
Performance-based Refactoring of Web Application: A Case of
Public Transport

Anna Derezinska a and Krzysztof Kwaśnik
Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, Warsaw, Poland

Keywords: Web Application, Performance Evaluation, Quality Improvement, Single Page Application, Web of Public
Transport System.

Abstract: Performance issues are, among other quality attributes, important factors of web applications devoted to
public services. Performance-based refactoring concerns program quality improvement when functional
requirements but also selected non-functional requirements, such as clarity, user-friendliness, and security
issues, remain preserved. We have examined three independent web applications supporting card processing
for public transport widely used in different provinces. Based on the experience, a new web application has
been developed. While using the Single Page Application approach it has been aimed at easing a client
interaction. Further refactoring helped in the performance improvement. The general performance has been
compared to those three applications. Benefits of the refactoring have been evaluated and discussed.

1 INTRODUCTION

Software refactoring has been primarily concerned
with a systematic manipulation of object-oriented
programs in order to improve their quality (Fowler,
2018). The distinguishing feature of any refactoring
approach is preservation of functionality realized by
an application of concern. Refactoring can be aimed
at avoiding unwanted features, as bad smells, but also
at achieving certain goals, for example, applying
design patterns (Kierevsky, 2004). A challenging task
could be refactoring directed at the improvement of
various quality features, in particular an application
performance. This problem has been addressed in our
research and a case study performed. In this paper, an
improvement of the performance measures has been
discussed as primary effects of a web application
refactoring. Other quality attributes, also related to
the SQuaRE model (ISO/IEC, 2010, 2015), have been
studied in (Derezinska and Kwasnik, 2020).

It should be stressed that the refactoring cannot be
applied independently to other nonfunctional
features, for example, security requirements.
Therefore, we have to address the basic issues that
should be preserved in a refactoring process. In the
broader sense, different frozen spots (fixed

a https://orcid.org/0000-0001-8792-203X

invariants) and hot spots (changeable features) can be
considered in a refactoring process.

In this paper we focus on web applications that
are devoted to public services. After examining
different applications supporting card processing for
public transport in three different provinces of our
country, we have found several weaknesses.
Moreover, all these application have been based on
the Multi-Page Application model (MPA), whereas
the Single-Page Application model (SPA) supposed
to be more suitable in this domain.

A prototype Public Transport Web (PTW) has
been developed using a different model, SPA instead
of MPA. A set of activities has been performed,
treating PTW as an object in a performance-based
refactoring process. Experiments have been
conducted to evaluate PTW in regard to other
applications, and to compare PTW before and after
refactoring. While focusing on the performance, the
following research questions have been considered:
(i) is really SPA more appropriate, (ii) how much we
can benefit from the performance-based refactoring.

This paper is organized as follows: Section 2
introduces briefly MPA and SPA approaches. Related
work is reported in Section 3. Section 4 describes the
case study. The experimental results are presented
and discussed in Section 5. Finally, Section 6
concludes the paper.

Derezinska, A. and Kwaśnik, K.
Performance-based Refactoring of Web Application: A Case of Public Transport.
DOI: 10.5220/0009797006110618
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 611-618
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

611

2 WEB APPLICATION MODELS

There are two main models of web applications: MPA
(Multi-Page Application) and SPA (Single-Page
Application).

An SPA works inside a browser and does not
require page reloading during use. There are many
advantages of this model. The application resources,
i.e. HTML, CSS and Script files, are loaded once,
therefore, the transmission overhead is reduced. The
development is simpler than for MPA. However, SPA
is exposed to XSS risks (Cross-Site Scripting), which
lowers its security (Gupta and Gupta, 2015).

In the MPA model, each page sends a requests to
the server and updates all its data, consequently it puts
more requirements on performance. In order to limit
the traffic between the browser and the server,
additional methods could be used to prevent
transmission of small amount of data, as e.g. AJAX.
Using this model is simpler to make Search Engine
Optimization (SEO). However, MPA is less suitable
to build a mobile application.

