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Abstract: Context: In software development, new functionalities and bug fixes are required to ensure a better user 
experience and to preserve software value for a longer period. Sometimes developers need to implement 
quick changes to meet deadlines rather than a better solution that would take longer. These easy choices, 
known as Technical Debt, can cause long-term negative impacts because they can bring extra effort to the 
team in the future. Technical debts must be managed and detected so that the team can evaluate the best way 
to deal with them and avoid more serious problems. One way to detect technical debts is through source 
code comments. Developers often insert comments in which they admit that there is a need to improve that 
part of the code later. This is known as Self-Admitted Technical Debt (SATD).  Objective: Evaluate a Long 
short-term memory (LSTM) neural network model combined with Word2vec for word embedding to 
identify design and requirement SATDs from comments in source code. Method: We performed a 
controlled experiment to evaluate the quality of the model compared with two language models from 
literature and LSTM without word embedding in a labelled dataset. Results: The results showed that the 
LSTM model with Word2vec have improved in recall and f-measure. The LSTM model without word 
embedding achieves greater recall, but perform worse in precision and f-measure. Conclusion: Overall, we 
found that the LSTM model and word2vec can outperform other models. 

1 INTRODUCTION 

On a day-to-day basis, developers must meet 
deadlines and ensure that the software is being 
developed with quality. The evolution or 
maintenance of software is a fundamental step to 
guarantee the quality of the product. The software 
goes through several modifications that can be 
requested by users as improvement or correction of 
an error committed during implementation. In some 
cases, quick fixes and workarounds must be applied 
in order for one or more features to be delivered on 
time. When developers opt for these choices, they 
can make a trade-off between meeting deadlines and 
software quality. These shortcuts tend to have a 
negative impact in the long run, so that short-term 
gains are obtained. This type of choice is called 
technical debt. 

The term "technical debt" was defined by Ward 
Cunningham. A technical debt is a debt that the 

development team takes when it chooses to do 
something that is easy to implement to meet a short-
term goal but can have a negative impact in the 
future (Cunningham, 1992). When technical debts 
are not managed and corrected, they can have 
serious long-term consequences, increasing costs 
during the maintenance (Seaman and Guo, 2011). 
Although there are cases of technical debt occurring 
unintentionally, there are situations in which 
developers admit that they have produced or found a 
technical debt. This type of technical debt is called 
self-admitted technical debt (SATD) (Potdar and 
Shihab, 2014). 

Given the need of better ways to deal with 
technical debt, some work have been done on how to 
detect and manage technical debt (Guo and Seaman, 
2011; Codabux and Williams, 2013; Nord et al,  
2012). The studies have proposed ways of detecting 
technical debts through manual or automatic 
analysis of project artifacts, mainly source code. 
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Some studies extracted metrics from the code to 
obtain indications of possible irregularities that may 
point to technical debt (Marinescu, 2012). Another 
important contribution was the definition of various 
types of technical debt. Some of them are: design 
debt, requirement debt, defect debt, documentation 
debt and test debt (Alves et al, 2014). 

Potdar and Shihab (2014) have shown that 
technical debt can be found by analyzing comments 
in source code. In this case, the technical debts 
found in the comments are SATDs because the 
developers explicitly indicate that parts of the code 
needs changes. Comments may indicate that the 
code is not complete, does not meet the 
requirements, needs refactoring or even needs to be 
completely redone. It has also been found that the 
most common types of SATDs are design and 
requirement ones (Maldonado and Shihab, 2015). 

Detecting technical debts in comments has some 
advantages over the source code approach 
(Maldonado, Shihab, and Tsantalis, 2017). 
Extracting comments is a simple task, which can be 
done using even a regular expression. When we use 
source code it is often necessary to assemble 
complex structures with high computational cost. 
Also, in cases of detection from code smells, it is 
necessary to set thresholds for the metrics been used, 
a problem that is still being researched. 

Despite the potential in detecting technical debt 
in comments, the manual process is problematic. In 
projects with thousands of comments, it becomes 
virtually impossible for developers to look into 
comments and classify whether that comment refers 
to a type of technical debt or not. In this way, an 
automatic process for detecting SATDs in comments 
is necessary. 

