
Long Term-short Memory Neural Networks and Word2vec for
Self-admitted Technical Debt Detection

Rafael Meneses Santos1, Israel Meneses Santos2, Methanias Colaço Rodrigues Júnior2
and Manoel Gomes de Mendonça Neto1

1Graduate Program in Computer Science, Federal University of Bahia, Salvador, Brazil
2Department of Information Systems, Federal University of Sergipe, Itabaiana, Brazil

Keywords: Mining Software Repositories, Self-admitted Technical Debt, Long Short-term Memory, Neural Networks,
Deep Learning, Word Embedding.

Abstract: Context: In software development, new functionalities and bug fixes are required to ensure a better user
experience and to preserve software value for a longer period. Sometimes developers need to implement
quick changes to meet deadlines rather than a better solution that would take longer. These easy choices,
known as Technical Debt, can cause long-term negative impacts because they can bring extra effort to the
team in the future. Technical debts must be managed and detected so that the team can evaluate the best way
to deal with them and avoid more serious problems. One way to detect technical debts is through source
code comments. Developers often insert comments in which they admit that there is a need to improve that
part of the code later. This is known as Self-Admitted Technical Debt (SATD). Objective: Evaluate a Long
short-term memory (LSTM) neural network model combined with Word2vec for word embedding to
identify design and requirement SATDs from comments in source code. Method: We performed a
controlled experiment to evaluate the quality of the model compared with two language models from
literature and LSTM without word embedding in a labelled dataset. Results: The results showed that the
LSTM model with Word2vec have improved in recall and f-measure. The LSTM model without word
embedding achieves greater recall, but perform worse in precision and f-measure. Conclusion: Overall, we
found that the LSTM model and word2vec can outperform other models.

1 INTRODUCTION

On a day-to-day basis, developers must meet
deadlines and ensure that the software is being
developed with quality. The evolution or
maintenance of software is a fundamental step to
guarantee the quality of the product. The software
goes through several modifications that can be
requested by users as improvement or correction of
an error committed during implementation. In some
cases, quick fixes and workarounds must be applied
in order for one or more features to be delivered on
time. When developers opt for these choices, they
can make a trade-off between meeting deadlines and
software quality. These shortcuts tend to have a
negative impact in the long run, so that short-term
gains are obtained. This type of choice is called
technical debt.

The term "technical debt" was defined by Ward
Cunningham. A technical debt is a debt that the

development team takes when it chooses to do
something that is easy to implement to meet a short-
term goal but can have a negative impact in the
future (Cunningham, 1992). When technical debts
are not managed and corrected, they can have
serious long-term consequences, increasing costs
during the maintenance (Seaman and Guo, 2011).
Although there are cases of technical debt occurring
unintentionally, there are situations in which
developers admit that they have produced or found a
technical debt. This type of technical debt is called
self-admitted technical debt (SATD) (Potdar and
Shihab, 2014).

Given the need of better ways to deal with
technical debt, some work have been done on how to
detect and manage technical debt (Guo and Seaman,
2011; Codabux and Williams, 2013; Nord et al,
2012). The studies have proposed ways of detecting
technical debts through manual or automatic
analysis of project artifacts, mainly source code.

Santos, R., Santos, I., Rodrigues Júnior, M. and Neto, M.
Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection.
DOI: 10.5220/0009796001570165
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 157-165
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

157

Some studies extracted metrics from the code to
obtain indications of possible irregularities that may
point to technical debt (Marinescu, 2012). Another
important contribution was the definition of various
types of technical debt. Some of them are: design
debt, requirement debt, defect debt, documentation
debt and test debt (Alves et al, 2014).

Potdar and Shihab (2014) have shown that
technical debt can be found by analyzing comments
in source code. In this case, the technical debts
found in the comments are SATDs because the
developers explicitly indicate that parts of the code
needs changes. Comments may indicate that the
code is not complete, does not meet the
requirements, needs refactoring or even needs to be
completely redone. It has also been found that the
most common types of SATDs are design and
requirement ones (Maldonado and Shihab, 2015).

Detecting technical debts in comments has some
advantages over the source code approach
(Maldonado, Shihab, and Tsantalis, 2017).
Extracting comments is a simple task, which can be
done using even a regular expression. When we use
source code it is often necessary to assemble
complex structures with high computational cost.
Also, in cases of detection from code smells, it is
necessary to set thresholds for the metrics been used,
a problem that is still being researched.

