
Discovering of a Conceptual Model from a NoSQL Database

Fatma Abdelhedi1, Amal Ait Brahim2, Rabah Tighilt Ferhat2 and Gilles Zurfluh2
1CBI2, TRIMANE, Paris, France

2Toulouse Institute of Computer Science Research (IRIT), Toulouse Capitole University, Toulouse, France

Keywords: NoSQL, Big Data, Schema-less, Model Extraction, MDA.

Abstract: NoSQL systems have proven effective to handle Big Data. Most of these systems are schema-less which
means that the database doesn't have a fixed data structure. This property offers an undeniable flexibility
allowing the user to add new data without making any changes on the data model. However, the lack of an
explicit data model makes it difficult to express queries on the database. Therefore, users (developers and
decision-makers) still need the database data model to know how data are stored and related, and then to write
their queries. In a previous work, we proposed a process to extract a physical model from a NoSQL database.
In this article, we propose to extend this process by leading to the extraction of a conceptual model that
provides an element of semantic knowledge close to human understanding. To do this, we use the Model
Driven Architecture (MDA) that provides a formal framework for automatic model transformation. From a
NoSQL physical model, we propose formal transformation rules to generate a conceptual model in the form
of a UML class diagram. An experimentation of the extraction process was carried out on a medical
application.

1 INTRODUCTION

Big data have received a great deal of attention in
recent years. Not only the amount of data is on a
completely different level than before, but also we
have different type of data including factors such as
format, structure, and sources. In addition, the speed
at which these data must be collected and analyzed is
increasing. This has impacted the tools required to
store Big Data, and new kinds of data management
tools, i.e. NoSQL systems have arisen (Chen, 2014).
Compared to existing DBMS, NoSQL systems are
commonly accepted to support larger volume of data
and to provide faster data access, better scalability
and higher flexibility (Angadi, 2013).

One of the NoSQL key features is that databases
can be schema-less. This means, in a table,
meanwhile the row is inserted, the attributes names
and types are specified. This property offers an
undeniable flexibility that facilitates the data model
evolution and allows end-users to add new
information without the need of database
administrator; but, at the same time, it makes the
database manipulation more difficult. Indeed, even in
Big Data context, the user still needs a data model that
offers a visibility of how data is structured in the

database (table names, attribute names and types,
links, etc.)

In practice, the developer that has created the
database, is also in charge of writing queries. Thus,
he already knows how data is stored and related in the
database; so, he can easily express his requests.
However, this solution cannot be applied to all cases;
for instance, the developer who is asked for doing the
application maintenance, does not know the data
model. It is the same for a decision maker who needs
to query a database while he was not involved in its
creation.

On the one hand, NoSQL systems have proven
their efficiency to handle Big Data. On the other hand,
the needs of a NoSQL database model remain up-to-
date. Therefore, we are convinced that it’s important
to provide to the developer data models describing the
database: (1) a physical model that describes the
internal organization of data and allows to express
queries and (2) a conceptual model that provides a
high level of abstraction and a semantic knowledge
element close to human comprehension, which
guarantees efficient data management (Sevilla,
2015). The physical model is already extracted in a
previous work. In this article, we are interested in
extending this extraction to the conceptual level by

Abdelhedi, F., Brahim, A., Ferhat, R. and Zurfluh, G.
Discovering of a Conceptual Model from a NoSQL Database.
DOI: 10.5220/0009796100610072
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 61-72
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

61

proposing a process which extracts a conceptual
model (UML class diagram) from the physical model
already extracted.

We should highlight that we formalized and
automated our solution using the Model Driven
Architecture (MDA) proposed by the Object
Management Group (OMG, 2019) and that is well
known as a framework for models automatic
transformations.