Some approaches to automatic detect technical 
debt in comments have been proposed recently. 
Maldonado, Shihab, and Tsantalis (2017) proposed 
an approach that uses natural language processing 
(NLP) and a maximum entropy classifier. 
Wattanakriengkrai et al (2018) proposed a 
combination of N-gram IDF and auto-sklearn 
classifier for detection of SATDs. Both studies 
obtained good results, and the approach from 
Wattanakriengkrai et al. presented an improvement 
over the maximum entropy classifier. In both cases, 
these work mainly used design and requirement 
SATDs for training and testing their models, in 
addition they made available their dataset so that 
other researchers can evaluate other classifiers. 

Currently, deep learning neural networks have 
shown impressive results in classification tasks such 
as image recognition, speech, and text classification 

(Lecun, Bengio, and Hinton, 2015). Long Short-
Term Memory (LSTM) neural networks presented 
better results than traditional techniques in text 
classification and sentiment analysis (Zhou et al, 
2015; Zhou et al, 2016). The ability to capture 
temporal and sequential information makes 
Recurrent Neural Networks (RNN) and LSTMs 
ideal for text classification tasks (Zhou et al, 2015). 

For text classification, one of the best ways to 
process text data is through word embedding 
(Mikolov et al, 2015). Mikolov et al (2015) propose 
a method called Word2vec that can transform a great 
amount of text in numerical vectors. A neural 
network can use these numerical vector as input 
instead of other word representation with no 
contextual information. 

Therefore, based on the results of Maldonado, 
Shihab, and Tsantalis, (2017) and Wattanakriengkrai 
et al (2018), in this paper we evaluate a LSTM 
neural network model and Word2vec to identify 
design and requirement SATDs from comments in 
source code. First we train a LSTM neural network 
with and without Word2vec using the dataset made 
available by Maldonado and Shihab (2015). Then 
we apply the training model to classify a test set. 
The validation process was carried out using 10 
projects from the dataset through a leave-one-out 
cross-project validation process. Finally, the results 
were compared to Maldonado, Shihab, and 
Tsantalis, (2017) and Wattanakriengkrai et al 
(2018), to evaluate the performance of the LSTM 
network.  

The results showed that the LSTM model with 
Word2vec have improved in recall and f-measure in 
design SATD classification. The LSTM model 
without word embedding achieve greater recall, but 
perform worse in precision and f-measure. In 
requirement classification, Wattanakriengkrai et al 
(2018) model precision was greater than any LSTM 
model, however, the f-measure was similar to that of 
the LSTM with Word2vec, from the statistical 
significance point of view. This may have occurred 
because the database is imbalanced, having more 
comments without SATDs and little amount of 
training data in the requirement SATDs. Recall may 
be more important than precision depending on the 
problem being discussed (Hand and Christen, 2018). 
Someone may accept a slightly higher rate of false 
positives to get more true positives, if the trade-off is 
considered interesting. 

The rest of this paper is organized as follows. In 
Section 2, we discuss works related to LSTM and 
detection of SATDs. Section 3 presents the 
evaluation methodology, the dataset, and a 
introduction to LSTM and word embedding. Then, 
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in Section 4, we discussed the planning and 
execution of the experiment. The results of the 
experiment are presented and discussed in Section 5 
as well as the threats to validity. Finally, in Section 
6, we present the conclusions of the paper and some 
possible extensions that can be researched in future 
works. 

2 RELATED WORKS 

In our work we use an LSTM neural network to 
classify SATDs in source code comments. There are 
related papers that talk about both LSTM in text 
classification tasks and technical debt detection in 
source code comments, especially self-admitted 
technical debts. 

Zhou et al (2015) propose a combination of 
LSTM neural networks and Convolutional neural 
networks (CNN) to perform text classification and 
sentence representation. CNN is able to extract high-
level information from sentences, forming a 
sequence of phrases representations, and then feeds 
an LSTM to obtain the representation of the 
complete sentence. This approach is particularly 
suitable for text classification because the model can 
learn local and global representation of the features 
in the convolutional layer and temporal 
representation in the LSTM layer. 

The detection of SATDs has been the subject of 
some research using mainly natural language 
processing. Potdar and Shihab (2014) extracted 62 
comment patterns from projects that can indicate 
SATDs. They found that technical debt exists in 
2.4% to 31% of the files. In most cases, the more 
experienced developers tend to introduce comments 
in the code that self-admit a technical debt. Finally, 
their work presented that only 26.3% to 63.5% of 
SATDs are resolved in the project.  

