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Abstract: There exist various standards for different models of data, and hence users often must handle a zoo of data
models. Storing and processing data in their native models, but spanning optimizations and processing across
these models seem to be the most efficient way, such that we recently observe an advent of multi-model
databases for this purpose. Companies, end users and developers typically run different platforms like mobile
devices, web, desktops, servers, clouds and post-clouds (e.g., fog and edge computing) as execution envi-
ronments for their applications at the same time. In this paper, we propose to utilize the different platforms
according to their advantages and benefits for data distribution, query processing and transaction handling in
an overall integrated hybrid multi-model multi-platform (HM3P) database. We analyze current state-of-the-art
multi-model databases according to the support of multiple platforms. Furthermore, we analyze the properties
of databases running on different types of platforms. We detail new challenges for the novel concept of HM3P
databases concerning a global optimization of data distribution, query processing and transaction handling
across multiple platforms.

1 INTRODUCTION

Today companies have to deal with and process data
in various data formats like relational data (in rela-
tional databases), XML (for exchange), JSON (as web
data), RDF (of the Semantic Web), graph data (from
social networks) and unstructured data (of social me-
dia like wikis). The data is hence stored according
to and processed using different models (multi-model
data (Lu and Holubová, 2019)). The big challenge
for today’s companies are the synchronization and in-
tegration of their multi-model data into a single view
of and for the customer (Kotorov, 2003).

There are two main approaches known in litera-
ture to handle multi-model data in databases:
• Polyglot Persistence describes the approach of ap-

plications to use several databases at the same time
to handle multi-model data (Leberknight, 2008).
While very flexible in integrating data sources, the
disadvantage of polyglot persistence is that data
sources have to be integrated at application level
without any further support of the databases. Fur-
thermore, the performance of data processing can-
not be fully optimized and fault-tolerance cannot be
transparently offered across the different databases,
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even if additional application logic is added.
• Multi-Model Database Management Systems

(MM-DBMSs) offer the management of differ-
ent data models in one single database (in order
to overcome the disadvantages of polyglot persis-
tence) (Lu and Holubová, 2019).
While in the past database management systems

(DBMSs) run mainly on parallel servers, there are
today various different platforms offering execution
environments for running a DBMS1: Besides parallel
servers mainly used for relational databases (of small
to medium-sized companies), DBMSs run in clus-
ters like NoSQL databases (e.g., Cassandra and Mon-
goDB) and cloud databases (e.g., HBase). Modern
databases also use hardware accelerators like GPUs,
FPGAs and SmartSSDs to further increasing trans-
action rates. The availability of servers with huge
main memory (up to several terabytes) lead to the ad-
vent of main-memory databases (e.g., SAP HANA).
The Internet-of-Things (IoT) with huge amount of
devices generating much data with high velocity re-
quires data management tasks to be processed close
to the sources (i.e., close to the IoT devices) reducing
communication and energy costs as well as latency

1Note that clients of DBMSs typically run on different
platforms, but we are considering the database server here.



and increasing privacy. These issues are addressed by
fog computing (for processing the data on close-by
devices with higher resources like routers) (Abdelshk-
our, 2015), edge computing (for processing the data
also on the IoT devices themselves) (Garcia Lopez
et al., 2015) and dew computing (offering services
close to the IoT devices independent of, but collabora-
tive with cloud services for the purpose of high avail-
ability) (Wang, 2016). Mobile databases (Kumar,
2006) involve the base stations and other infrastruc-
ture of mobile providers for database tasks spanning
over mobile devices. Other computing environments
include processing in peer-to-peer networks (Graffi
et al., 2010; Mietz et al., 2013) for fast and flexi-
ble deployment of new computing nodes. There are
also first attempts to utilize quantum computers for
database optimizations (Trummer and Koch, 2016;
Roy et al., 2013).

