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Abstract: NoSQL systems have proven effective to handle Big Data. Most of these systems are schema-less which 
means that the database doesn't have a fixed data structure. This property offers an undeniable flexibility 
allowing the user to add new data without making any changes on the data model. However, the lack of an 
explicit data model makes it difficult to express queries on the database. Therefore, users (developers and 
decision-makers) still need the database data model to know how data are stored and related, and then to write 
their queries. In a previous work, we proposed a process to extract a physical model from a NoSQL database. 
In this article, we propose to extend this process by leading to the extraction of a conceptual model that 
provides an element of semantic knowledge close to human understanding. To do this, we use the Model 
Driven Architecture (MDA) that provides a formal framework for automatic model transformation. From a 
NoSQL physical model, we propose formal transformation rules to generate a conceptual model in the form 
of a UML class diagram. An experimentation of the extraction process was carried out on a medical 
application. 

1 INTRODUCTION 

Big data have received a great deal of attention in 
recent years. Not only the amount of data is on a 
completely different level than before, but also we 
have different type of data including factors such as 
format, structure, and sources. In addition, the speed 
at which these data must be collected and analyzed is 
increasing. This has impacted the tools required to 
store Big Data, and new kinds of data management 
tools, i.e. NoSQL systems have arisen (Chen, 2014). 
Compared to existing DBMS, NoSQL systems are 
commonly accepted to support larger volume of data 
and to provide faster data access, better scalability 
and higher flexibility (Angadi, 2013).   

One of the NoSQL key features is that databases 
can be schema-less. This means, in a table, 
meanwhile the row is inserted, the attributes names 
and types are specified. This property offers an 
undeniable flexibility that facilitates the data model 
evolution and allows end-users to add new 
information without the need of database 
administrator; but, at the same time, it makes the 
database manipulation more difficult. Indeed, even in 
Big Data context, the user still needs a data model that 
offers a visibility of how data is structured in the 

database (table names, attribute names and types, 
links, etc.)  

In practice, the developer that has created the 
database, is also in charge of writing queries. Thus, 
he already knows how data is stored and related in the 
database; so, he can easily express his requests. 
However, this solution cannot be applied to all cases; 
for instance, the developer who is asked for doing the 
application maintenance, does not know the data 
model. It is the same for a decision maker who needs 
to query a database while he was not involved in its 
creation.  

On the one hand, NoSQL systems have proven 
their efficiency to handle Big Data. On the other hand, 
the needs of a NoSQL database model remain up-to-
date. Therefore, we are convinced that it’s important 
to provide to the developer data models describing the 
database: (1) a physical model that describes the 
internal organization of data and allows to express 
queries and (2) a conceptual model that provides a 
high level of abstraction and a semantic knowledge 
element close to human comprehension, which 
guarantees efficient data management (Sevilla, 
2015). The physical model is already extracted in a 
previous work. In this article, we are interested in 
extending this extraction to the conceptual level by 
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proposing a process which extracts a conceptual 
model (UML class diagram) from the physical model 
already extracted. 

We should highlight that we formalized and 
automated our solution using the Model Driven 
Architecture (MDA) proposed by the Object 
Management Group (OMG, 2019) and that is well 
known as a framework for models automatic 
transformations.  

The remainder of the paper is structured as 
follows. Section 2 motivates our work using a case of 
study in the healthcare field. Section 3 reviews 
previous works. Section 4 describes our model-based 
process for extracting a conceptual model from 
schema-less NoSQL databases. Section 5 details our 
experiments, compares our solution against those 
presented in Section 3 and validates our solution. 
Finally, Section 6 concludes the paper and announces 
future work. 