Maldonado, Shihab, and Tsantalis (2017) 
proposed an approach to detect SATDs using natural 
language processing (NLP) and a maximum entropy 
classifier. In this work, only design and requirement 
SATDs were analyzed because they are the most 
common and all the researched projects contains this 
type of SATDs. They build a dataset of manually 
labelled comments from 10 projects: Ant, 
ArgoUML, Columba, EMF, Hibernate, JEdit, 
JFreeChart, JMeter, JRuby and SQuirrel SQL. The 
results show that the approach presented better 
results compared to the model that uses comments 
patterns. Words related to sloppy or mediocre code 
tend to indicate SATD design, whereas comments 

with words about something incomplete show 
indications of requirement SATD. 

Wattanakriengkrai et al. (2018) also worked with 
design and requirement SATD. They proposed a 
model that combines N-gram IDF and the auto-
sklearn machine learning library and compared the 
results with Maldonado, Shihab, and Tsantalis 
(2017). The results show that they outperformed the 
previous model, improving the performance over to 
20% in the detection of requirement SATD and 64% 
in design SATD. 

Two studies used mining techniques to classify 
SATDs (Huang et al, 2018; Liu et al, 2018).  The 
first work proposed a model that uses feature 
selection to find the best features for training and 
uses these features in a model that combines several 
classifiers. The second one introduces a plugin for 
Eclipse to detect SATDs in Java source code 
comments. From this tool, the developer can use the 
model integrated to the plugin or another model for 
the detection of SATDs. The plugin can find, list, 
highlight and manage technical debts within the 
project. 

Based on the studies of Maldonado, Shihab, and 
Tsantalis, (2017) and Wattanakriengkrai et al 
(2018), in our work we propose to evaluate an 
LSTM model with and without Word2vec and 
compare with the results obtained by these 
approaches. We think that an LSTM neural network 
can achieve better results in this type of 
classification task, based on previous work reports 
on text classification and LSTM (Huang et al, 2018; 
Young et al, 2018). 

3 METHODOLOGY 

The main objective of this work is to evaluate an 
LSTM model with Word2vec for detection of design 
and requirement SATDs in source code comments. 
The first step of the work is to load and clean a 
dataset of SATDs so that they can be properly used 
by the LSTM model. After cleaning the dataset, we 
trained the Word2vec and the LSTM network. We 
classify the test set using the trained model. To 
perform this procedure, a controlled experiment was 
defined and executed. This experiment is detailed in 
Section 4. 

Experimentation is a task that requires rigorous 
planning with well-defined steps (Wohlin et al, 
2012). We have to elaborate planning, execution and 
analysis of the data. From this, it is possible to apply 
a statistical treatment of the data, with hypothesis 
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Table 1: Total number of comments by type of project and  technical debt. 

 Defect Test Documentation Design Requirement No Technical Debt Total 
Ant 13 10 0 95 13 3967 4098 

ArgoUML 127 44 30 801 411 8039 9452 
Columba 13 6 16 126 43 6264 6468 

EMF 8 2 0 78 16 4286 4390 
Hibernate 52 0 1 355 64 2496 2968 

JEdit 43 3 0 196 14 10066 10322 
JFreeChart 9 1 0 184 15 4199 4408 

JMeter 22 12 3 316 21 7683 8057 
JRuby 161 6 2 343 21 4275 4897 
Squirel 24 1 2 209 50 6929 7215 
Total 472 85 54 2703 757 58204 62275 

 

tests, so that it can be replicated by others and 
produce reliable information. 

3.1 Self-admitted Technical Debt 
Dataset 

One of the main contributions of Maldonado and 
Shihab (2015) was to build and make available a 
dataset of SATDs so that other researchers analyze 
and test their models. The dataset was created by 
extracting comments from 10 open source software 
projects. The selected projects were: Ant, 
ArgoUML, Columba, EMF, Hibernate, JEdit, 
JFreeChart, JMeter, JRuby and SQuirrel SQL. The 
criterion used for this selection was that the projects 
should be from different application domains and 
had a large amount of comments that can be used for 
classification and analysis of technical debt. 