The remainder of the paper is structured as
follows. Section 2 motivates our work using a case of
study in the healthcare field. Section 3 reviews
previous works. Section 4 describes our model-based
process for extracting a conceptual model from
schema-less NoSQL databases. Section 5 details our
experiments, compares our solution against those
presented in Section 3 and validates our solution.
Finally, Section 6 concludes the paper and announces
future work.

2 ILLUSTRATIVE EXAMPLE

To motivate and illustrate our work, we have used a
case study in the healthcare field. This case study
concerns international scientific programs for
monitoring patients suffering from serious diseases.
The main goal of this program is (1) to collect data
about diseases development over time, (2) to study
interactions between different diseases and (3) to
evaluate the short and medium-term effects of their
treatments. The medical program can last up to 3
years. Data collected from establishments involved in
this kind of program have the features of Big Data
(the 3 V): Volume: the amount of data collected from
all the establishments in three years can reach several
terabytes. Variety: data created while monitoring
patients come in different types; it could be (1)
structured as the patient's vital signs (respiratory rate,
blood pressure, etc.), (2) semi-structured document
such as the package leaflets of medicinal products, (3)
unstructured such as consultation summaries, paper
prescriptions and radiology reports. Velocity: some
data are produced in continuous way by sensors; it
needs a [near] real time process because it could be
integrated into a time-sensitive processes (for
example, some measurements, like temperature,
require an emergency medical treatment if they cross
a given threshold).
In these programs, one of the benefits of using
NoSQL databases is that the evolution of the data
(and the model) is fluent. In order to follow the
evolution of the pathology, information is entered
regularly for a cohort of patients. But the situation of

a patient can evolve rapidly which needs the
recording of new information. Thus, few months
later, each patient will have his own information, and
that’s how data will evolve over time. Therefore, the
data model (1) differs from one patient to another and
(2) evolves in unpredictable way over time.

As mentioned before, this kind of systems operate
on schema-less data model enabling developers to
quickly and easily incorporate new data into their
applications without rewriting tables. Nevertheless,
there is still a need for a conceptual model to know
how data is structured and related in the database; this
is particularly necessary to write declarative queries
where tables and columns names are specified
(Bondiombouy, 2015).

In our view, it’s important to have a precise and
automatic solution that guides and facilitates the
database model extraction task within NoSQL
systems. For this, we propose the
ToConceptualModel process presented in section 4
that extracts a conceptual model of a NoSQL
database. This model is expressed using a UML class
diagram.

3 RELATED WORK

The problem of extracting the data model from
schema-less NoSQL databases has been the subject of
several research works. Most of these works focus on
the physical level (Klettke, 2015), (Sevilla, 2015),
(Gallinucci, 2018), (Maity, 2018), (Baazizi, 2017),
(Baazizi, 2019) and (Mongo, 2019). For our part, we
proposed an extracting process of the physical model
from a document-oriented NoSQL database. This
process, based on the Model Driven Architecture
(MDA), aims to extract a model from the database
that allows users to express queries. It generates the
physical model of the database by applying a
sequence of transformations formalized with the
QVT standard. The returned model describes the
collections that make up the database. The major
contribution of our solution is taking into account the
links between these collections.
However, few research works have studied the
extraction of a conceptual model from NoSQL
databases; here the conceptual term qualifies a
semantic model devoid of any technical
consideration. Thus in (Comyn-Wattiau, 2017), the
authors propose an extraction process of a conceptual
model for a graph-oriented NoSQL database (Neo4J).
In this particular type of NoSQL databases, the
database contains nodes (objects) and binary links
between them. The proposed process takes as input

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

62

Table 1: Comparative table of extraction works of conceptual model from schema-less NoSQL databases.

 Modeling levels Types of NoSQL
systems

Types of links

Physical Conceptual Graph Document Association Composition

(Comyn-Wattiau, 2017) X X X X

(Izquierdo, 2016) X X X X

(Chillón, 2019) X X X X X

the insertion requests of objects and links; and then
returns an Entity / Association model. This process is
based on an MDA architecture and successively
applies two transformations. The first is to build a
graph (Nodes + Edges) from the Neo4j query code.
The second consists of extracting an Entity /
Association model from this graph by transforming
the nodes with the same label into entities and the
edges into associations. These works are specific to
graph-oriented NoSQL databases generally used to
manage strongly linked data such as those from social
networks.