The SPA approach can be supported by many
libraries that wrap JavaScript language and
implement Virtual DOM (Document Object Model)
(Zou et al., 2014). V-DOM is a local copy HTML
DOM that makes possible to recalculate actualization
data. In this way, operations of the original HTML
DOM can be omitted. The following frameworks of
this kind belong to the most widely used:

React.js – developed and shared by Facebook in
2013. This mostly used framework does not cover all
project utilities and has to be accompanied by
intermediate layer as AJAX engine.

Angular.js – created and maintained by Google. It
is a very comprehensive framework also supporting
solutions of routing or asynchronous web application
model. It requires usage of a domain language -
TypeScript.

Vue.js – created by E. You, drawn on experience
of Angular.js. In this case, usage of TypeScript is not
obligatory.

These frameworks are open source, support
JavaScript, and have been applied in professional
solutions by many companies. An application structure
is more flexible in the case of Vue.js. An advantage of
this framework is also its simplicity.

3 RELATED WORK

The basic catalog of code refactoring transformations
has become popular after the seminal work of

(Fowler, 2018). Notion of refactoring has also been
further associated with different activities.

Various kinds of non-source code refactoring are
surveyed in (Rochimah, Arifiani, and Insanittaqwa
2015). They have focused on refactoring of other
software artifacts, such as UML models,
requirements, software architecture, and refactoring
in code with non-conventional detection techniques.
Refactoring activities that are discussed in this paper,
could be partly classified as refactoring of software
architecture. However, no performance-based or
refactoring aimed directly on a non-functional feature
has been discussed in this survey. Moreover, it is not
a universal remedy on development shortcomings, as
“refactoring activities affect quality attributes in an
inconsistent manner” (Kaur, Kaur and Kaur, 2019).

A great challenge to refactoring is ability to
automate the transformation as much as possible
(Baqais and Alshayeb, 2019). The most of research
refers to automated code refactoring, while some also
to model refactoring. There are also approaches to
search-based refactoring (Mariani and Vergilio,
2017). However, automating of operations discussed
in this paper is still an open issue.

Different activities can be undertaken to improve
performance of a web application.

A set of methods to accelerate a process of an
SPA application has been presented in (Stępniak and
Nowak, 2017). The authors pointed at the beneficial
utilization of the following methods, minification of
JavaScript, removing unused CSS rules and
concatenation of resources. These outcomes are
similar to our findings. The main difference is usage
of another framework, AngularJS, and discussion of
mechanisms specific to this solution.

Also SPA using AngularJS was a subject of
research discussed in (Jadhav, Sawant and
Deshmukh, 2015). The paper presents the main
architectural features of SPA, and SEO (Search
Engine Optimization) in SPA. However, no
performance issues are concerned.

SEO expresses a position that could be reached by
a website in search engines of web browsers
(Gudivada, Rao and Paris, 2015). It is a crucial
feature of many kinds of web applications, especially
those supposed to be widely accessible in e-
community. Any kind of refactoring transformation
should take into account the impact on SEO.

Performance analysis of parallel web applications
has been argued in (Verdu and Pajuelo, 2016). In our
case, no JavaScripts of this kind have been
considered, although, they could be counted to an
extended set of refactoring actions in the future.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

612

Experiments with the Jmeter performance
evaluation tool have been reported (Kiran, Mohapatra
and Swamy, 2015). They confirmed usefulness of the
tool, referred to different technologies, so the detailed
results are not comparable to ours.

The HTTP/2 protocol and its prioritization ability
have been studied in (Wijnants, Marx, Quax, and
Lamotte, 2018). They have found that HTTP/2
prioritization influence web performance, especially
in terms of page load time, though the results depend
strongly on the browser type.

Different evaluation tools have been used to
assess software quality of web application, including
also performance attribute (Kaur, Kaur, and Kaur,
2016), (Martinez-Fernandez et al., 2019). Some of the
tools have also been used in the experiments reported
here. Different metrics could also be applied for this
purposes (Lew, Olsina, Becker, and Zhang, 2012).