After extracting comments from the projects, the 
researchers labelled each comment manually with 
some type of technical debt. The classification was 
made based on the work of Alves et al. (2014), who 
presented an ontology of terms that can be applied to 
define types of technical debt. The types defined 
were: architecture, build, code, defect, design, 
documentation, infrastructure, people, process, 
requirement, service, test automation and test debt. 
Not all types were used during the labelling process 
because some of them were not found in code 
comments. They found technical debt comments of 
the following types: design debt, defect debt, 
documentation debt, requirement debt and test debt. 
Table 1 shows the number of SATDs by type and 
project.  This process resulted in the classification of 
62275 comments, being 4071 comments of technical 
debt of different types and 58204 comments that 
indicate no technical deb. 

The most common types of SATDs found were 
design (2703 comments) and requirement SATDs 
(472 comments). The two types have some 

distinctions which are explained and exemplified 
below. 

Self-admitted design debts are characterized by 
comments that talk about issues in the way that the 
code was implemented. The comments usually 
indicate that the code is poorly constructed and that 
they need modifications to improve its quality. 
Modifications can be made through refactoring 
process or even redoing the code from the 
beginning. Some examples of comments that contain 
design SATDs are: 

1. check first that it is not already loaded 
otherwise  consecutive runs seems to end into an 
OutOfMemoryError    or it fails when there is a 
native library to load    several times this is far 
from being perfect but should work in most cases 
(from Ant project);     
2. this is wrongly called with a null handle, as a 
workaround we return an empty collection (from 
ArgoUML project). 

In the first comment, the developer explains 
some troublesome code, but that works most of the 
time. In addition to explaining the code problem, it 
is obvious to the reader that this must be solved to 
prevent the program from throwing exceptions. The 
second example shows a comment stating that code 
has a workaround to solve a problem. Words like 
workaround, stupid and needed? are good 
candidates to identify comments with SATDs design 
(Maldonado and Shihab, 2015). 

Self-admitted requirement debts are found in 
comments that talk about incomplete code that do 
not fully meet some requirement. Some examples 
are:  

1. TODO: Why aren't we throwing an exception 
here?  Returning null results in NPE and no 
explanation why. (from ArgoUML project);     
2. Have we reached the reporting boundary?Need 
to allow for a margin of error, otherwise can miss 
the slot. Also need to check we've not hit the 
window already (from jMeter project)  
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In both cases, the developers explain in the 
comments that the code needs to be completed and 
question specific points that are missing in the code.  

3.2 Long Short-term Memory Neural 
Network 

LSTM was initially proposed by Hochreiter and 
Schmidhuber (1997) to solve the problem of long 
sequences by a recurring neural network.  In the 
original approach, updating the weights, which is 
done by a variation of the Backpropagation 
algorithm, called Backpropagation Through Time,  
is affected when the level of recurrence is high, 
which makes it impossible for the network to 
memorize long sequences.  

Its architecture consists of a set of subnets 
connected repeatedly, called the memory block, 
located in the hidden layer. This block contains 
memories cells with auto connections capable of 
storing the temporal state of the network, in addition 
to special units, called gates, which are responsible 
for controlling the flow of information, as shown in 
Figure 1. Each block consists of one or more 
memory cells connected with three gates: forget (Eq. 
1), input (Eq. 2) e output (Eq. 3). Each gate has a 
function that allows you to reset, write and read the 
operations inside the memory block. Each gate uses 
a sigmoid logistic function (ߪ) to flatten the values 
of these vectors between 0 (closed gate) and 1 (open 
gate). 
The forget gate defines whether previous state 
activation will be used in memory. The input gate 
defines how much of the new state calculated for the 
current input will be used, and finally, the output 
gate defines whether the internal state will be 
exposed to the rest of the network (external 
network). Then a hyperbolic tangent layer creates a 
vector of new candidate value ܥሚ௧ (Eq. 4) that can be 
added in the cell. 

 

Figure 1: LSTM memory block. 

௧ܥ  is the internal memory unit, which is a 
combination of the previous memory ܥ௧ିଵ 
multiplied by the forget gate and the candidate 
values ܥሚ௧  multiplied by the input gate (Eq. 5). 
Intuitively, one realizes that memory is a 
combination of memory in the previous time with 
the new one in the current time. 