2 ILLUSTRATIVE EXAMPLE 

To motivate and illustrate our work, we have used a 
case study in the healthcare field. This case study 
concerns international scientific programs for 
monitoring patients suffering from serious diseases. 
The main goal of this program is (1) to collect data 
about diseases development over time, (2) to study 
interactions between different diseases and (3) to 
evaluate the short and medium-term effects of their 
treatments. The medical program can last up to 3 
years. Data collected from establishments involved in 
this kind of program have the features of Big Data 
(the 3 V): Volume: the amount of data collected from 
all the establishments in three years can reach several 
terabytes. Variety: data created while monitoring 
patients come in different types; it could be (1) 
structured as the patient's vital signs (respiratory rate, 
blood pressure, etc.), (2) semi-structured document 
such as the package leaflets of medicinal products, (3) 
unstructured such as consultation summaries, paper 
prescriptions and radiology reports. Velocity: some 
data are produced in continuous way by sensors; it 
needs a [near] real time process because it could be 
integrated into a time-sensitive processes (for 
example, some measurements, like temperature, 
require an emergency medical treatment if they cross 
a given threshold). 
In these programs, one of the benefits of using 
NoSQL databases is that the evolution of the data 
(and the model) is fluent. In order to follow the 
evolution of the pathology, information is entered 
regularly for a cohort of patients. But the situation of 

a patient can evolve rapidly which needs the 
recording of new information. Thus, few months 
later, each patient will have his own information, and 
that’s how data will evolve over time. Therefore, the 
data model (1) differs from one patient to another and 
(2) evolves in unpredictable way over time. 

As mentioned before, this kind of systems operate 
on schema-less data model enabling developers to 
quickly and easily incorporate new data into their 
applications without rewriting tables. Nevertheless, 
there is still a need for a conceptual model to know 
how data is structured and related in the database; this 
is particularly necessary to write declarative queries 
where tables and columns names are specified 
(Bondiombouy, 2015).  

In our view, it’s important to have a precise and 
automatic solution that guides and facilitates the 
database model extraction task within NoSQL 
systems. For this, we propose the 
ToConceptualModel process presented in section 4 
that extracts a conceptual model of a NoSQL 
database. This model is expressed using a UML class 
diagram. 

3 RELATED WORK 

The problem of extracting the data model from 
schema-less NoSQL databases has been the subject of 
several research works. Most of these works focus on 
the physical level (Klettke, 2015), (Sevilla, 2015), 
(Gallinucci, 2018), (Maity, 2018), (Baazizi, 2017), 
(Baazizi, 2019) and (Mongo, 2019). For our part, we 
proposed an extracting process of the physical model 
from a document-oriented NoSQL database. This 
process, based on the Model Driven Architecture 
(MDA), aims to extract a model from the database 
that allows users to express queries. It generates the 
physical model of the database by applying a 
sequence of transformations formalized with the 
QVT standard. The returned model describes the 
collections that make up the database. The major 
contribution of our solution is taking into account the 
links between these collections. 
However, few research works have studied the 
extraction of a conceptual model from NoSQL 
databases; here the conceptual term qualifies a 
semantic model devoid of any technical 
consideration. Thus in (Comyn-Wattiau, 2017), the 
authors propose an extraction process of a conceptual 
model for a graph-oriented NoSQL database (Neo4J). 
In this particular type of NoSQL databases, the 
database contains nodes (objects) and binary links 
between them. The proposed process takes as input 
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Table 1: Comparative table of extraction works of conceptual model from schema-less NoSQL databases. 

 Modeling levels Types of NoSQL 
systems 

Types of links 

Physical Conceptual Graph Document Association Composition 

(Comyn-Wattiau, 2017) X X X  X  

(Izquierdo, 2016) X X  X  X 

(Chillón, 2019) X X  X X X 

the insertion requests of objects and links; and then 
returns an Entity / Association model. This process is 
based on an MDA architecture and successively 
applies two transformations. The first is to build a 
graph (Nodes + Edges) from the Neo4j query code. 
The second consists of extracting an Entity / 
Association model from this graph by transforming 
the nodes with the same label into entities and the 
edges into associations. These works are specific to 
graph-oriented NoSQL databases generally used to 
manage strongly linked data such as those from social 
networks.  

Furthermore, another work (Izquierdo, 2016) 
proposes a process to extract a conceptual model 
(UML class diagram) from a JSON document. This 
process consists of 2 steps. The first step is to extract 
a physical model in JSON format. The second step 
generates the UML class diagram by transforming the 
physical model into a root class RC, then the 
primitive fields (Number, String and Boolean) into 
RC attributes and the structured fields into component 
classes CC linked to RC by composition links. Thus, 
this work only considers the composition links and 
ignores association links. 