There is a lot of research related to web
application security. Selected threats have to be
considered in the application discussed here, such as
Cross-Site Cripting (XSS) (Gupta and Gupta, 2015),
SQL Injections (Srivastava, 2014).

4 PUBLIC TRANSPORT WEB

In this section, we discuss the case study background,
requirements, architecture, and refactoring.

4.1 Background

City cards are commonly used to integrate services
related to public transport in big cities and whole
regions. They offer modern access to the transport for
citizens and visitors of the area under concern.

Cards of this kind are supported by web
applications, which make possible to buy tickets of
different tariff variants and associate them with the
card. A typical functionality of the web also covers
basic administration features, like registration of new
clients, user login/logout, storing of history of
transactions related to the card, updating of personal
data, collecting of client comments, etc.

We have investigated public transport web
applications that have been independently developed
and applied in three different provinces of Poland:
MKA – for Krakow and other cities of Malopolska
provice, https://mka.malopolska.pl/en,
PEKA – for Poznan and its satellite towns,
https://www.peka.poznan.pl/SOP/login.jspb,
Waw Card – for Warsaw and its satellite towns,
https://www.wtp.waw.pl/en/.

The applications are used by many clients, of
various skill levels. The biggest reference area is of
the Waw Card and includes above two millions of
citizens and commuters.

The applications have been examined observing
their normal operation and using dedicated tools to
website quality evaluation (Derezinska and Kwasnik,
2020). The main drawback of the applications is a
high number of activities required by a client to
acquire rights to travel. Other problems referred to
configuring some kinds of tickets, duplicating of data
introduction, or difficulties of finding necessary
information and links to perform ticket purchasing.

The websites are overwhelmed with many
information of public transport organisation mixed
with client panel and purchasing module. All
applications are also based on the MPA approach.

4.2 Prototype Application

Based on the above experience, a Public Transport
Web (PTW) prototype has been developed that
delivers the basic services similarly to the discussed
applications. The main requirements of ticket
purchasing refer to the following activities:
 Long-term ticket can be bought.
 Parking voucher can be bought.
 A ticket can be configured, specifying travel

zone, period, discount, combining with a
parking voucher, etc.

 Ticket price should be updated according to the
ticket configuration.

 All ticket options should be configured in one
view of the website (no view change
necessary).

 Before ticket purchasing, the complete
configuration and the final price should be
confirmed.

 A feedback about successful or unsuccessful
purchasing should be provided to a user.

Activities supported by an application of this kind
should be simple and straightforwardly operable by
any client type. Client interactions should be quick
and their number limited. A transition between views
should not require loading additional data from a
server. Expected data should be presented to a user
after a delay no longer than 7 sec. This requirement
follows the results of (Dennis and Taylor, 2006).

4.3 PTW Security Requirements

Apart from performance issues, the application
should meet various security requirements. In this
section, we address several topics to be concerned in

Performance-based Refactoring of Web Application: A Case of Public Transport

613

PTW. The identified general problems can be treated
as frozen spots of the current or future refactoring,
while some selected methods or technology could be
still a subject of substitution. Additionally, fulfilling
security requirements could have a considerable
impact on the application performance.

4.3.1 Client Registration

Registration of a client requires delivery of a set of
personal data. Structure of some data, as e-mail
address or telephone number should be verified.
Registration service should be separated from other
events of the application. At least typical security
concerns should also be devoted to processing a client
password, like hiding, encryption, re-typing, strength
verifying, secure transmitting to the data base. In
PTW, a password is encoded with jsSHA (currently
SHA-512) and stored in the data base.

4.3.2 Client Authentication

Client authentication is used for a client verification,
usually based on a login and password but also an e-
mail could be used. In PTW, authentication is
performed by the server, where an encoded password
is delivered. Successful authentication initiates a
client session with a time limit, managed by vue-
session of Vue.js.