 

௧݂ ൌ ൫ߪ ௫ܹ௙ ∗ ௧ݔ ൅ ௛ܹ௙ ∗ ݄௧ିଵ ൅	 ௖ܹ௙ ∗ ܿ௧ିଵ
൅ ௙ܾ൯  

(1)

݅௧ ൌ ሺߪ ௫ܹ௜ ∗ ௧ݔ ൅ ௛ܹ௜ ∗ ݄௧ିଵ ൅	 ௖ܹ௜ ∗ ܿ௧ିଵ
൅ ܾ௜ሻ 

(2)

௧݋ ൌ ሺߪ ௫ܹ௢ ∗ ௧ݔ ൅ ௛ܹ௢ ∗ ݄௧ିଵ ൅	 ௖ܹ௢ ∗ ܿ௧
൅ ܾ௢ሻ 

(3)

ሚ௧ܥ ൌ ሺ݄݊ܽݐ ௫ܹ௖ ∗ ௧ݔ ൅ ௛ܹ௖ ∗ ݄௧ିଵ ൅	ܾ௖ሻ (4)

௧ܥ ൌ ௧݂ ∗ ௧ିଵܥ ൅ ݅௧ ∗ ሚ௧ (5)ܥ
 

Given this memory ܥ௧ , it is finally possible to 
calculate the output of the hidden state ݄௧  by 
multiplying the memory activations with the output 
gate  (Eq. 6).  

 
݄௧ ൌ ௧݋ ∗  (6)	௧ሻܥሺ݄݊ܽݐ

 

The variables ݅௧ , ௧݂ ௧݋ , , ܿ௧ , and ݄௧  are vectors 
representing values in time  ݐ.  ∗ܹ  are matrices of 
weight connected to different gates, and ܾ∗ are the 
vectors that correspond to bias. 

3.3 Word Embedding 

Word Embeddings are methods that transform a 
sequence of words into a low-dimensional numerical 
representation. In this way, it is possible to model a 
language or extract features from it to use as input in 
machine learning algorithms and other natural 
language processing activities. One of the most 
famous methods of word embedding was proposed 
by Mikolov et al (2015) and is called Word2vec.  

Word2vec is a model based on neural networks 
that can process a large amount of text to and store 
context information of words. Finally, Word2vec 
returns a vector space with information for each 
word. For text classification, we can use Word2vec 
in the text pre-processing step. 

4 EXPERIMENT 

We follow a experimental process to evaluate our 
LSTM model results based on Wohlin's guidelines 
(Wohlin et al, 2012). In this section, we will discuss 
planning and execution of the experiment.  
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4.1 Goal Objective 

The objective of this study is to evaluate, through a 
controlled experiment, the efficiency of the LSTM 
neural network with Word2vec in design and 
requirement SATDs classification in source code 
comments. The experiment was done by using a 
dataset build by Maldonado and Shihab (2015) to 
train the LSTM model and we compare the results to 
those from the studies of Maldonado, Shihab, and 
Tsantalis, (2017) and Wattanakriengkrai et al, 
(2018). Wattanakriengkrai et al. (2018) combined N-
gram IDF and auto-sklearn, and Maldonado, Shihab, 
and Tsantalis, (2017) used maximum entropy 
classifier. 

The objective was formalized using the GQM 
model proposed by Basili and Weiss (1984): 
Analyze the LSTM neural network with Word2vec, 
with the purpose of evaluating it (against results of 
algorithms evaluated in previous works), with 
respect to recall, precision and f-measure, from the 
viewpoint of developers and researchers, in the 
context of detecting design and requirement self-
admitted technical debts in open source projects. 

4.2 Planning 

Context Selection: We selected the dataset 
discussed in Section 3.1 for the classification of 
SATDs. Just as in previews works, use only design 
and requirement SATDs to train the Word2vec 
model, and train and test the LSTM model. The 
model was validated using a leave one-out cross-
project validation approach to two dataset groups. 
We trained the models using 9 of the 10 projects and 
tested on the remaining one. This procedure is 
repeated 10 times so that each project can be tested 
with the trained model. 
Hypothesis Formulation: To reach the proposed 
goal, we define the following research question: Is 
the LSTM neural network with Word2vec better 
than previous works in terms of recall, precision, F-
measure? 