On the other hand, in (Chillón, 2019), the authors 
propose a process to transform a document-oriented 
database into a conceptual model. It consists of 
entities with one or more versions according to the 
attributes they contain. An attribute can be atomic or  
multivalued with atomic elements and a relationship 
can be of type association or composition. An 
association relationship between two entities is 
obtained by transforming a reference field (using a 
specific syntax proposed by the authors). In addition, 
any structured field in the physical model is 
systematically transformed into a composition link. 
Thus, these works do not consider either structured 
attributes or association classes in the conceptual 
schema. 

In Table 1, we summarize the three previous 
works by considering modeling levels, types of 
NoSQL systems as well as types of links. 

This state of the art shows that the proposed 
solutions only partially answer our problem. Indeed, 

the works in (Comyn-Wattiau, 2017) concern only 
graph-oriented systems that do not take into account 
either structured attributes or composition links. On 
the other hand, in the article (Izquierdo, 2016), the 
authors do not consider association links that are the 
most common in our case study. Finally, in (Chillón, 
2019), the authors do not take into account structured 
attributes in a class as well as the concept of 
association classes that makes it possible to 
characterize a relation by attaching attributes to it. 

4 EXTRACTION PROCESS OF 
THE CONCEPTUAL MODEL 

Our work aims to provide users with models to 
manipulate NoSQL databases. Two models are 
proposed: (1) the physical model to write queries on 
this database and application code and (2) the 
semantic model to give the meaning of the data 
contained in the database. When data structures are 
complex, these two models are essential to enable 
users (usually decision-makers) to understand and 
manipulate data. As part of this work, we proposed 
mechanisms to discover a physical model from a 
NoSQL database in a previous article. This work is 
based on the MDA architecture and applies a set of 
transformation rules formalized in QVT. The result 
model describes the internal organization of the 
NoSQL database, taking into account the technical 
details. This model shows the names of collections, 
attributes and links between collections. The current 
paper completes the latter and focuses on 
thetransformation of the physical model into a 
conceptual model represented by using a UML class 
diagrams (red circle in Figure 1) and which provides 
users with the semantics of the data. Note that we 
limit our study to document-oriented NoSQL 
databases that are the most complete to express links 
between objects (use of referenced and nested data). 
We propose the ToConceptualModel process which 
applies a set of transformations ensuring the passage 
of a NoSQL physical model towards a UML class 
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Figure 1: Overview of ToConceptualModel process.

diagram. To formalize and automate our process, we 
use the Model Driven Architecture (MDA) proposed 
by the OMG (OMG, 2019), which provides a formal 
framework for automating model transformations. 
The purpose of this architecture is to describe 
separately the functional specifications and 
implementation specifications of an application. For 
this, it uses three models representing the abstraction 
levels of the application. These are (1) the 
requirements model CIM (Computation Independent 
Model) in which no IT considerations appear, (2) the 
independent Platform Independent Model (PIM) 
independent of technical details and (3) Platform 
Specific Model (PSM) specific to a particular 
platform. The transition between the different models 
is done through a succession of transformations 
essentially between PIM and PSM. These 
transformations can be classified according to two 
categories: M2M (Model-To-Model) when the result 
of the transformation is a model and M2T (Model-To-
Text) when the result is a code. 

Since the input of our process is a NoSQL 
physical model and the output corresponds to the 
conceptual model (UML class diagram), we retain 
only the PIM and PSM levels. The transition from the 
PSM to the PIM is done through a sequence of M2M 
transformations. We will formalize these 
transformations using the QVT standard (Query View 
Transformation) defined by the OMG (Section 5).  
In the following subsections, we detail the 
components of the ToConceptualModel process by 
specifying the three elements: (a) the source, (b) the 
target and (c) the transformation rules. 

4.1 Source: Physical Model 

The physical model is produced by the 
ToPhysicalModel process shown in Figure 1 was 
presented in a previous work. In this paper, it is the 
source of the ToConceptualModel process that we 
will study here. 

