Q19, M = 
1.78). Finally, they do not make music with the 
computer (Q13, M=1.89). 

5.1 Pre-post and Effect Sizes 

The table below (Table 2) shows the means and the 
effect sizes from the pre-post responses. Positive 
effects (positive or negative effect sizes suggesting 
more desirable, or less undesirable effects) are 
marked green. Negative effects (less desirable, or 
more undesirable) are marked red. Color saturation is 
proportional to effect size (Cohen's d is small: [0.2, 
0.5], medium [0.5, 0.8], and large ≥ 0.8). Effects that 
are medium and large (|d| ≥ 0.49), are marked bold. 

With the exception of Q7, Q9 and Q16 all other post-
means indicate positive shifts after the course. 

Table 2: Pre- Post means and effect sizes. Small: [0.2, 0.5), 
medium: [0.5, 0.8), large: > 0.8. Desirable effects in Green, 
undesirable effects in Red. 

 

5.2 Course Evaluation 

As the evaluation was conducted by the school, we 
have no access to the raw data but only to the results, 
which paint a very positive picture for the course. 
Overall our students assessed the course as very good 
(M= 4.5, scale 1 to 5). They indicated that the course 
provided good practical references for their future 
profession (M=3.9) while most importantly they 
found the course very important for their professional 
practice (M=4.2). The students also felt not only that 
they gained a very good insight but that the course 
raised their interest in the topic (both M= 4.3). 

6 DISCUSSION 

Overall, the strongest positive change based on effect 
size was in attitudes towards the combination of 
music and computer science (Q4, Q5, Q6). The 
combination of music and computer science for the 
importance for the work as a teacher in general is 
rated higher by the students at the end of the course 
than at the beginning with an effect size of 0.79. We 
assume that the cooperation of two disciplinary 
experts had a positive effect on this assessment by the 
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students and that the course was successful in 
showing how the interdisciplinary combination in the 
form of computational music thinking can contribute 
to learning in general. This also resonates with the 
effect that CS is considered somewhat less difficult to 
learn in post. The integration also supported a better 
understanding of computer science (effect size 0.77) 
and music (effect size 0.69) individually, which 
indicates that the interdisciplinary approach also 
supports disciplinary development. 

The effect size of 0.51 regarding making music 
with the computer (Q13), is interesting, as it suggests 
that the course supported the notion that 
programming can be used to create music, and helped 
the participants to discover new ways of making 
music with the computer beyond using dedicated 
musical software. This is particularly encouraging, as 
for most of the participants making music with 
programming and without instruments or singing was 
something new and unfamiliar before they started the 
course. 

Looking at the skill related questions, the effect 
on programming skills (Q19) was small. In context of 
the higher effect on musical competences, this 
suggests that the intervention can profit from 
previous knowledge of the participants, a finding also 
shown in earlier related work (Hug et al., 2017). Out 
of the 9 participants 2 had no programming 
experience. Initially our programming course 
(Repenning et al., 2019) was stated as a requirement. 
However, the two participants with no previous 
programming experience did not have a problem 
picking up programming skills through CMT.  

The results of a formal course evaluation showed 
high scores in the assessment of the course design (a 
good learning atmosphere and active participation) 
and in promoting interest in the topic. 

At the end of the course an interview was made 
with the participants. In this interview the students 
indicated high interest in applying the topic in class 
and that they could imagine ways to integrate CMT 
in their teaching practice, without having to give up 
other musical activities they enjoy and feel competent 
in executing with the children at school. But also, 
some challenges could be identified. Not all schools 
have a sufficient number of computers, up-to-date 
software or a stable and fast network for several 
children to work on projects, and activities can be 
relatively time consuming, which requires careful 
scaffolding. This concern regarding the application in 
the classroom was also reflected in the course 
evaluation questionnaire, with a large dispersion of 
the rating results in this regard. However, regarding 
the specific activities presented in the course, not only 

did some students express their confidence in being 
able to bring CMT to the classroom, some even 
reported positive results from already implementing 
CMT pilots in their classrooms.  

7 CONCLUSIONS 

The combination of music and computational 
thinking by two experts in a course for primary 
teachers enabled students to learn both subjects 
individually and in an interdisciplinary way. Five 
Computational Music Thinking Patterns–
interpretation, interactivity, chance, hierarchy and 
rewrite-rules–represent high level constructs 
integrating fundamental concepts of computation and 
music. Students were able to design interactive 
notations by using AgentCubes to create their own 
worlds, design and animate agents and create and 
design sounds as melodies, chords and rhythms. Data 
collected from the course suggest significant positive 
effects on teachers' attitudes towards believing that 
Computational Music Thinking is important to their 
teaching, that Computational Music Thinking helps 
the comprehension of computer science and that 
Computational Music Thinking helps the 
comprehension of music. 

The mixture of instruction, playtime and project 
development with regular peer feedback enabled the 
students to develop individual learning paths and 
unconventional projects that they could implement 
for or with children in school. The participants 
developed new perspectives on informatics and 
musical thinking and used the computer as a musical 
instrument with codes and rules.  

Future work will further analyze qualitative data 
gathered in the interviews to gain a better 
understanding of the attitudes and perspectives in 
terms of applying Computational Music Thinking, 
designing interactive notations and gaining teaching 
practice. In addition, the final projects of the students 
are available, which have not yet been systematically 
evaluated. All projects were designed and worked in 
AgentCubes, different Computational Music 
Thinking patterns were applied, and musical topics 
were worked on. An important aspect is to better 
understand the actual musical concepts embodied in 
the participant’s creation in order to integrate it with 
specific musical learning goals. 

Finally, future work will address the theory-based 
further development of the Computational Music 
Thinking patterns and the principle and application 
Interactive Notation Design as means to integrate 
computational thinking and musical thinking. A 
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particular focus lies on enabling the transfer into 
teaching practice and applicability in classroom 
situations. 

Therefore, a second edition of the course is 
planned for Fall 2020 and will offer the opportunity 
to adapt the course design and fine tune the data 
gathering process. Also, collaborations with schools 
for pilot courses with children are being prepared in 
order to further develop the transfer from teacher 
education to classroom application. 
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