Despite the potential in detecting technical debt
in comments, the manual process is problematic. In
projects with thousands of comments, it becomes
virtually impossible for developers to look into
comments and classify whether that comment refers
to a type of technical debt or not. In this way, an
automatic process for detecting SATDs in comments
is necessary.

Some approaches to automatic detect technical
debt in comments have been proposed recently.
Maldonado, Shihab, and Tsantalis (2017) proposed
an approach that uses natural language processing
(NLP) and a maximum entropy classifier.
Wattanakriengkrai et al (2018) proposed a
combination of N-gram IDF and auto-sklearn
classifier for detection of SATDs. Both studies
obtained good results, and the approach from
Wattanakriengkrai et al. presented an improvement
over the maximum entropy classifier. In both cases,
these work mainly used design and requirement
SATDs for training and testing their models, in
addition they made available their dataset so that
other researchers can evaluate other classifiers.

Currently, deep learning neural networks have
shown impressive results in classification tasks such
as image recognition, speech, and text classification

(Lecun, Bengio, and Hinton, 2015). Long Short-
Term Memory (LSTM) neural networks presented
better results than traditional techniques in text
classification and sentiment analysis (Zhou et al,
2015; Zhou et al, 2016). The ability to capture
temporal and sequential information makes
Recurrent Neural Networks (RNN) and LSTMs
ideal for text classification tasks (Zhou et al, 2015).

For text classification, one of the best ways to
process text data is through word embedding
(Mikolov et al, 2015). Mikolov et al (2015) propose
a method called Word2vec that can transform a great
amount of text in numerical vectors. A neural
network can use these numerical vector as input
instead of other word representation with no
contextual information.

Therefore, based on the results of Maldonado,
Shihab, and Tsantalis, (2017) and Wattanakriengkrai
et al (2018), in this paper we evaluate a LSTM
neural network model and Word2vec to identify
design and requirement SATDs from comments in
source code. First we train a LSTM neural network
with and without Word2vec using the dataset made
available by Maldonado and Shihab (2015). Then
we apply the training model to classify a test set.
The validation process was carried out using 10
projects from the dataset through a leave-one-out
cross-project validation process. Finally, the results
were compared to Maldonado, Shihab, and
Tsantalis, (2017) and Wattanakriengkrai et al
(2018), to evaluate the performance of the LSTM
network.

The results showed that the LSTM model with
Word2vec have improved in recall and f-measure in
design SATD classification. The LSTM model
without word embedding achieve greater recall, but
perform worse in precision and f-measure. In
requirement classification, Wattanakriengkrai et al
(2018) model precision was greater than any LSTM
model, however, the f-measure was similar to that of
the LSTM with Word2vec, from the statistical
significance point of view. This may have occurred
because the database is imbalanced, having more
comments without SATDs and little amount of
training data in the requirement SATDs. Recall may
be more important than precision depending on the
problem being discussed (Hand and Christen, 2018).
Someone may accept a slightly higher rate of false
positives to get more true positives, if the trade-off is
considered interesting.

The rest of this paper is organized as follows. In
Section 2, we discuss works related to LSTM and
detection of SATDs. Section 3 presents the
evaluation methodology, the dataset, and a
introduction to LSTM and word embedding. Then,

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

158

in Section 4, we discussed the planning and
execution of the experiment. The results of the
experiment are presented and discussed in Section 5
as well as the threats to validity. Finally, in Section
6, we present the conclusions of the paper and some
possible extensions that can be researched in future
works.

2 RELATED WORKS

In our work we use an LSTM neural network to
classify SATDs in source code comments. There are
related papers that talk about both LSTM in text
classification tasks and technical debt detection in
source code comments, especially self-admitted
technical debts.

Zhou et al (2015) propose a combination of
LSTM neural networks and Convolutional neural
networks (CNN) to perform text classification and
sentence representation. CNN is able to extract high-
level information from sentences, forming a
sequence of phrases representations, and then feeds
an LSTM to obtain the representation of the
complete sentence. This approach is particularly
suitable for text classification because the model can
learn local and global representation of the features
in the convolutional layer and temporal
representation in the LSTM layer.

The detection of SATDs has been the subject of
some research using mainly natural language
processing. Potdar and Shihab (2014) extracted 62
comment patterns from projects that can indicate
SATDs. They found that technical debt exists in
2.4% to 31% of the files. In most cases, the more
experienced developers tend to introduce comments
in the code that self-admit a technical debt. Finally,
their work presented that only 26.3% to 63.5% of
SATDs are resolved in the project.