4.3.3 Application Responsiveness

It is preferred that an application accommodates to
desired sizes of all devices it is displayed on. In PTW,
operations on styles are used for this purpose. CSS
scripts are loaded when certain conditions are
fulfilled.

A MobileFirst approach could also be used, when
a website is designed first for a mobile device, and
then for other device types. The website is then
displayed the most quickly on a mobile device.

An alternative solution is development of a
separate web application dedicated for the mobile
devices. In this case, however, the SEO attribute
would be lower, because a single site address is
assessed higher than two adapted sites (Gudivada,
2015). The higher SEO the better is a site position in
a browser and a better client accessibility.

4.3.4 Data Security

There are different security threats related to data
manipulation or interception, that should be taken
into account in PTW.

XSS (Cross-Site Scripting) attacks should be
avoided (Gupta and Gupta, 2015). It concerns
introduction of unwanted JavaScript code to a
webpage from a client site, to get access to sensitive
data (Gupta, Gupta, Gangwar, Kumar, and Meena,
2015). While developing an application based on
Vue.js, Reflected XSS and DOM Based XSS have not
to be taken into account, as no information has to be
made available nor fetched from a client URL.
However, because of usage of a dynamically
refreshed DOM code, other XSS attacks should be
considered. A pure HTML code can be directly
introduced into a view component. This feature (so
called v-html) should not be applied on data delivered
by a user. Moreover, in PTW, the number of data
transmitted by user are strongly limited, which
prevents delivery of complex JavaScrips.

The application should also be resistant against
SQL Injections (Srivastava, 2014). Potential threat
concerns transmission of data to the data base. In PTW,
an additional EntityFramework is used to send values
of queries as parameters to the data base instead of
direct queries, which could have been manipulated.

4.4 PTW Architecture

The PTW prototype has been developed as SPA using
the Vue.js framework. The application is placed on a
Cloud server and consists of the following
components: a view, an intermediate layer and a
database project. The view is created by Vue.js and
communicates with the intermediate layer. The
second component is based on the MVC pattern (Leff
and Rayfield, 2001). It transfers data between the data
base project and the view. The database project
communicates with an external data base (Figure 1).

The MVC project has been implemented using the
.NET framework, the controller actions in C#, and the
view in HTML with VS extensions.

Figure 1: PTW architecture.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

614

4.5 PTW Refactoring

PTW has been refactored in order to improve its
quality attributes, especially performance. The
refactored application should support the same
functionality and other non-functional requirements;
in particular security constraints and usefulness
facilities, should be preserved or improved. Below,
we review modifications that have been introduced.

Different resources have been combined together
into one request, lowering in this way a total number
of requests (Grigorik, 2013).

The content and appearance of the website have
been modified, in order to better fit to the resolution
of a target device.

Data compression has been performed for the
selected types of files. The gzip compression has been
switched on in the configuration file of the
application that is used by the Cloud server.

Superfluous CSS rules have been deleted, and,
therefore, files to be delivered to a browser have been
reduced. Such reduction can be automatically
performed by browser tools, or an external tool
(Grunt-uncss, 2020).

File minification has been applied to all CSS and
JS files. During this action, unnecessary characters
such as spaces, tabs, blank lines, and comments have
been removed. We used a tool (UglifyJS 3, 2020).

The protocol HTTP/2.0 has been used instead of
HTTP/1. In the primary solution, each request was
queued, which influenced the duration of the website
loading time. The newer protocol provides
multiplexing of requests, therefore, communication
between the server and the browser can be completed
in shorter time (Wijnants Marx, Quax, and Lamotte,
2018). Moreover, usage of this protocol positively
influences the SEO attribute.

The file types have been recognized, namely:
those that have to be loaded directly at the beginning
and which can be postponed and handled
asynchronously. In result, some scripts do not block
the website processing. This has been realized using
async and defer attributes in JavaScript.

All pictures used in the application have been
compressed. The substantial size reduction was
obtained using the tool (WebP, 2020).

Data transmission has been performed with the
https protocol, an encoded version of http, improving
the data transmission security.