This model is composed of collections. Each of 
them corresponds to the model of a collection of the 
database and describes its different fields. A field is 
defined by a name and an atomic, structured or 
multivalued type. The atomic type is one of the 
standard data types such as Number, String or 
Boolean. The structured type (between {}) is 
composed of one or more fields that can also be 
atomic, structured or multivalued. The multivalued 
type is put between []; it consists of atomic, structured 
or multivalued elements. To express a link between 
collections, we used a field called DBRef, which is un 
standard proposed by the MongoDB (MongoDB, 
2018). This one is a special case of a structured field. 
It is composed of two fields; one corresponds to the 
identifier of the referenced document and the other 
corresponds to the name of the collection that 
contains the referenced document. 

We present the different concepts of the physical 
model in the meta-model of Figure 2. All metamodels 
presented in this article are formalized with the Ecore 
standardized language that we present in the 
Experimentation section. 

4.2 Target: UML Class Diagram 

A UML Class Diagram is defined by a set of classes 
linked together by relationships. Each class is defined 
by a name, attributes, and operations. Each attribute 
is defined by a pair (name, type). Note that an 
attribute can be structured, i.e. it is composed of other 
attributes like Address which is composed of: 
StreetName, ZipCode and City.   

In this article, we do not consider operations. A 
relationship is a semantic connection between two or 
more classes. The most common links are association, 
composition, aggregation and inheritance. In this 
article, we restrict ourselves only to links used in our 
case study: association and composition. An 
association link is defined by a name and its 
extremities; a composition link is defined by its two 
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Figure 2: Source Metamodel. 

extremities and its meaning (composite class and 
component class). An extremity can be 
characterizedby a special constraint called 
multiplicity that are defined by a lowerCardinality 
and an upperCardinality. Note that an association link 
can be characterized by attributes; in this case, it is an 
association class. We formalize all these concepts 
through the Ecore meta-model of Figure 3. 

4.3 Transformation Rules 

After having formalized the concepts present in the 
source model (Physical Model) then in the target 
model (UML Class Diagram), we will describe the 
automatic transition between the two models as a set 
of transformation rules. These rules will be 
formalized later in the Experimentation section using 
the QVT standard. Links between collections (DBRef 
fields) will be taken into account from rule R5. 

R1: A collection is transformed into a class with 
the same name. 

R2: With the exception of the _id field, an atomic 
field in a collection is transformed into an atomic 
attribute with the same name and type in the 
corresponding class. 

R3: A multivalued field whose elements are 
atomic is transformed into a multivalued attribute 
with the same name and type.   

R4: A structured field is transformed into a 
structured attribute with the same name. The elements 

constituting the input structured field are transformed 
by applying R2 if it is an atomic element, R3 for a 
multivalued element or R4 for a structured element. 

R5: A DBRef field is a structure of the following 
form:  

<DBRef_Name>: {$_id: ObjectId,  
                               $Ref: <Collection_Name>}. 
 A DBRef field in a collection A referencing a 

collection B is transformed into an association 
relationship connecting the two corresponding 
classes X and Y; this association relationship has the 
same name as the DBRef field and has the following 
cardinalities:  

0..1 for the class Y and 0..* for the class X if the 
field DBRef is monovalued, 

0..* for the class Y and 0..* for the class X if the 
field DBRef is multivalued. 

R6: A DBRef field may consist of additional 
fields as follows: 
<DBRef_Name>: {$_id: ObjectId,  
                               $Ref: <Collection_Name>, 
                              <Champ1>: Type, 
                              <Champ2>: Type, 
                               …},   
In this case, a DBRef field in a collection A 
referencing a collection B is transformed into an 
association class between the corresponding classes 
X and Y; this association class has the same name as 
the DBRef field and contains the additional fields as 
attributes. If these fields are of type DBRef, they are 
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Figure 3: Target Metamodel.

transformed into association relationships by 
applying R5. The association class obtained has the 
same cardinalities as the association relationship 
(R5). 