Maldonado, Shihab, and Tsantalis (2017)
proposed an approach to detect SATDs using natural
language processing (NLP) and a maximum entropy
classifier. In this work, only design and requirement
SATDs were analyzed because they are the most
common and all the researched projects contains this
type of SATDs. They build a dataset of manually
labelled comments from 10 projects: Ant,
ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby and SQuirrel SQL. The
results show that the approach presented better
results compared to the model that uses comments
patterns. Words related to sloppy or mediocre code
tend to indicate SATD design, whereas comments

with words about something incomplete show
indications of requirement SATD.

Wattanakriengkrai et al. (2018) also worked with
design and requirement SATD. They proposed a
model that combines N-gram IDF and the auto-
sklearn machine learning library and compared the
results with Maldonado, Shihab, and Tsantalis
(2017). The results show that they outperformed the
previous model, improving the performance over to
20% in the detection of requirement SATD and 64%
in design SATD.

Two studies used mining techniques to classify
SATDs (Huang et al, 2018; Liu et al, 2018). The
first work proposed a model that uses feature
selection to find the best features for training and
uses these features in a model that combines several
classifiers. The second one introduces a plugin for
Eclipse to detect SATDs in Java source code
comments. From this tool, the developer can use the
model integrated to the plugin or another model for
the detection of SATDs. The plugin can find, list,
highlight and manage technical debts within the
project.

Based on the studies of Maldonado, Shihab, and
Tsantalis, (2017) and Wattanakriengkrai et al
(2018), in our work we propose to evaluate an
LSTM model with and without Word2vec and
compare with the results obtained by these
approaches. We think that an LSTM neural network
can achieve better results in this type of
classification task, based on previous work reports
on text classification and LSTM (Huang et al, 2018;
Young et al, 2018).

3 METHODOLOGY

The main objective of this work is to evaluate an
LSTM model with Word2vec for detection of design
and requirement SATDs in source code comments.
The first step of the work is to load and clean a
dataset of SATDs so that they can be properly used
by the LSTM model. After cleaning the dataset, we
trained the Word2vec and the LSTM network. We
classify the test set using the trained model. To
perform this procedure, a controlled experiment was
defined and executed. This experiment is detailed in
Section 4.

Experimentation is a task that requires rigorous
planning with well-defined steps (Wohlin et al,
2012). We have to elaborate planning, execution and
analysis of the data. From this, it is possible to apply
a statistical treatment of the data, with hypothesis

Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection

159

Table 1: Total number of comments by type of project and technical debt.

 Defect Test Documentation Design Requirement No Technical Debt Total
Ant 13 10 0 95 13 3967 4098

ArgoUML 127 44 30 801 411 8039 9452
Columba 13 6 16 126 43 6264 6468

EMF 8 2 0 78 16 4286 4390
Hibernate 52 0 1 355 64 2496 2968

JEdit 43 3 0 196 14 10066 10322
JFreeChart 9 1 0 184 15 4199 4408

JMeter 22 12 3 316 21 7683 8057
JRuby 161 6 2 343 21 4275 4897
Squirel 24 1 2 209 50 6929 7215
Total 472 85 54 2703 757 58204 62275

tests, so that it can be replicated by others and
produce reliable information.

3.1 Self-admitted Technical Debt
Dataset

One of the main contributions of Maldonado and
Shihab (2015) was to build and make available a
dataset of SATDs so that other researchers analyze
and test their models. The dataset was created by
extracting comments from 10 open source software
projects. The selected projects were: Ant,
ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby and SQuirrel SQL. The
criterion used for this selection was that the projects
should be from different application domains and
had a large amount of comments that can be used for
classification and analysis of technical debt.

After extracting comments from the projects, the
researchers labelled each comment manually with
some type of technical debt. The classification was
made based on the work of Alves et al. (2014), who
presented an ontology of terms that can be applied to
define types of technical debt. The types defined
were: architecture, build, code, defect, design,
documentation, infrastructure, people, process,
requirement, service, test automation and test debt.
Not all types were used during the labelling process
because some of them were not found in code
comments. They found technical debt comments of
the following types: design debt, defect debt,
documentation debt, requirement debt and test debt.
Table 1 shows the number of SATDs by type and
project. This process resulted in the classification of
62275 comments, being 4071 comments of technical
debt of different types and 58204 comments that
indicate no technical deb.

The most common types of SATDs found were
design (2703 comments) and requirement SATDs
(472 comments). The two types have some

distinctions which are explained and exemplified
below.