Some programming languages like Kotlin (Jet-
Brains s.r.o., 2016) support multi-platform develop-
ment sharing common code between different plat-
forms like desktop, server, web, mobile and IoT, such
that the development costs for a DBMS running on
multiple platforms are drastically reduced.

Puzzling all pieces together we propose the fol-
lowing definition:

Definition (Multi-Model Multi-Platform Database
Management System (M3P DBMS) and Hybrid M3P
(HM3P) DBMS). A M3P DBMS is a MM-DBMS
that can be executed on different platforms. An
HM3P DBMS spans over different platforms in op-
eration.

Whereas today’s M3P DBMSs are typically de-
veloped for platforms of the same type (like windows
and linux servers, see Section 2.1), some other even
span over a (locally installed) private cloud and a pub-
lic cloud (in a so called hybrid cloud2). In contrast,
we envision HM3P DBMSs over platforms of differ-
ent type (like IoT and hardware-accelerated parallel
servers) integrating the features of databases devel-
oped for these platforms (like energy-savings on IoT
devices and high throughput on servers). For an ex-
ample installation, see Figure 1.

In contrast to polyglot persistence, advantages of
(H)M3P DBMSs are e.g.
• developing only one code base for the different

platforms (promising faster development cycles
and less development costs per platform)
• providing one application programming interface

(api) for multiple platforms, such that applications
can access their database at any platform without

2Please note that private and public clouds are platforms
of the same type.

changes in their code (increased interoperability
and less development costs)

• support of any model at any platform
• data distribution, query optimization, transaction

handling and other database tasks across different
platforms

• re-use of approaches in very different platforms
with similar properties (e.g., applying the same
fault-tolerance methods for dealing with many dis-
connections in IoT databases as well as in mobile
databases)

• integrating the features of different types of
databases
The remainder is as follows: Section 2 describes

the basics and an analysis of current state-of-the-
art concerning MM-DBMSs, multi-platform develop-
ment, databases running on different platforms, poly-
glot persistence and further related work. Section 3
introduces HM3P DBMSs and explores the advan-
tages, and analyses envisioned platforms and com-
mon properties of their combinations. Finally we
summarize the results and provide an overview of fu-
ture work in Section 4.

2 BASICS

2.1 Databases for Multi-model Data

Polyglot Persistence, where different databases are
used within one application (Leberknight, 2008), of-
fers a practical approach to use different data models
and also different types of databases running on dif-
ferent platforms. The landscape of used databases for
Big Data is large and spans over relational databases,
cloud databases and NoSQL data stores like key-
value, columnar, document and graph stores. Fed-
erated query languages enable polyglot persistence
by supporting queries over heterogeneous data stores
within one single query. One example of such a
query language is CloudMdsQL (Kolev et al., 2016),
with which one can formulate queries over SQL and
NoSQL databases. The proposed prototype even op-
timizes the queries globally and pushes operations
down to the integrated SQL and NoSQL databases
as much as possible. A similar approach is taken
by (Zhu and Risch, 2011) offering to query cloud-
based NoSQL like Google’s Bigtable and relational
databases with the Google Bigtable query language
GQL. Commercial multi-store products like IBM Bi-
gInsights, Microsoft HDInsight and Oracle Bigdata
Appliance integrate diverse data sources by using
database connectors (like JDBC drivers). However,
they also don’t support to fully optimize queries
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Figure 1: HM3P Database spanning over multiple platforms. Here, an HM3P database replaces an IoT database in an Industry
4.0 scenario (using edge-computing), a GPU-accelerated parallel database (on a parallel server) for archiving and generating
long-term statistics of the IoT data, which is further supported by a quantum computer for query optimization, a database in
the cloud for natural language processing tasks and a mobile database (on mobile devices and infrastructure) for monitoring
and controlling of the production line in the company. Platforms are marked with an italic font.