Furthermore, another work (Izquierdo, 2016)
proposes a process to extract a conceptual model
(UML class diagram) from a JSON document. This
process consists of 2 steps. The first step is to extract
a physical model in JSON format. The second step
generates the UML class diagram by transforming the
physical model into a root class RC, then the
primitive fields (Number, String and Boolean) into
RC attributes and the structured fields into component
classes CC linked to RC by composition links. Thus,
this work only considers the composition links and
ignores association links.

On the other hand, in (Chillón, 2019), the authors
propose a process to transform a document-oriented
database into a conceptual model. It consists of
entities with one or more versions according to the
attributes they contain. An attribute can be atomic or
multivalued with atomic elements and a relationship
can be of type association or composition. An
association relationship between two entities is
obtained by transforming a reference field (using a
specific syntax proposed by the authors). In addition,
any structured field in the physical model is
systematically transformed into a composition link.
Thus, these works do not consider either structured
attributes or association classes in the conceptual
schema.

In Table 1, we summarize the three previous
works by considering modeling levels, types of
NoSQL systems as well as types of links.

This state of the art shows that the proposed
solutions only partially answer our problem. Indeed,

the works in (Comyn-Wattiau, 2017) concern only
graph-oriented systems that do not take into account
either structured attributes or composition links. On
the other hand, in the article (Izquierdo, 2016), the
authors do not consider association links that are the
most common in our case study. Finally, in (Chillón,
2019), the authors do not take into account structured
attributes in a class as well as the concept of
association classes that makes it possible to
characterize a relation by attaching attributes to it.

4 EXTRACTION PROCESS OF
THE CONCEPTUAL MODEL

Our work aims to provide users with models to
manipulate NoSQL databases. Two models are
proposed: (1) the physical model to write queries on
this database and application code and (2) the
semantic model to give the meaning of the data
contained in the database. When data structures are
complex, these two models are essential to enable
users (usually decision-makers) to understand and
manipulate data. As part of this work, we proposed
mechanisms to discover a physical model from a
NoSQL database in a previous article. This work is
based on the MDA architecture and applies a set of
transformation rules formalized in QVT. The result
model describes the internal organization of the
NoSQL database, taking into account the technical
details. This model shows the names of collections,
attributes and links between collections. The current
paper completes the latter and focuses on
thetransformation of the physical model into a
conceptual model represented by using a UML class
diagrams (red circle in Figure 1) and which provides
users with the semantics of the data. Note that we
limit our study to document-oriented NoSQL
databases that are the most complete to express links
between objects (use of referenced and nested data).
We propose the ToConceptualModel process which
applies a set of transformations ensuring the passage
of a NoSQL physical model towards a UML class

Discovering of a Conceptual Model from a NoSQL Database

63

Figure 1: Overview of ToConceptualModel process.

diagram. To formalize and automate our process, we
use the Model Driven Architecture (MDA) proposed
by the OMG (OMG, 2019), which provides a formal
framework for automating model transformations.
The purpose of this architecture is to describe
separately the functional specifications and
implementation specifications of an application. For
this, it uses three models representing the abstraction
levels of the application. These are (1) the
requirements model CIM (Computation Independent
Model) in which no IT considerations appear, (2) the
independent Platform Independent Model (PIM)
independent of technical details and (3) Platform
Specific Model (PSM) specific to a particular
platform. The transition between the different models
is done through a succession of transformations
essentially between PIM and PSM. These
transformations can be classified according to two
categories: M2M (Model-To-Model) when the result
of the transformation is a model and M2T (Model-To-
Text) when the result is a code.