Self-admitted design debts are characterized by
comments that talk about issues in the way that the
code was implemented. The comments usually
indicate that the code is poorly constructed and that
they need modifications to improve its quality.
Modifications can be made through refactoring
process or even redoing the code from the
beginning. Some examples of comments that contain
design SATDs are:

1. check first that it is not already loaded
otherwise consecutive runs seems to end into an
OutOfMemoryError or it fails when there is a
native library to load several times this is far
from being perfect but should work in most cases
(from Ant project);
2. this is wrongly called with a null handle, as a
workaround we return an empty collection (from
ArgoUML project).

In the first comment, the developer explains
some troublesome code, but that works most of the
time. In addition to explaining the code problem, it
is obvious to the reader that this must be solved to
prevent the program from throwing exceptions. The
second example shows a comment stating that code
has a workaround to solve a problem. Words like
workaround, stupid and needed? are good
candidates to identify comments with SATDs design
(Maldonado and Shihab, 2015).

Self-admitted requirement debts are found in
comments that talk about incomplete code that do
not fully meet some requirement. Some examples
are:

1. TODO: Why aren't we throwing an exception
here? Returning null results in NPE and no
explanation why. (from ArgoUML project);
2. Have we reached the reporting boundary?Need
to allow for a margin of error, otherwise can miss
the slot. Also need to check we've not hit the
window already (from jMeter project)

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

160

In both cases, the developers explain in the
comments that the code needs to be completed and
question specific points that are missing in the code.

3.2 Long Short-term Memory Neural
Network

LSTM was initially proposed by Hochreiter and
Schmidhuber (1997) to solve the problem of long
sequences by a recurring neural network. In the
original approach, updating the weights, which is
done by a variation of the Backpropagation
algorithm, called Backpropagation Through Time,
is affected when the level of recurrence is high,
which makes it impossible for the network to
memorize long sequences.

Its architecture consists of a set of subnets
connected repeatedly, called the memory block,
located in the hidden layer. This block contains
memories cells with auto connections capable of
storing the temporal state of the network, in addition
to special units, called gates, which are responsible
for controlling the flow of information, as shown in
Figure 1. Each block consists of one or more
memory cells connected with three gates: forget (Eq.
1), input (Eq. 2) e output (Eq. 3). Each gate has a
function that allows you to reset, write and read the
operations inside the memory block. Each gate uses
a sigmoid logistic function (ߪ) to flatten the values
of these vectors between 0 (closed gate) and 1 (open
gate).
The forget gate defines whether previous state
activation will be used in memory. The input gate
defines how much of the new state calculated for the
current input will be used, and finally, the output
gate defines whether the internal state will be
exposed to the rest of the network (external
network). Then a hyperbolic tangent layer creates a
vector of new candidate value ܥሚ௧ (Eq. 4) that can be
added in the cell.

Figure 1: LSTM memory block.

௧ܥ is the internal memory unit, which is a
combination of the previous memory ܥ௧ିଵ
multiplied by the forget gate and the candidate
values ܥሚ௧ multiplied by the input gate (Eq. 5).
Intuitively, one realizes that memory is a
combination of memory in the previous time with
the new one in the current time.

௧݂ ൌ ൫ߪ ௫ܹ௙ ∗ ௧ݔ ൅ ௛ܹ௙ ∗ ݄௧ିଵ ൅	 ௖ܹ௙ ∗ ܿ௧ିଵ
൅ ௙ܾ൯

(1)

݅௧ ൌ ሺߪ ௫ܹ௜ ∗ ௧ݔ ൅ ௛ܹ௜ ∗ ݄௧ିଵ ൅	 ௖ܹ௜ ∗ ܿ௧ିଵ
൅ ܾ௜ሻ

(2)

௧݋ ൌ ሺߪ ௫ܹ௢ ∗ ௧ݔ ൅ ௛ܹ௢ ∗ ݄௧ିଵ ൅	 ௖ܹ௢ ∗ ܿ௧
൅ ܾ௢ሻ

(3)

ሚ௧ܥ ൌ ሺ݄݊ܽݐ ௫ܹ௖ ∗ ௧ݔ ൅ ௛ܹ௖ ∗ ݄௧ିଵ ൅	ܾ௖ሻ (4)

௧ܥ ൌ ௧݂ ∗ ௧ିଵܥ ൅ ݅௧ ∗ ሚ௧ (5)ܥ

Given this memory ܥ௧ , it is finally possible to
calculate the output of the hidden state ݄௧ by
multiplying the memory activations with the output
gate (Eq. 6).