across the integrated, but independent data sources,
which limit data processing.
Federation Databases (Hammer and McLeod,
1979) and multidatabases (Smith et al., 1981) pro-
vide similar ideas to polyglot persistence but hav-
ing a longer history. These types of databases have
been studied during the 1980s and place a mediator
between different autonomous databases for integra-
tion purposes by reformulating queries according to a
global schema to the native schemes of the integrated
databases, which afterwards execute these queries.
Today, some research focus on federating databases
following the polyglot persistence approach: For ex-
ample, DBMS+ (Lim et al., 2013) provides unified
declarative processing for the integration of several
processing and database platforms. BigDAWG (El-
more et al., 2015) offers location transparency while
running queries against the three different integrated
systems PostgreSQL, SciDB and Accumulo.

Polyglot persistence as well as federation
databases already integrate databases using different
data models and running on different (types of)
platforms. However, the full potential of query opti-
mization and processing, and other database tasks has
not been achieved for both approaches, as the single
integrated databases are like black boxes, which are
accessed via their supported query languages or their
native application programming interfaces, such that
cross-database optimizations are hindered.
Multi-model Databases. A multi-model database
is one single database for multiple data models, which
fully integrates a backend to offer advanced per-
formance, scalability and fault tolerance (Lu et al.,
2018). One of the first of this type are Object-
Relational DataBase Management Systems (OR-
DBMSs), which support various data models like re-
lational, text, XML, spatial and object. ORDBMSs
use the relational technology for implementing the
support of their data models, i.e., the relational model

is the first-class citizen. In comparison and in general,
in multi-model databases the different models can be
all first class citizens and supported in a native way
(utilizing e.g. specialized indices for them).

Table 1 contains an overview of current state-of-
the-art multi-model databases, their type of extension,
their supported data models, query languages and
platforms. The investigated multi-model databases
support at most 5 from 8 data models, such that no
multi-model database offers all data models to their
users. Most multi-model databases run SQL, SQL-
like or extensions of SQL queries. Binaries of these
databases are offered in machine code (often com-
piled from C/C++) or for the Java virtual machine
(JVM). They usually run on all or a big subset of
the major desktop operating systems linux, windows,
macOS, unix and their variants. Few multi-model
databases like IBM DB2 run on mainframes operat-
ing e.g. z/OS. While all offer to run in the cloud,
some are also enabled for the hybrid cloud. In the
hybrid cloud, a (locally installed) private cloud is to-
gether used with a public cloud. Hybrid clouds de-
crease costs spent to the public cloud provider while
still having on-demand resources with the illusion of
infinite capacity at the public cloud for a surprising
high resource demand.

While all multi-model databases run on differ-
ent platforms, they don’t integrate database instances
on different types of platforms and different types of
databases. Databases in hybrid clouds combining the
resources of a locally installed private cloud with a
public cloud are approximations of the idea of op-
erating on multiple platforms of different types. An
HM3P DBMS extends this idea and supports multiple
types of platforms like main-memory, cloud, Internet-
of-Things (with e.g. edge computing) and hardware-
accelerated databases using their different advantages
at runtime for database tasks like data distribution,
transaction handling and query processing.



Table 1: Summary of key features of multi-model databases. This table is based on (Holubová and Scherzinger, 2020; Lu and
Holubová, 2019) and extended by the feature “Platforms”.

Type DBMS Ext. Models
RCKJXGDO

Query languages Platforms
NJWLUMSZCH

Relational PostgreSQLa I R-KJX--O extended SQL N-WLUMS-CH
Microsoft SQL Serverb I R--JXG-O extended SQL N-WL----CH
IBM DB2 LUWc I R---XGDO extended SQL/XML N-WLU-S-C-
IBM DB2 z/OSd I R---XGDO extended SQL/XML N------Z--
Oracle DBe I R--JX-DO SQL/XML, SQL/JSON N-WLUMS*CH
MySQL f II R-K----O SQL, memcached API N-WLUMS-C-
Sinew (Tahara et al., 2014) III R-K----- SQL N-WLUMS-CH