A cache memory has been used to store files. The
appropriate configuration parameters have been
changed to allow storing of the selected types of files.

Adaptations have been performed in order to
better adjust the application to mobile devices.

5 EXPERIMENTS

Various performance features of PTW before and
after refactoring, and performance of the public
transport applications (MKA, PEKA and WAW
Card) have been experimentally evaluated. General
performance and other quality factors could have
been measured on all applications (Sec. 5.1.1). These
kind of experiments are comparable and do not
depend on parameters of a local client computer.

Other experiments referred to performance tests
on PTW variants only (Sec. 5.1.2.) – (Sec. 5.1.4).
They required direct access to an application under
development, not only to its website version available
for a user. Results of tests from Sec. 5.1.2 and 5.1.3
depend on parameters of a local computer. The
experiments have been carried out using a computer
with processor Intel Core i5, 2.30 GHz, RAM 16 GB,
Windows 10x64, and integrated graphics.
Transmission speed of collecting data was about 20
Mb/s. We used the Microsoft Azure cloud service .

5.1 Experiment Results

Experiment results have been delivered by different
tools: Site Analyzer and Website Grader (Sec. 5.1.1),
developer tools of Google Chrome v.74.0.3729.131
(64-bit) (Sec. 5.1.2, 5.1.3), and JMeter (Sec. 5.1.4).

5.1.1 Performance Reported by Quality
Evaluation Tools of Web Applications

Quality of three reference applications, the PTW
prototype, and PTW after refactoring have been
calculated by different quality evaluation tools.
Functionality taken into account in all five
applications covered the same basic requirements
(Sec. 4.2). Two quality evaluation tools returned also
performance among other measured attributes. Site
Analyzer assessed performance with a range from 0
to 100 points. Another tool, Website Grader used a
scale from 0 to max 30 points. The results are given
in Table 1.

Table 1: Comparison of performance.

Web application
Perform. by

Site Analyzer
[max 100]

Perform. by
Website Grader

[max 30]
MKA 61.0 12
PEKA 61.0 12

Waw Card 73.2 14
PTW 73.2 24

Refactored PTW 73.2 30

Performance-based Refactoring of Web Application: A Case of Public Transport

615

5.1.2 General Performance Evaluated by
Developer Tool

Evaluation of quality attributes of the software under
development can also be performed by developer
tools available in a browser, e.g. Chrome. Results of
assessment of the performance attribute of PTW
before and after refactoring are shown in Table 2.

Table 2: Performance by developer tool of Chrome.

Web application Performance by developer tool
of Chrome [max 100]

PTW 7
Refactored PTW 91

5.1.3 Performance of Website Loading

Other performance tests have been carried out to
evaluate mean time that is necessary to present a
website to a user. The measurements were performed
with the developer tool contained in Google Chrome.
All tests were repeated 30 times, and average values
calculated. The results are given in Table 3.

Table 3: Comparison of web loading performance.

Measurement PTW

Refact
PTW

without
cache

Refact
PTW
with
cache

Mean time of DOM
tree loading [s]

4.01 0.76 0.40

Mean time of web
loading until starting
of JS execution [s]

5.35 0.96 0.72

Average total loading
time of all web
elements [s]

12.48 1.38 0.88

Average downloaded
data/web size

4.55 mb /
4.55 mb

740 kb /
1.5 mb

15kb /
1.5mb

Average number of
requests

44 42 42

One of the refactoring options was enabling usage
of local cache of browser to store files. Therefore, the
measurements have been conducted twice: without
cache and with cache used.

5.1.4 Performance Testing with Jmeter

Web application performance tests that could identify
workload problems can be performed with the Jmeter
tool (Kiran, 2015). Simulations affecting a server
performance and an application under test can be
executed for different application types and protocols.

For PTW, the performance tests have been
conducted with the following parameters: number of

threads that simulate number of users (7000), rump-
up period, i.e. the time interval during which all the
treads are initiated (500 s), loop count – the number
of repetitions of each thread (5).