Since the input of our process is a NoSQL
physical model and the output corresponds to the
conceptual model (UML class diagram), we retain
only the PIM and PSM levels. The transition from the
PSM to the PIM is done through a sequence of M2M
transformations. We will formalize these
transformations using the QVT standard (Query View
Transformation) defined by the OMG (Section 5).
In the following subsections, we detail the
components of the ToConceptualModel process by
specifying the three elements: (a) the source, (b) the
target and (c) the transformation rules.

4.1 Source: Physical Model

The physical model is produced by the
ToPhysicalModel process shown in Figure 1 was
presented in a previous work. In this paper, it is the
source of the ToConceptualModel process that we
will study here.

This model is composed of collections. Each of
them corresponds to the model of a collection of the
database and describes its different fields. A field is
defined by a name and an atomic, structured or
multivalued type. The atomic type is one of the
standard data types such as Number, String or
Boolean. The structured type (between {}) is
composed of one or more fields that can also be
atomic, structured or multivalued. The multivalued
type is put between []; it consists of atomic, structured
or multivalued elements. To express a link between
collections, we used a field called DBRef, which is un
standard proposed by the MongoDB (MongoDB,
2018). This one is a special case of a structured field.
It is composed of two fields; one corresponds to the
identifier of the referenced document and the other
corresponds to the name of the collection that
contains the referenced document.

We present the different concepts of the physical
model in the meta-model of Figure 2. All metamodels
presented in this article are formalized with the Ecore
standardized language that we present in the
Experimentation section.

4.2 Target: UML Class Diagram

A UML Class Diagram is defined by a set of classes
linked together by relationships. Each class is defined
by a name, attributes, and operations. Each attribute
is defined by a pair (name, type). Note that an
attribute can be structured, i.e. it is composed of other
attributes like Address which is composed of:
StreetName, ZipCode and City.

In this article, we do not consider operations. A
relationship is a semantic connection between two or
more classes. The most common links are association,
composition, aggregation and inheritance. In this
article, we restrict ourselves only to links used in our
case study: association and composition. An
association link is defined by a name and its
extremities; a composition link is defined by its two

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

64

Figure 2: Source Metamodel.

extremities and its meaning (composite class and
component class). An extremity can be
characterizedby a special constraint called
multiplicity that are defined by a lowerCardinality
and an upperCardinality. Note that an association link
can be characterized by attributes; in this case, it is an
association class. We formalize all these concepts
through the Ecore meta-model of Figure 3.

4.3 Transformation Rules

After having formalized the concepts present in the
source model (Physical Model) then in the target
model (UML Class Diagram), we will describe the
automatic transition between the two models as a set
of transformation rules. These rules will be
formalized later in the Experimentation section using
the QVT standard. Links between collections (DBRef
fields) will be taken into account from rule R5.

R1: A collection is transformed into a class with
the same name.

R2: With the exception of the _id field, an atomic
field in a collection is transformed into an atomic
attribute with the same name and type in the
corresponding class.

R3: A multivalued field whose elements are
atomic is transformed into a multivalued attribute
with the same name and type.

R4: A structured field is transformed into a
structured attribute with the same name. The elements

constituting the input structured field are transformed
by applying R2 if it is an atomic element, R3 for a
multivalued element or R4 for a structured element.

R5: A DBRef field is a structure of the following
form:

<DBRef_Name>: {$_id: ObjectId,
 $Ref: <Collection_Name>}.
 A DBRef field in a collection A referencing a

collection B is transformed into an association
relationship connecting the two corresponding
classes X and Y; this association relationship has the
same name as the DBRef field and has the following
cardinalities:

0..1 for the class Y and 0..* for the class X if the
field DBRef is monovalued,

0..* for the class Y and 0..* for the class X if the
field DBRef is multivalued.