Column Cassandrag I -C---G-O SQL-like CQL -JWLUMS-CH
CrateDBh I RC-J-G-- SQL -JWL-M--C-
DynamoDBi I -CKJ-G-O simple API (get/put/update)

+ simple queries over indices
-JWLUM--C-

Vertica j II -C-J-G-- SQL-like N--LU---CH

Key/value Riak KVk I --KJXG-- Solr N--LUM--CH
c-treeACEl III R-K--G-- SQL N-WLUMS-C-
Oracle NoSQL DBm III R-K--GD- SQL -JWLUMS-C-

Document Cosmos DBn I -CKJ---- SQL-like N-------C-
ArangoDBo II --KJ-G-- SQL-like AQL N-WL-M--C-
MongoDBp II --KJ---O JSON-based query language N-WL-M--C-
Couchbaseq III --KJ---- SQL-based N1QL N-WL-M--CH
MarkLogicr III ---JX-DO XPath, XQuery, SQL-like N-WL-M--CH

Graph OrientDBs II --KJ-G-- Gremlin, extended SQL,
SPARQL

N-WLUM--CH

Object InterSystems Cachét III R--JX--O SQL with object extensions N-WLUMS-CH
Legend: Ext.: I = adoption of a new storage strategy, II = extension of the original storage strategy, III =
creation of a new interface, IV = no change;
Models: R = relational, C = column, K = key/value, J = JSON, X = XML, G = graph, D = RDF, O = object, -
= no support;
Platforms: N = Native Machine Code, J = Java/JVM, W = Win, L = Linux, U = Unix (e.g. BSD), M = macOS,
S = Solaris, Z = z/OS, C = Cloud, H = Hybrid Cloud, - = no support, * = support for old versions.
References of databases:
ahttps://www.postgresql.org/
bhttps://www.microsoft.com/de-de/sql-server/sql-server-2017-
editions
chttps://www.ibm.com/analytics/db2
d https://www.ibm.com/analytics/db2/zos
ehttps://www.oracle.com/database/index.html
f https://www.oracle.com/mysql/index.html
ghttp://cassandra.apache.org/
hhttps://crate.io/
ihttps://aws.amazon.com/dynamodb/

jhttps://www.vertica.com/
khttps://riak.com/products/riak-kv/
l https://www.faircom.com/products/c-treeace
mhttps://www.oracle.com/database/technologies/related/nosql.html
nhttp://www.cosmosdb.com
ohttps://www.arangodb.com/
phttps://www.mongodb.com/
qhttp://www.couchbase.com/
rhttps://www.marklogic.com/
shttps://orientdb.com/
t https://www.intersystems.com/products/cache/

2.2 Multi-platform Development

There are several programming languages like C/C++
available compiling to various platform targets in
their native machine code best suitable for high per-
formance programs. Calls to the operating system for
disk accesses or developing a (native) graphical user
interface must be ported to the different platforms.
There is no special support for multi-platform devel-
opment like code-sharing of common code and allow-
ing to define platform-specific modules to code the

differences between the different platforms. Java was
one of the first programming languages for develop-
ing one code running on different platforms, which
is still the key for the success of Java. It has been
implemented by compiling to bytecode, which is pro-
cessed in the Java virtual machine (JVM) available
for many platforms. The JVM introduces an inter-
mediate abstraction layer, but also some performance
overhead, although the bytecode is often just-in-time
(JIT) compiled to native machine code. Scripting
languages like JavaScript also run on different plat-
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forms (i.e., wherever browsers and Node.js environ-
ments can be started). JavaScript besides HTML 5 is
the basis of cross-platform libraries like React Native
and PhoneGap. Advanced multi-platform support in-
troducing a module concept for sharing common code
between the different platforms, and platform-specific
modules for coding remaining differences, is intro-
duced by modern programming languages like Kotlin
(JetBrains s.r.o., 2016). Kotlin offers multi-platform
support for the JVM (Desktop, Server and Android),
JavaScript engines (browser and server via Node.js)
and via LLVM Windows, Linux, Android (arm32/64),
MacOS, iOS, Raspberry Pi and WebAssembly.