Each thread reported its execution time, latency,
size and status, i.e. whether the request was
successfully delivered to the server. The exemplary
results of a testing session are shown in Table 4.

Table 4: Results of performance testing with Jmeter.

Label HTTP Request
#Samples 5998
Average 2024
Median 1873

90% line 4177
95% line 4410
99% line 4768

Min 14
Max 6519

Error [%] 40.76 [%]

5.2 Discussion of Results

According to the Website Grader tool, PTW has
better performance that the other web applications
even before refactoring (Table 1). After refactoring
this attribute reached the maximum value (30/30).

Evaluation with another tool (Site Analyzer) also
showed the best result in comparison to other
applications. However, no performance improvement
was reported after refactoring of PTW. Contrasting
this result to other tools, we have doubts whether the
performance results of Site Analyzer are worthwhile.

Measurements conducted by the developer tools
of the Chrome browser showed a very big increase in
performance (from 7 to 91 points), which reached a
level close to maximum (100 points).

Moreover, besides the numeric values, the quality
evaluation tools have returned some hints on the
application improvement. Remarks of Website
Grader and tools from Chrome were beneficial,
whereas those from Site Analyzer were too general
and not practically applicable.

A considerable improvement has been observed
in loading times (Table 3.). The average time of
loading all website elements has dropped from 12.48
s to 1.38 s, or to 0.88 s with the cache support. This
was mainly due to lowering of the site size because of
file minification and compression of picture and other
data. Selection of files to be loaded first resulted in
shortening time delay before starting JavaScript, from
5.35 s to 0.96 s or 0.72 s, accordingly.

The PTW application was placed in the cloud
server and, therefore, some limitations have been

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

616

observed during the performance tests with Jmeter.
The server requests have been successfully handled
up to the limit (almost 6000 users sending requests in
500 s), conforming the sufficient performance. There
was no decline in the website performance observed.
But afterwards, the remaining requests have been
blocked by the server due to the limits exceed. Those
have been classified as error requests in Table 4.

5.3 Threats to Validity

In this section we examine the threats to validity of
this study as described by (Wohlin et al., 2000).

Considering construct validity, we should look at
various tools used in experiments.

Performance of web site loading have been
measured by developer tools supported by the Google
Chrome browser. In order to alleviate generalisation
bias, each experiment has been repeated 30 times with
the same workload, and the final result calculated as
an average value. The tests have been conducted
using Google Chrome, and using a different browser
we can get some diverse outcomes. These
measurements depend also on the connection speed,
which could influence time of getting results.
Additional factors affecting this time are also
parameters of computer on which the experiments
have been carried out, including computer processor,
graphical card, and RAM memory. However, the
essential goal of the measurement was not getting
some absolute values, but comparison of the
application performance before and after refactoring.

A set of performance measurements were
performed using the JMeter tool and an external
server. The tests have been repeated 30 times, to get
an averaged values. The time of a server response
could depend on the traffic intensity on the server, but
the measurement errors were not noticeable. Local
factors, such as parameters of a local computer and of
a transmission connection have no influence of this
kind of measurement.

Evaluations delivered by the quality evaluation
tools (Site Analyzer and Website Grader) should be
at the lowest estimate endangered by measurement
errors. They were assumed to be independent of
external or local conditions. Nevertheless, this sort of
experiments were repeated in different conditions
(different local computers, under different workloads,
during different daytimes, etc.) and the results were
exactly the same, confirming our assumptions.

As for conclusion validity, we should be careful
while discussing the same quality attributes but
provided by different tools. The tools use different
criteria for assessment of the attributes under the

same names. Therefore we have compared the results
provided by each tool separately. Furthermore
internal quality is bounded by the whole process
measurements. Many refactoring activities impact on
the given process as a whole; we were no assessing
effects caused by the activities independently.

External validity is restricted, as the whole
refactoring process undergoes only one application
created in the selected technology.