The following hypothesis was defined for each 
proposed metric, ݄଴: the algorithms have the same 
metric mean (Eq. 7) and ݄ଵ : the algorithms have 
distinct metric means (Eq. 8). Note that ݄଴  is the 
hypothesis that we want to refute. 

 
ሻܿ݅ݎݐଵሺ݉݁ߤ ൌ  (7)	ሻܿ݅ݎݐଶሺ݉݁ߤ

 
ሻܿ݅ݎݐଵሺ݉݁ߤ ്  (8)		ሻܿ݅ݎݐଶሺ݉݁ߤ

 

 

Selection of Participants: We divided the dataset 
into two groups, the first (60,907 code comments) 
having comments with design SATDs and 
comments without any SATDs, and the second 
(58,961 code comments) with comments with 
requirement SATDs and comments without SATDs. 
Experiment Project: The experiment project refers 
to the following stages: Preparation of the 
development environment, it means downloading 
and installation of all the items described in 
instrumentation. Subsequently, we implement and 
trained the model with the dataset. Finally, we run 
the experiments and perform statistical tests for the 
assessment of the defined hypotheses. 
Independent Variables: The LSTM neural 
network, Word2vec model and the dataset. 
Dependent Variables: Predictions made by the 
model, represented by:  precision (Eq. 9), recall (Eq. 
10) and f-measure (Eq. 11). True positives (TP) are 
cases in which the classifier correctly identifies a 
SATD comment and true negative (TN) corresponds 
to the correct classification of a comment without 
SATD. If the model classifies a SATD comment as 
without SATD, it is a case of false negative (FN), 
and the case of false positive (FP) is when the model 
classifies a comment without SATD as a SATD 
comment. 

 

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
		 (9)

 

݈݈ܽܿ݁ݎ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
	 (10)

 

݁ݎݑݏ݂ܽ݁݉ ൌ
2 ൈ ݊݋݅ݏ݅ܿ݁ݎ݌ ൈ ݈݈ܽܿ݁ݎ
݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ݈݈ܽܿ݁ݎ

 
(11)

 

Instrumentation: The instrumentation process 
started with the environment configuration for the 
achievement of the controlled experiment; data 
collection planning; and the development and 
execution of the assessed algorithms. The used 
materials/resources were: Keras (Fraçois et al, 
2015), Scikit-learn (Pedregosa et al, 2011), Gensim 
(Rehurek and Sojka, 2010), and a computer with 
Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz, 16 
GB RAM - 64 bits. The preparation of the test 
environment was done by downloading and 
installing all the mentioned libraries. 

4.3 Execution 

After all preparation, the experiment was performed. 
First, the dataset was loaded and a cleanup process 
was performed. Some special characters and 
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numbers were eliminated so as not to confuse the 
training process and to improve the quality of the 
features. Then the data was submitted to the training 
model. At the end, leave-one-out cross-project 
validation was carried out on the 10 projects. 

4.4 Data Validation  

We used two statistical tests to validate our results: 
Student's t-test and Shapiro-Wilk test. Student's t-
test is used to determine if the difference between 
two means is statistically significant. For this, it is 
necessary that the distribution of samples is normal. 
Normality is tested using Shapiro-Wilk. 

5 RESULTS 

After performing the training and testing of the 
LSTM model, the results of the classification were 
obtained through the leave-one-out cross-project 
validation process. Table 2 and 3 present the results 

achieved for each project and metric in the design 
classification SATDs and requirement SATDs 
respectively. We use the abbreviations for precision 
(Pr), recall (Rc), and f-measure (F1) because of the 
little space available in the table. The best result for 
each metric is highlighted in bold. 
The results show that without pre-processing with 
Word2vec, LSTM has higher recall than Auto-
sklearn (AS) and Maximum Entropy (ME), but loses 
in precision and f-measure. When pre-processing 
with Word2vec is applied, we have a significant 
improvement in precision, and consequently in the f-
measure. The model without word embedding 
showed a 56% improvement in recall compared to 
Auto-sklearn and Maximum Entropy in the design 
SATD classification. With the application of 
Word2vec, the improvement in recall was 
approximately 36% in both cases. Despite having a 
lower recall, when we apply a pre-processing  
with word embedding, the precision of the  
LSTM network increases by approximately 135%. 
For design SATD, the Auto-sklearn classifier from 

Table 2: Comparison of the metrics obtained in the design SATD classifications. 