R7: In a collection A, if a field is structured or 
multivalued of structured elements and the structure 
consists of at least one field DBRef, then this 
structured field is transformed into a component class 
Z linked to the class X (corresponding to A) with a 
composition link. This one has has the following 
cardinalities:  

0..1 for the class Z if the input field is structured, 
0 ..* for the class Z if the input field is multivalued 

of structured elements. 
The component class Z is linked with another 

class T by applying the rule 5. 
To illustrate the implementation of our process, 

Figure 4 shows the transformation of a physical 
model to a UML class diagram by applying three 
rules; other examples are presented in the Experiment 
section. Thus, the classes Hospitals and Specialties 
are obtained by applying R1 on the collections that 
have the same names, respectively on the physical 
model. The atomic Attributes HospitalName and 

Designation result from the application of R2. 
Finally, the component class Services as well as the 
relationship MedicalField are obtained by applying 
R7. 

5 EXPERIMENTS  

5.1 Technical Environment 

In this section, we describe the techniques used to 
implement the ToConceptualModel process. Since 
our approach is model driven, we used a technical 
environment suitable for modeling, meta-modeling 
and model transformation. We used the Eclipse 
Modeling Framework (EMF) (Budinsky, 2004). EMF 
provides a set of tools for introducing a model-driven 
development approach within the Eclipse 
environment. These tools provide three main features. 
The first is the definition of a meta-model 
representing the concepts handled by the user. The 
second is the creation of the models instantiating this 
meta-model and the third one is the transformation  
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Figure 4: Transformation example.

from model to model and from model to text. Among 
the tools provided by EMF, we used: 

Ecore: a metamodeling language used to create 
our metamodels. Figure 2 and Figure 3 illustrate the 
source and target Ecore meta-models used by 
ToConceptualModel process. 

XML Metadata Interchange (XMI): the XML 
based standard that we use to create models.  

QVT (Query, View, Transformation): the OMG 
standard language for specifying model 
transformations.  The choice of the QVT standard was 
based on criteria specific to our approach. Indeed, the 
transformation tool must be integrated into the EMF 
environment so that it can be easily used with 
modeling and meta-modeling tools. 

5.2 Implementation of the 
ToConceptualModel Process 

ToConceptualModel process is expressed as a 
sequence of elementary steps that build the resulting 
model (UML class diagram) step by step from the 
source model (physical model).  

Step1: we create a source and a target metamodel 
to represent the concepts handled by our process. 

Step2: we build an instance of the source 
metamodel. For this, we use the standard based XML  
Metadata Interchange (XMI) format. This instance is 
shown in Figure 5 

Step3: we implement the transformation rules by 
means of the QVT language provided within EMF.  

Step4: we test the transformation by running the 
QVT script created in step 3. This script takes as input 
the source model built in step 2 (physical model) and 
returns as output a UML class diagram. The result is 
provided in the form of XMI file as shown in figure 6. 

5.3 Comparison 

The aim of this section is to compare our solution 
with the three works (Comyn-Wattiau, 2017), 
(Izquierdo, 2016), (Chillón, 2019) presented in 
section 3 and that have investigated the process of 
extracting a NoSQL database conceptual model.   

Starting from a graph-oriented NoSQL database, 
authors in (Comyn-Wattiau, 2017) propose to extract 
an E/A model based on a set of mapping rules 
between the conceptual level and the physical one. 
Obviously, these rules are specific to graph-oriented 
systems used as a framework for managing complex 
data with many connections. This kind of NoSQL 
DBMS lack of ability to define structured attributes 
and composition links that we need to use in our use 
case (cf. Section 2). The solution presented in 
(Izquierdo, 2016) have the advantage to start from a 
document-oriented NoSQL database. But the 
proposed mapping doesn’t take into account 
association links between collections; such type of 
links is a key element in our case to describe 
relationships between the medical application 
objects. Other process in (Chillón, 2019) focuses on 
association links during the extraction of a document-
oriented NoSQL database, however it doesn’t 
consider structured attributes and association classes.     