R6: A DBRef field may consist of additional
fields as follows:
<DBRef_Name>: {$_id: ObjectId,
 $Ref: <Collection_Name>,
 <Champ1>: Type,
 <Champ2>: Type,
 …},
In this case, a DBRef field in a collection A
referencing a collection B is transformed into an
association class between the corresponding classes
X and Y; this association class has the same name as
the DBRef field and contains the additional fields as
attributes. If these fields are of type DBRef, they are

Discovering of a Conceptual Model from a NoSQL Database

65

Figure 3: Target Metamodel.

transformed into association relationships by
applying R5. The association class obtained has the
same cardinalities as the association relationship
(R5).

R7: In a collection A, if a field is structured or
multivalued of structured elements and the structure
consists of at least one field DBRef, then this
structured field is transformed into a component class
Z linked to the class X (corresponding to A) with a
composition link. This one has has the following
cardinalities:

0..1 for the class Z if the input field is structured,
0 ..* for the class Z if the input field is multivalued

of structured elements.
The component class Z is linked with another

class T by applying the rule 5.
To illustrate the implementation of our process,

Figure 4 shows the transformation of a physical
model to a UML class diagram by applying three
rules; other examples are presented in the Experiment
section. Thus, the classes Hospitals and Specialties
are obtained by applying R1 on the collections that
have the same names, respectively on the physical
model. The atomic Attributes HospitalName and

Designation result from the application of R2.
Finally, the component class Services as well as the
relationship MedicalField are obtained by applying
R7.

5 EXPERIMENTS

5.1 Technical Environment

In this section, we describe the techniques used to
implement the ToConceptualModel process. Since
our approach is model driven, we used a technical
environment suitable for modeling, meta-modeling
and model transformation. We used the Eclipse
Modeling Framework (EMF) (Budinsky, 2004). EMF
provides a set of tools for introducing a model-driven
development approach within the Eclipse
environment. These tools provide three main features.
The first is the definition of a meta-model
representing the concepts handled by the user. The
second is the creation of the models instantiating this
meta-model and the third one is the transformation

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

66

Figure 4: Transformation example.

from model to model and from model to text. Among
the tools provided by EMF, we used:

Ecore: a metamodeling language used to create
our metamodels. Figure 2 and Figure 3 illustrate the
source and target Ecore meta-models used by
ToConceptualModel process.

XML Metadata Interchange (XMI): the XML
based standard that we use to create models.

QVT (Query, View, Transformation): the OMG
standard language for specifying model
transformations. The choice of the QVT standard was
based on criteria specific to our approach. Indeed, the
transformation tool must be integrated into the EMF
environment so that it can be easily used with
modeling and meta-modeling tools.

5.2 Implementation of the
ToConceptualModel Process

ToConceptualModel process is expressed as a
sequence of elementary steps that build the resulting
model (UML class diagram) step by step from the
source model (physical model).

Step1: we create a source and a target metamodel
to represent the concepts handled by our process.

Step2: we build an instance of the source
metamodel. For this, we use the standard based XML
Metadata Interchange (XMI) format. This instance is
shown in Figure 5

Step3: we implement the transformation rules by
means of the QVT language provided within EMF.

Step4: we test the transformation by running the
QVT script created in step 3. This script takes as input
the source model built in step 2 (physical model) and
returns as output a UML class diagram. The result is
provided in the form of XMI file as shown in figure 6.

5.3 Comparison

The aim of this section is to compare our solution
with the three works (Comyn-Wattiau, 2017),
(Izquierdo, 2016), (Chillón, 2019) presented in
section 3 and that have investigated the process of
extracting a NoSQL database conceptual model.