6 CONCLUSIONS

The web application performance, and other quality
factors, can be considerably improved. The general
performance attribute of our SPA application was
equal or higher than of the three MPA applications.
Different refactoring activities have been shown to
positively influence the performance results. The
improvement reported by Chrome was very big (from
7 to 91), and all time characteristics of web loading
increased significantly.

However, the conclusions are limited, as absolute
outcomes vary in accordance to an application
examined and the technology used. They could be
different in the case of various SPA frameworks, as,
for example, React.js, or Angular.js.

While considering this type of refactoring, should
be carefully taken into account which application
features have to be preserved, especially concerning
its security, and other non-functional constraints.
Another big challenge remains possibility of
automating such kind of refactoring. Most of the
operations do not refer to a direct code substitution,
as in the traditional code refactoring, but relate to file
manipulation, often with use of additional tools,
changing of configuration parameters, or protocols.

REFERENCES

Baqais, B.A.A., and Alshayeb, M, 2019. Automatic
software refactoring: a systematic literature review.
Software Quality Journal. 3 Dec. doi: 10.1007/s11219-
019-09477-y

Dennis, A.R. and Taylor, N.J., 2006. Information foraging
on the web: The effects of “acceptable” Internet delays
on multi-page information search behavior. Decision
Support Systems 42(2), 810-824. doi:
10.1016/j.dss.2005.05.032

Derezinska, A., Kwaśnik, K., 2020. Evaluation and
improvement of web application quality – a case study.
In: Zamojski W., Mazurkiewicz, J., Sugier, J.,
Walkowiak, T., and Kacprzyk, J., (eds) New Advances
in Dependability of Complex Systems: Proc. of 15th

Performance-based Refactoring of Web Application: A Case of Public Transport

617

Inter. Conf. on Dependability and Complex Systems.
AICS, Springer, Cham. to appear.

Fowler, M., 2018. Refactoring: improving the design of
existing code (2nd ed.). Addison-Wesley.

Grigorik, I., 2013. High Performance Browser Networking:
What Every Web Developer Should Know About
Networking and Web Performance. O’Reilly Media.

Grunt-uncss, A grunt task for removing unused CSS from
your projects with UnCSS. [Online] Available from:
https://github.com/uncss/grunt-uncss [Accessed: 23
Feb 2020]

Gudivada, V.N., Rao, D. and Paris, J., 2015. Understanding
Search-Engine Optimization, Computer. 48(10) IEEE,
pp. 43-52. doi: 10.1109/MC.2015.297

Gupta, S. and Gupta, B.B., 2015. Cross-Site Scripting
(XSS) attacks and defense mechanisms: classification
and state-of-the-art, International Journal of System
Assurance Engineering and Management. 8(1), pp.
512-530, doi: 10.1007/s13198-015-0376-0

Gupta, B.B., Gupta, S. Gangwar, S., Kumar, M., and
Meena, P. K., 2015. Cross-Site Scripting (XSS) Abuse
and Defense: Exploitation on Several Testing Bed
Environments and Its Defense. Journal of Information
Privacy & Security; Abingdon 11(2), pp. 118-136. doi:
10.1080/15536548.2015.1044865

ISO/IEC 25010:2011 Systems and software engineering.
Systems and software quality requirements and
evaluation (SQuaRE). System and software quality
models, 2010.

ISO/IEC 25023:2016 Software engineering: software
product quality requirements and evaluation (SQuaRE):
Measurement of system and software quality. 2015.

Jadhav, M.A., Sawant, B.R., and Deshmukh, A., 2015.
Single Page Application using AngularJS.
International Journal of Computer Science and
Information Technologies, 2876-2879. doi:
10.1.1.736.4771

Kaur, S., Kaur, K., and Kaur, K., 2016. Analysis of Website
Usability Evaluation Methods. In: Proceedings of 3rd
International Conference on Computing for
Sustainable Global Development (INDIACom), pp.
1043-1046. IEEE, New York.