 LSTM + word2vec LSTM Auto-sklearn Maximum entropy 

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1 

Ant 0.621 0.608 0.614 0.228 0.821 0.357 0.676 0.301 0.360 0.554 0.484 0.517 
ArgoUML 0.940 0.798 0.863 0.443 0.963 0.607 0.784 0.703 0.741 0.788 0.843 0.814 
Columba 0.658 0.813 0.728 0.148 0.952 0.256 0.765 0.940 0.842 0.792 0.484 0.601 

EMF 0.346 0.613 0.442 0.069 0.910 0.129 0.802 0.501 0.604 0.574 0.397 0.470 
Hibernate 0.735 0.912 0.814 0.467 0.873 0.609 0.833 0.450 0.583 0.877 0.645 0.744 

JEdit 0.316 0.837 0.459 0.214 0.744 0.333 0.943 0.701 0.810 0.779 0.378 0.509 
JFreeChart 0.418 0.733 0.532 0.277 0.885 0.422 0.872 0.250 0.390 0.646 0.397 0.492 

JMeter 0.734 0.859 0.791 0.233 0.854 0.367 0.706 0.420 0.530 0.808 0.668 0.731 
JRuby 0.845 0.838 0.841 0.362 0.932 0.522 0.856 0.750 0.801 0.798 0.770 0.784 

Squirrel 0.545 0.708 0.616 0.192 0.894 0.317 0.903 0.630 0.740 0.544 0.536 0.540 
Average 0.616 0.772 0.670 0.263 0.882 0.391 0.814 0.564 0.640 0.716 0.560 0.620 

Table 3: Comparison of the metrics obtained in the requirement SATD classifications. 

 LSTM + word2vec LSTM Auto-sklearn Maximum entropy 

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1 

Ant 0.230 0.500 0.315 0.013 0.692 0.026 0.650 0.136 0.226 0.154 0.154 0.154 
ArgoUML 0.839 0.683 0.753 0.388 0.854 0.533 0.779 0.762 0.771 0.663 0.540 0.595 
Columba 0.860 0.755 0.804 0.107 1.000 0.194 0.781 0.935 0.851 0.755 0.860 0.804 

EMF 0.375 0.750 0.500 0.015 0.562 0.030 0.826 0.682 0.747 0.800 0.250 0.381 
Hibernate 0.765 0.765 0.765 0.165 0.921 0.281 0.809 0.435 0.566 0.610 0.391 0.476 

JEdit 0.571 0.666 0.615 0.014 0.785 0.028 0.937 0.715 0.811 0.125 0.071 0.091 
JFreeChart 0.800 0.266 0.400 0.064 0.800 0.118 0.846 0.280 0.421 0.220 0.600 0.321 

JMeter 0.619 0.565 0.590 0.029 0.952 0.057 0.693 0.418 0.522 0.153 0.524 0.237 
JRuby 0.572 0.900 0.700 0.296 0.763 0.427 0.859 0.749 0.800 0.686 0.318 0.435 

Squirrel 0.780 0.513 0.619 0.060 0.760 0.112 0.848 0.535 0.656 0.657 0.460 0.541 
Average 0.414 0.636 0.606 0.115 0.809 0.180 0.803 0.565 0.637 0.482 0.416 0.403 
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Wattanakriengkrai et al. (2018) obtained the best 
results in precision. 

The good results achieved in the SATD design 
classification were not maintained in the SATD 
requirement classification. The SATD requirement 
dataset has a lower number of positive cases, which 
makes it difficult to train the LSTM network. In this 
case, the f-measure results were statistically 
compatible between the LSTM and Auto-sklearn 
models. The Auto-sklearn classifier was superior in 
precision, but produced a lower recall than LSTM 
models with and without word embedding. 

Although the LSTM model has a higher average 
recall and f-measure, it was necessary to follow a 
statistical validation to verify if the improvement 
was significant. The next step was to perform the 
Shapiro-Wilk test with the set of metrics. The 
Shapiro-Wilk test showed that the distribution of the 
metrics is normal. In this way, we applied the 
Student's t-test for paired samples to verify if the 
difference was statistically significant.  