Starting from a graph-oriented NoSQL database,
authors in (Comyn-Wattiau, 2017) propose to extract
an E/A model based on a set of mapping rules
between the conceptual level and the physical one.
Obviously, these rules are specific to graph-oriented
systems used as a framework for managing complex
data with many connections. This kind of NoSQL
DBMS lack of ability to define structured attributes
and composition links that we need to use in our use
case (cf. Section 2). The solution presented in
(Izquierdo, 2016) have the advantage to start from a
document-oriented NoSQL database. But the
proposed mapping doesn’t take into account
association links between collections; such type of
links is a key element in our case to describe
relationships between the medical application
objects. Other process in (Chillón, 2019) focuses on
association links during the extraction of a document-
oriented NoSQL database, however it doesn’t
consider structured attributes and association classes.

To overcome the limits of these works, we have
proposed a more complete solution based on the
Model Driven Architecture (MDA). Table 2
summarizes the main features of our process and sets
them against those of (Comyn-Wattiau, 2017),
(Izquierdo, 2016) and (Chillón, 2019) processes.

Discovering of a Conceptual Model from a NoSQL Database

67

Figure 5: Source Model.

R1

R1

R1

R3

R4

R5

R6

R1 R1

R2

R1

 R7

R1

R1

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

68

Figure 6: Target Model.

R1
R3

R2

R4

R5

R6

R7

Discovering of a Conceptual Model from a NoSQL Database

69

Table 2: Comparative table of solutions.

 Types of NoSQL
systems

Types of links Structured
attributes

Use Of
MDA

Graph Document Association Composition Association
class

(Comyn-
Wattiau, 2017)

X X X

(Izquierdo, 2016) X X

(Chillón, 2019) X X X

Our Process X X X X X X

Table 3: Query writing time.

 Without model Physical model alone Conceptual and
physical model

Developer 1 Database 1: 50 minutes Database 2: 23 minutes Database 3: 18 minutes

Developer 2 Database 2: 40 minutes Database 3: 25 minutes Database 1: 16 minutes

Developer 3 Database 3: 48 minutes Database 1: 20 minutes Database 2: 16 minutes

Average 46 minutes 23 minutes 17 minutes

Figure 7: Screen representing the database of one of the three applications.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

70

5.4 Validation

Concerning the model extraction of schema-less
NoSQL databases, our approach allows to display to
the developer simultaneously a conceptual model and
a physical model; the first to understand the semantics
of the database and the second to write queries. To
evaluate the relevance of our approach, our prototype
(section 4) was implemented by three developers at
Trimane, a digital services company specialized in
business intelligence and Big Data. The three
experienced developers (IT consulting engineers)
were tasked with providing maintenance for three
separate applications. None of the developers know,
previously, the data model of the concerned
applications. For each application, each developer
writes ten queries that have an increasing complexity
according to three different cases: (1) without any
data model, (2) with the physical data model or (3)
with the both conceptual and physical models.
Figures 7(a) and 7(b) show respectively an example
of the conceptual and physical models corresponding
to one of the three applications. Note that due to lack
of place, we present data models (conceptual and
physical one) of only one application.

We should also highlight that for reasons of
visibility, models are represented to the user in the
same screen and with an appropriate format: JSON
for the physical model and the graphic format for the
conceptual one. Each time we click on a class on the
conceptual model, we will have its equivalent on the
physical model. For example, the part of the physical
model written in bold corresponds to the selected
class (Trials).

Each database is associated with a set of queries
whose natural language statements are provided to the
three developers. In Table 3, we calculated the
average time of writing the queries by the three
developers in each situation: (1) without any data
model, (2) with the physical data model or (3) with
the both conceptual and physical models.

Our initial hypothesis was verified in the
situations considered. This establishes that a
knowledge of semantics and data structure allows the
developer to write queries faster on a schema-less
NoSQL database. The small difference noted between
the use of the single physical diagram and the use of
the two models (conceptual and physical), is probably
due to the experience of the three developers.

6 CONCLUSION AND FUTURE
WORK

Our work is part of Big Data databases. They are
currently dealing with the reverse engineering
mechanisms of schema-less NoSQL databases to
provide users with models to manipulate NoSQL
databases.