Kaur, S., and Singh, P., 2019. How does object-oriented
code refactoring influence software quality? Research
landscape and challenges. Journal of Systems and
Software. 157 (11), Elsevier. doi: 10.1016/j.jss.2019.
110394

Kierevsky, J., 2004. Refactoring to patterns. Addison
Wesley.

Kiran, S., Mohapatra, A., and Swamy, R., 2015.
Experiences in performance testing of web applications
with Unified Authentication platform using Jmeter. In:
International Symposium on Technology Management
and Emerging Technologies (ISTMET), IEEE, pp. 74-
78. doi: 10.1109/ISTMET.2015.7359004

Leff, A., and Rayfield, J.T., 2001. Web-Application
Development Using the Model/View/Controller Design
Pattern. In: Proceedings Fifth IEEE International
Enterprise Distributed Object Computing Conference,
IEEE, pp.118-127, doi: 10.1109/EDOC.2001.950428

Lew, P., Olsina, L., Becker, P., and Zhang, L., 2012. An
integrated strategy to systematically understand and
manage quality in use for web applications.
Requirements Eng. 17, 299-330. doi: 10.1007/s00766-
011-0128-x

Mariani, T., and Vergilio, S. R., 2017. A systematic review
on search-based refactoring. Information and Software
Technology. 83(3) pp. 14-34. Elsevier. doi:
10.1016/j.infsof.2016.11.009

Martinez-Fernandez, S., Vollmer, A. M., Jedlitschka, A.,
Franch, X., Lopez, L., Ram, P., Rodriguez, P.,
Aaramaa, S., Bagnato, A., Choraś, M., and Partanen, J.,
2019. Continuously Assessing and Improving Software
Quality with Software Analytics Tools: a Case Study.
IEEE Access 7. doi: 0.1109/ACCESS.2019.2917403

Rochimah, S., Arifiani, S., and Insanittaqwa, V.F., 2015.
Non-Source Code Refactoring: A Systematic Literature
Review. International Journal of Software Engineering
and Its Applications. 9(6) pp.197-214. doi.
10.14257/ijseia.2015.9.6.19

Srivastava, M., 2014. Algorithm to prevent back end
database against SQL injection attacks. In:
International Conference on Computing for
Sustainable Global Development (INDIACom), IEEE,
pp. 754-757, doi:10.1109/IndiaCom.2014.6828063

Stępniak, W., and Nowak, Z., 2017. Performance Analysis
of SPA Web Systems. In: Borzemski L., Grzech, A.,
Świątek, J., and Wilamowska, Z., (eds) Proceedings of
37th International Conference on Information Systems
Architecture and Technology – ISAT 2016. AiCS vol
521. Springer, Cham, pp. 235-247. doi: 10.1007/978-3-
319-46583-8_19

UglifyJS 3: Online JavaScript minifier. [Online] Available
from: https://skalman.github.io/UglifyJS-online/
[Accessed 31 Jan 2020]

Verdu, J., and Pajuelo, A., 2016. Performance scalability
analysis of JavaScript applications with web workers.
IEEE Computer Architecture Letters. 15(2), pp.105-
108. doi: 10.1109/LCA.2015.2494585

WebP A new image format for the Web. [Online]
[Accessed 31 Jan 2020] Available from:
https://developers.google.com/speed/webp

Wijnants, M., Marx, R., Quax, P., and Lamotte, W., 2018.
HTTP/2 Prioritization and its Impact on Web
Performance. In: Proceedings of the 2018 World Wide
Web Conference, (WWW '18) pp. 1755-1764, doi:
10.1145/3178876.3186181

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C. Regnell,
B. and Wessln, A., 2000. Experimentation in Software
Engineering - An Introduction. Springer. Berlin
Heidelberg.

Zou, Y., Chen, Z., Zheng, Y., Zhang, X., and Gao, Z., 2014.
Virtual DOM coverage for effective testing of dynamic
web applications. In: Proceedings of the 2014
International Symposium on Software Testing and
Analysis, ISSTA 2014. ACM New York, pp. 60-70, doi:
10.1145/2610384.2610399

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

618