Many DBMSs are implemented in C/C++ for per-
formance reasons and run in native machine code for
operating systems like Windows, Linux, Unix and
MacOS (see Table 1). Some modern DBMSs are
implemented in Java further decreasing development
costs, but still running on clusters and servers operat-
ing Windows, Linux, Unix and MacOS.

2.3 Databases for Different Platforms

Multi-Platform DBMSs are typically either imple-
mented in C/C++ or in Java. Ports are often avail-
able for Windows, Linux, Unix (sometimes for So-
laris) and MacOS (see Table 1). Only few DBMSs
still run on mainframes. Modern DBMSs run in the
Cloud and sometimes they are offered only as man-
aged service in the Cloud (e.g., Cosmos DB). Some
few are also running in a Hybrid Cloud, where the
DBMS is running in a local installation of a cluster
(private cloud) as well as in a public cloud (of a cloud
provider).

Hence these DBMSs can be called Multi-Platform
DBMSs, but don’t bring the multi-platform approach
to its full potential. They are typically developed
for one type of platform: server, cluster or cloud.
DBMSs designed for different types of platforms
like cluster, mobile, IoT and the web are not con-
sidered so far. HM3P DBMSs span over differ-
ent platforms at runtime, which may be the case
for hybrid cloud installations, but which are also
not deployed at different platform types. Hence,
full-fledged HM3P DBMSs have to consider various
different properties (e.g., availability of nodes, stor-
age and computing resources), the data (like security
concerns) and queries (like one-time versus continu-
ous queries) of the supported platforms at runtime for
data distribution and processing.

3 MULTI-PLATFORM
MULTI-MODEL DATABASES

Different types of data are stored on and processed
at different platforms dependent on their size, the de-
vices they are generate at and other properties like
their velocity. Integrating these data sets implies to
support multiple models and also different platforms
at the same time. This also requires to support and
integrate different types of databases running on dif-
ferent platforms. For example, one might combine the
data of IoT devices (stored in an IoT database running
on the edge of the network) with the accounting data
containing the remaining time for charging off (stored
in a main memory database running on an employee’s
desktop computer). These different types of databases
have different properties and advantages because they
have been developed for different application scenar-
ios, devices, properties of their indexed data (veloc-
ity, heterogeneity, size etc.) and so on.Hence there is
a need to run these different types of databases at the
same time, but there might be also the need for inte-
grating the data of these databases (like in the scenario
of combining the data of IoT devices with accounting
data). For an advanced processing of this different
types of data stored in different databases and other
database tasks it is indispensable to break the bound-
aries of single installations of these DBMSs and to
run one single DBMS. This would also allow to of-
fer the best features of the different types of databases
to applications and users “under one hood” transpar-
ently or with an intelligent integration into one query
language and API. This single HM3P DBMS installa-
tion runs over all platforms at the same time offering
the advantages of all the different types of DBMSs
(to the data that has been previously processed by the
single installations), but to have e.g. a global opti-
mization of data distribution, transaction handling and
global queries with full potential by having freedom
of processing down to the physical layer (e.g., index
accesses)3. One single HM3P DBMS would also re-
duce development costs of applications and periods of
vocational adjustment of developers by offering one
API and query language for all different platforms.