In this article, we have proposed an automatic
process ToConceptualModel which focuses on the
transformation of a physical model into a conceptual
model represented using a UML class diagrams by
applying a set of rules. The resulting conceptual
model makes it easier for developers and decision-
makers to understand the database and write queries.
To formalize and automate our process, we use the
Model Driven Architecture (MDA) proposed by the
OMG, which provides a formal framework for
automating model transformations.

The major contribution of our solution is the
consideration of structured attributes, association
relationships, composition relationships as well as
association classes. We have experimented our
process on the case of a medical application which
relates to scientific programs of follow-up of
pathologies; the database is stored on a document-
oriented NoSQL Database.

As future work, we plan to complete our
transformation process to have more semantics in the
conceptual model by considering other types of links
such as inheritance, aggregation and N-ary.

REFERENCES

Angadi, A. B., & Gull, K. C. (2013). Growth of New
Databases & Analysis of NOSQL Datastores.
International Journal of Advanced Research in
Computer Science and Software Engineering, 3, 1307-
1319.

Baazizi, M. A., Lahmar, H. B., Colazzo, D., Ghelli, G., &
Sartiani, C. (2017, March). Schema inference for
massive JSON datasets. In Extending Database
Technology (EDBT).

Baazizi, M. A., Colazzo, D., Ghelli, G., & Sartiani, C.
(2019). Parametric schema inference for massive JSON
datasets. The VLDB Journal, 1-25.

Bondiombouy, C. (2015). Query processing in cloud
multistore systems. In BDA : Bases de Données
Avancées.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T. J., &
Merks, E. (2004). Eclipse modeling framework: a
developer's guide. Addison-Wesley Professional.

Chen, CL Philip et Zhang, Chun-Yang. Data-intensive
applications, challenges, techniques and technologies:

Discovering of a Conceptual Model from a NoSQL Database

71

A survey on Big Data. Information Sciences, 2014, vol.
275, p. 314-347.

Comyn-Wattiau, I., & Akoka, J. (2017, December). Model
driven reverse engineering of NoSQL property graph
databases: The case of Neo4j. In 2017 IEEE
International Conference on Big Data (Big Data) (pp.
453-458). IEEE.

 Extract Mongo Schema
https://www.npmjs.com/package/extract-mongo-
schema/v/0.2.9 Online; 5 October 2019.

Gallinucci, E., Golfarelli, M., & Rizzi, S. (2018). Schema
profiling of document-oriented databases. Information
Systems, 75, 13-25.

 Izquierdo, J. L. C., & Cabot, J. (2016). JSONDiscoverer:
Visualizing the schema lurking behind JSON
documents. Knowledge-Based Systems, 103, 52-55.

 Klettke, M., U. Störl, et S. Scherzinger (2015). Schema
extraction and structural outlier detection for json-
based nosql data stores. Datenbanksysteme für
Business, Technologie und Web (BTW 2015).

Maity, B., Acharya, A., Goto, T., & Sen, S. (2018, June). A
Framework to Convert NoSQL to Relational Model.
In Proceedings of the 6th ACM/ACIS International
Conference on Applied Computing and Information
Technology (pp. 1-6). ACM.

MongoDB (2018). Mongodb atlas database as a service.
https://www.mongodb.com/. Online; 5 November
2019.

Sevilla, Diego Ruiz, Severino Feliciano Morales, and Jesús
García Molina. "Inferring versioned schemas from
NoSQL databases and its applications." International
Conference on Conceptual Modeling. Springer, Cham,
2015.

Chillón, A. H., Ruiz, D. S., Molina, J. G., & Morales, S. F.
(2019). A Model-Driven Approach to Generate
Schemas for Object-Document Mappers. IEEE Access,
7, 59126-59142.

Object Management Group (2019) https://www.omg.org/
Online; 5 July 2019.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

72