Table 4, 5, and 6 presents the p-values calculated 
from the average precision, recall and f-measure 
respectively obtained with the classification models 
for design and requirement SATDs detection. As can 
be seen, the improvements in recall and f-measure in 
the design SATD classification and improvement in 
recall in requirement SATD have p-values lower 
than the significance level of 0.05. This indicates 
that only for these cases the improvement was 
statistically significant. The reason for this may be 
related to the lower amount of requirement SATDs 
for training the LSTM network, which shows that 
the LSTM network is dependent on a larger dataset 
for better results. 

Table 4: Results from t-test for average precision. 

LSTM + 
word2vec vs 
Classifiers 

Design  Requirement 
p-

value 
Result 

p-
value 

Result 

Maximum 
entropy 

0.11 Retain ܪ଴ 0.11 Retain ܪ଴ 

Auto-sklearn 0.03 Refute ܪ଴ 0.03 Refute ܪ଴ 
Only LSTM 0.00 Refute ܪ଴ 0.00 Refute ܪ଴ 

Table 5: Results from t-test for average recall. 

LSTM + 
word2vec vs 
Classifiers 

Design Requirement 
p-

value 
Result 

p-
value 

Result 

Maximum 
entropy 

0.00 Refute ܪ଴ 0.05 Refute ܪ଴ 

Auto-sklearn 0.01 Refute ܪ଴ 0.23 Retain ܪ଴ 
Only LSTM 0.01 Refute ܪ଴ 0.03 Refute ܪ଴ 

 

Table 6: Results from t-test for average f-measure. 

LSTM + 
word2vec vs 
Classifiers 

Design  Requirement 
p-

value
Result 

p-
value 

Result 

Maximum 
entropy 

0.01 Refute ܪ଴ 0.00 Refute ܪ଴ 

Auto-sklearn 0.66 Retain ܪ଴ 0.47 Retain ܪ଴ 
Only LSTM 0.00 Refute ܪ଴ 0.00 Refute ܪ଴ 

5.1 Threats to Validity 

There are some aspects of an experiment that define 
the validity of the results achieved during its 
execution. It is ideal that all threats to the validity of 
the experiment are known and that measures are 
taken to have them reduced or eliminated. The 
following are threats found during the planning and 
execution of the experiment: 
1. Construct validity 

a. The implementation of an LSTM neural 
network algorithm must meet the 
theoretical requirements and any changes 
may compromise its results. To ensure that 
a correct implementation of the LSTM 
neural network was evaluated, we used the 
Keras (Fraçois et al, 2015) library that has 
thousands of citations in study 
publications; 

b. A manually annotated dataset may contain 
errors caused by human failure, such as 
incorrect labelling and labelling bias. This 
may compromise classifier performance. In 
this case, we compared the LSTM model 
with other classifiers that used the same 
dataset and followed the same process of 
validation of the experiment. 

6 CONCLUSION AND FUTURE 
WORKS 

In this work, we evaluated a neural network LSTM 
model with Word2vec in the classification of design 
and requirement self-admitted technical debts 
through a controlled experiment. The results were 
compared with two other natural language 
processing approaches: auto-sklearn and maximum 
entropy classifiers. 

At the end of the experiment, it was possible to 
verify that the LSTM model improved the recall and 
f-measure in design SATDs classification and recall 
in requirement SATD. The average f-measure was 
statistically the same as the model with better 
precision, in this case the Auto-sklearn classifiers. 
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Recall may be more important than precision 
depending on the problem being discussed (Hand 
and Christen, 2018). Someone may accept a slightly 
higher rate of false positives to get more true 
positives, if the trade-off is considered interesting. 

The LSTM model without Word2vec has a better 
recall rate but lower precision. Combining 
Word2vec and LSTM brings a great advantage to 
the overall performance.  

In future works, others neural networks and deep 
learning architectures can be evaluated in this 
context. There are results that show that the 
combination of convolutional neural networks and 
LSTM achieve good results in the task of text (Zhou 
et al, 2015). In addition, more in-depth research 
should be done to find ways to reduce the amount of 
false negatives produced by the LSTM model in this 
dataset. Overall, we found that the LSTM model and 
word2vec can outperform other models.  
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