To overcome the limits of these works, we have 
proposed a more complete solution based on the 
Model Driven Architecture (MDA). Table 2 
summarizes the main features of our process and sets 
them against those of (Comyn-Wattiau, 2017), 
(Izquierdo, 2016) and (Chillón, 2019) processes.  
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Figure 5: Source Model.  
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Figure 6: Target Model.  
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Table 2: Comparative table of solutions. 

 Types of NoSQL 
systems 

Types of links Structured 
attributes 

Use Of 
MDA 

Graph Document Association Composition Association 
class

(Comyn-
Wattiau, 2017) 

X  X    X 

(Izquierdo, 2016)  X  X    

(Chillón, 2019)  X X X    

Our Process  X X X X X X 

 
Table 3: Query writing time. 

 Without model Physical model alone Conceptual and 
physical model 

Developer 1 Database 1: 50 minutes Database 2: 23 minutes Database 3: 18 minutes 

Developer 2 Database 2: 40 minutes Database 3: 25 minutes Database 1: 16 minutes 

Developer 3 Database 3: 48 minutes Database 1: 20 minutes Database 2: 16 minutes 

Average 46 minutes 23 minutes 17 minutes 

 

 
Figure 7: Screen representing the database of one of the three applications. 
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5.4 Validation 

Concerning the model extraction of schema-less 
NoSQL databases, our approach allows to display to 
the developer simultaneously a conceptual model and 
a physical model; the first to understand the semantics 
of the database and the second to write queries. To 
evaluate the relevance of our approach, our prototype 
(section 4) was implemented by three developers at 
Trimane, a digital services company specialized in 
business intelligence and Big Data. The three 
experienced developers (IT consulting engineers) 
were tasked with providing maintenance for three 
separate applications. None of the developers know, 
previously, the data model of the concerned 
applications. For each application, each developer 
writes ten queries that have an increasing complexity 
according to three different cases: (1) without any 
data model, (2) with the physical data model or (3) 
with the both conceptual and physical models. 
Figures 7(a) and 7(b) show respectively an example 
of the conceptual and physical models corresponding 
to one of the three applications. Note that due to lack 
of place, we present data models (conceptual and 
physical one) of only one application.  

We should also highlight that for reasons of 
visibility, models are represented to the user in the 
same screen and with an appropriate format: JSON 
for the physical model and the graphic format for the 
conceptual one. Each time we click on a class on the 
conceptual model, we will have its equivalent on the 
physical model. For example, the part of the physical 
model written in bold corresponds to the selected 
class (Trials). 

Each database is associated with a set of queries 
whose natural language statements are provided to the 
three developers. In Table 3, we calculated the 
average time of writing the queries by the three 
developers in each situation: (1) without any data 
model, (2) with the physical data model or (3) with 
the both conceptual and physical models. 

Our initial hypothesis was verified in the 
situations considered. This establishes that a 
knowledge of semantics and data structure allows the 
developer to write queries faster on a schema-less 
NoSQL database. The small difference noted between 
the use of the single physical diagram and the use of 
the two models (conceptual and physical), is probably 
due to the experience of the three developers. 

 

6 CONCLUSION AND FUTURE 
WORK 

Our work is part of Big Data databases. They are 
currently dealing with the reverse engineering 
mechanisms of schema-less NoSQL databases to 
provide users with models to manipulate NoSQL 
databases.  

In this article, we have proposed an automatic 
process ToConceptualModel which focuses on the 
transformation of a physical model into a conceptual 
model represented using a UML class diagrams by 
applying a set of rules. The resulting conceptual 
model makes it easier for developers and decision-
makers to understand the database and write queries. 
To formalize and automate our process, we use the 
Model Driven Architecture (MDA) proposed by the 
OMG, which provides a formal framework for 
automating model transformations. 

The major contribution of our solution is the 
consideration of structured attributes, association 
relationships, composition relationships as well as 
association classes. We have experimented our 
process on the case of a medical application which 
relates to scientific programs of follow-up of 
pathologies; the database is stored on a document-
oriented NoSQL Database. 

As future work, we plan to complete our 
transformation process to have more semantics in the 
conceptual model by considering other types of links 
such as inheritance, aggregation and N-ary. 
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