3.1 Platforms

We describe shortly the different platforms running
execution environments for different types of DBMSs

3Note that single installations of DBMSs can only be ac-
cessed via their offered APIs or by setting up subqueries (of
the global query) to them, which hinders the full potential
of optimized processing of e.g. joins between the data of
the different DBMSs.
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here.
Server Platforms are typical platforms for
database servers of small to medium-sized enter-
prises (SMEs). The DBMSs running on servers are
usually centralized databases, which are operating in
parallel on multi-core and sometimes many-core sys-
tems, often in virtual machines. Relational DBMSs
are typical DBMSs running on server platforms, but
all other types of DBMSs usually offer a local mode
to run on a single server.
Hardware-accelerated Servers speed up database
tasks by utilizing the massive parallelism of special
hardware. Figure 2 contains an overview over differ-
ent types of hardware accelerators and their proper-
ties4: The multi-core CPU offers shared memory to
all cores, but each core manages also caches for faster
accesses. Multi-core CPUs have a high single-core
performance and run threads with different function-
ality (according to the multiple-instruction multiple-
data (MIMD) paradigm). Many-core CPUs have a
similar architecture compared to multi-core CPUs,
but manage much more cores providing a higher
throughput with an increase of latency and lower sin-
gle thread performance.

Modern Graphical Processing Units (GPUs) con-
sist of several thousand computing cores, which fol-
low the single-instruction multiple-data paradigm,
i.e., the same instruction is executed on different data
on different cores at the same time. Hence, neither all
parallel algorithms are suitable for nor benefit from
GPUs. Hence, the massive parallel processing of exe-
cution plans are ideal for many-core CPUs and GPUs

4The energy consumption is according to D-Wave’s
quantum computing hardware, which is based on metal
niobium loops acting as superconductors when cooled
down to 15 millikelvin (-273◦C). Most power is
consumed by the refrigerator, which is slightly less
than 25 kilowatts, see https://spectrum.ieee.org/tech-
talk/computing/hardware/how-much-power-will-quantum-
computing-need .

as well as whenever the best possibilities among enu-
merated ones must be found (like in query optimiza-
tion and multi-version concurrency control (MVCC)).

Field-programmable gate arrays (FPGAs) can re-
configure interconnects for connecting programmable
logic blocks with each other. This property makes
FPGAs ideal suitable for data-flow-driven algorithms
(like processing an execution plan for evaluating
queries in a streaming way without block-wise mate-
rialization of intermediate steps like it is the case for
many-core CPUs and GPUs), but also any arbitrary
type of parallelism can be offered by FPGAs.

Universal quantum computers try to combine the
full power of classical computers with quantum com-
puters that manipulate (some few) qubits in super po-
sition by applying quantum logic gates. In compari-
son, quantum annealers - operating on up to several
thousand qubits - only run special types of quantum
algorithms to solve adiabatic (as special form of com-
binatorial) optimization problems, which is e.g. the
case for traffic control5, selecting the execution plan
with the best estimated costs (from a set of enumer-
ated plans) (Trummer and Koch, 2016) and concur-
rency control between transactions (Roy et al., 2013).
Cloud Databases are designed to be run in the
cloud, where (storage and computing) resources can
be dynamically allocated and freed according to
users’ demands. Hence, cloud databases must con-
sider that nodes (for storing and computing) are join-
ing and leaving, such that it may be necessary to redis-
tribute data and to react for processing jobs on leav-
ing nodes. Furthermore, as the nodes are typically not
high-end hardware like servers with redundant com-
ponents and clouds consist of many more nodes (up
to several thousand nodes), hardware and communi-
cation failures may occur more often. Hence, cloud
computing architectures apply simple fault-tolerance
mechanisms by repeating crashed jobs. Additionally
to one-time queries, Apache Spark and Apache Flink
offer to process data streams and continuous queries,
such that they also belong to the type of stream
databases.
Mobile Databases (Kumar, 2006) involve the tech-
nical infrastructure of mobile providers like base sta-
tions (being near-by to their connected mobile de-
vices) in order to speed up processing, lower commu-
nication (and hence also energy) costs, increase avail-
ability and durability (by logging at the base stations
instead on mobile devices) in order to overcome lim-
itations of the mobile devices.
P2P Databases (Graffi et al., 2010; Mietz et al.,

5investigated by Volkswagen, see https://
www.volkswagenag.com/en/news/stories/2018/11/
intelligent-traffic-control-with-quantum-computers.html
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2013) use peer-to-peer (P2P) networks as underly-
ing backend technology to master a frequent joining
and leaving of nodes for data storing and process-
ing. In comparison to clouds, they are designed for
a much more frequent change in their topology and
for an equal distribution of functionality without dis-
tinction of master and slave nodes. P2P databases
have to introduce more redundancy in data storing
as well as even in processing in order to overcome
the frequent disconnections to their nodes. Further-
more, P2P databases must consider heterogeneity in
the connected nodes much more than other types of
databases.
IoT Databases (ObjectBox Limited, 2019) are es-
pecially developed to serve as data store for large-
scale installations of the Internet-of-Things (IoT). IoT
databases often operate in the cloud, but the commu-
nication bootleneck from the IoT devices to the cloud
doesn’t scale especially for IoT devices with high ve-
locity and large-scale installations.

In companion with the cloud, fog computing (Ab-
delshkour, 2015) stores and processes data and appli-
cation logic on near-things edge devices with higher
capabilities (rather than primarily in cloud data cen-
ters), which saves communication avoiding the route
over the internet backbone. However, fog comput-
ing is not really scalable in the number of connected
things, as the near-things edge devices do not increase
in number and capabilities in the same way.

The scalability issue is solved in a better way by
edge computing (Garcia Lopez et al., 2015), which
utilizes additionally all IoT devices for data storage
and processing, and executing application logic: As
more IoT devices are deployed, as more data needs to
be stored and processed, but as more IoT devices are
also available.

Dew computing (Wang, 2016) overcomes avail-
ability problems, where the communication between
cloud and IoT devices is disturbed, by placing an ad-
ditional local server near to the IoT devices taking
over the tasks of the cloud during downtimes and syn-
chronizing with the cloud at uptimes.

IoT Databases are often organized as P2P
database, especially if they work on the fog or edge,
or follow the dew computing concept. One of the big
challenges here is the distribution of data and pro-
cessing tasks between cloud and IoT infrastructure
including the devices themselves. Furthermore, IoT
devices often generate data streams, such that orga-
nizing the IoT database as stream database is a rea-
sonable choice: The IoT application design may es-
pecially consider to reduce data by aggregation and
focusing on only relevant data, which should be done
nearby the things.

3.2 HM3P databases and Their
Challenges

HM3P databases are single installations of a
M3P DBMS, which are not only able to run on multi-
ple platforms, but runs and tightly integrates different
types of DBMSs for ease of use and optimization pur-
poses at runtime.

IoT databases operating at the same time in clouds
and on fog, edge or dew computing are reasonable ex-
amples for H3MP DBMSs: They span over different
platforms, the edge of the IoT network and the cloud
data centers, and have to distribute functionality like
data aggregation at or near to the things and complex
operations, e.g., natural language processing, at the
cloud data centers. Furthermore, IoT databases have
to consider different types of query processing by
dealing with traditional (one-time) queries on static
data, continuous queries on data streams and spatial-
temporal queries on archived data of data streams.

New challenges of M3P and HM3P DBMSs in
comparison to traditional DBMSs and MM-DBMSs
are
• developing only one code base for the different

platforms, but not introducing performance over-
head in comparison to single platform databases6

• identifying common properties of several platforms
and reusing those approaches (like fault tolerance
mechanisms) in different combinations, which are
best suitable for these considered platforms

• data distribution among different platforms (apply-
ing different data distribution approaches as well)

• data distribution strategies considering overall the
different properties of used platforms and models
(like fast reads in relational databases on parallel
servers and fast updates in cloud databases)

• query optimization and other database tasks across
different platforms, which apply different database
approaches

• combining different types of databases (on differ-
ent platforms) to offer the best of these databases
and platforms under one hood to applications and
users transparently or via intelligent integration
into query language and API. For example, the
smooth integration should guarantee atomicity and
isolation in transactions for the data stored on a par-
allel server, but not for those data in the cloud sup-
porting fast updates.
We are sure that this is not an exhaustive list of

new challenges. Many further challenges will arise
during developing the M3P and HM3P DBMSs and

6We are of the opinion that this is possible by apply-
ing Kotlin features like expected and actual declaration for
classes and types, and inline functions and classes.



considering especially combinations of different plat-
forms and models at runtime.

4 SUMMARY AND
CONCLUSIONS

In this paper we analyze the landscape of multi-
model databases running on multiple platforms. We
call this type of database multi-model multi-platform
database management system (M3P DBMS). Hybrid
M3P (HM3P) DBMSs span over different platforms
at run-time. Furthermore, we describe and analyze
different types of DBMSs and platforms concerning
their properties, chances and challenges for DBMSs.
Current state-of-the-art M3P DBMSs don’t exploit
the multiple platform idea to its full potential, because
they typically only tightly integrate one type of plat-
form and database. We see great further optimiza-
tion possibilities in data and functionality distribution
like query processing and transaction handling, and
ease of usage when different types of platforms and
databases are supported in one single installation of a
M3P DBMS.
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S., Römer, K., and Pfisterer, D. (2013). A p2p se-
mantic query framework for the internet of things.
PIK-Praxis der Informationsverarbeitung und Kom-
munikation, 36(2):73–79.

ObjectBox Limited (2019). The best IoT Databases
for the Edge – an overview and compact guide.
https://objectbox.io/the-best-iot-databases-for-the-
edge-an-overview-and-compact-guide/.

Plessl, C. (2012). Accelerating Scientific Computing with
Massively Parallel Computer Architectures. IM-
PRS Winter School, Wroclaw. http://www.imprs-
dynamics.mpg.de/pdfs/Plessl talk.pdf.

Roy, S., Kot, L., and Koch, C. (2013). Quantum databases.
In CIDR.

Smith, J. M., Bernstein, P. A., Dayal, U., Goodman,
N., Landers, T., Lin, K. W. T., and Wong, E.
(1981). Multibase: Integrating heterogeneous dis-
tributed database systems. In AFIPS National Com-
puter Conference, pages 487–499.

Tahara, D., Diamond, T., and Abadi, D. J. (2014). Sinew: A
SQL System for Multi-structured Data. In SIGMOD.

Trummer, I. and Koch, C. (2016). Multiple query optimiza-
tion on the d-wave 2x adiabatic quantum computer.
Proc. VLDB Endow., 9(9).

Wang, Y. (2016). Definition and categorization of dew com-
puting. OJCC, 3(1):1–7.

Zhu, M. and Risch, T. (2011). Querying combined cloud-
based and relational databases. In International Con-
ference on Cloud and Service Computing, pages 330–
335.

http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing
https://kotlinlang.org/docs/reference/faq.html
http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence
http://www.sleberknight.com/blog/sleberkn/entry/polyglot_persistence
https://objectbox.io/the-best-iot-databases-for-the-edge-an-overview-and-compact-guide/
https://objectbox.io/the-best-iot-databases-for-the-edge-an-overview-and-compact-guide/
http://www.imprs-dynamics.mpg.de/pdfs/Plessl_talk.pdf
http://www.imprs-dynamics.mpg.de/pdfs/Plessl_talk.pdf

	INTRODUCTION
	BASICS
	Databases for Multi-model Data
	Multi-platform Development
	Databases for Different Platforms

	MULTI-PLATFORM MULTI-MODEL DATABASES
	Platforms
	Hm3p databases and Their Challenges

	SUMMARY AND CONCLUSIONS