݄௧ ൌ ௧݋ ∗ (6)	௧ሻܥሺ݄݊ܽݐ

The variables ݅௧ , ௧݂ ௧݋ , , ܿ௧ , and ݄௧ are vectors
representing values in time ݐ. ∗ܹ are matrices of
weight connected to different gates, and ܾ∗ are the
vectors that correspond to bias.

3.3 Word Embedding

Word Embeddings are methods that transform a
sequence of words into a low-dimensional numerical
representation. In this way, it is possible to model a
language or extract features from it to use as input in
machine learning algorithms and other natural
language processing activities. One of the most
famous methods of word embedding was proposed
by Mikolov et al (2015) and is called Word2vec.

Word2vec is a model based on neural networks
that can process a large amount of text to and store
context information of words. Finally, Word2vec
returns a vector space with information for each
word. For text classification, we can use Word2vec
in the text pre-processing step.

4 EXPERIMENT

We follow a experimental process to evaluate our
LSTM model results based on Wohlin's guidelines
(Wohlin et al, 2012). In this section, we will discuss
planning and execution of the experiment.

Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection

161

4.1 Goal Objective

The objective of this study is to evaluate, through a
controlled experiment, the efficiency of the LSTM
neural network with Word2vec in design and
requirement SATDs classification in source code
comments. The experiment was done by using a
dataset build by Maldonado and Shihab (2015) to
train the LSTM model and we compare the results to
those from the studies of Maldonado, Shihab, and
Tsantalis, (2017) and Wattanakriengkrai et al,
(2018). Wattanakriengkrai et al. (2018) combined N-
gram IDF and auto-sklearn, and Maldonado, Shihab,
and Tsantalis, (2017) used maximum entropy
classifier.

The objective was formalized using the GQM
model proposed by Basili and Weiss (1984):
Analyze the LSTM neural network with Word2vec,
with the purpose of evaluating it (against results of
algorithms evaluated in previous works), with
respect to recall, precision and f-measure, from the
viewpoint of developers and researchers, in the
context of detecting design and requirement self-
admitted technical debts in open source projects.

4.2 Planning

Context Selection: We selected the dataset
discussed in Section 3.1 for the classification of
SATDs. Just as in previews works, use only design
and requirement SATDs to train the Word2vec
model, and train and test the LSTM model. The
model was validated using a leave one-out cross-
project validation approach to two dataset groups.
We trained the models using 9 of the 10 projects and
tested on the remaining one. This procedure is
repeated 10 times so that each project can be tested
with the trained model.
Hypothesis Formulation: To reach the proposed
goal, we define the following research question: Is
the LSTM neural network with Word2vec better
than previous works in terms of recall, precision, F-
measure?

The following hypothesis was defined for each
proposed metric, ݄଴: the algorithms have the same
metric mean (Eq. 7) and ݄ଵ : the algorithms have
distinct metric means (Eq. 8). Note that ݄଴ is the
hypothesis that we want to refute.

ሻܿ݅ݎݐଵሺ݉݁ߤ ൌ (7)	ሻܿ݅ݎݐଶሺ݉݁ߤ

ሻܿ݅ݎݐଵሺ݉݁ߤ ് (8)		ሻܿ݅ݎݐଶሺ݉݁ߤ

Selection of Participants: We divided the dataset
into two groups, the first (60,907 code comments)
having comments with design SATDs and
comments without any SATDs, and the second
(58,961 code comments) with comments with
requirement SATDs and comments without SATDs.
Experiment Project: The experiment project refers
to the following stages: Preparation of the
development environment, it means downloading
and installation of all the items described in
instrumentation. Subsequently, we implement and
trained the model with the dataset. Finally, we run
the experiments and perform statistical tests for the
assessment of the defined hypotheses.
Independent Variables: The LSTM neural
network, Word2vec model and the dataset.
Dependent Variables: Predictions made by the
model, represented by: precision (Eq. 9), recall (Eq.
10) and f-measure (Eq. 11). True positives (TP) are
cases in which the classifier correctly identifies a
SATD comment and true negative (TN) corresponds
to the correct classification of a comment without
SATD. If the model classifies a SATD comment as
without SATD, it is a case of false negative (FN),
and the case of false positive (FP) is when the model
classifies a comment without SATD as a SATD
comment.

݊݋݅ݏ݅ܿ݁ݎ݌ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
		 (9)

݈݈ܽܿ݁ݎ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
	 (10)

݁ݎݑݏ݂ܽ݁݉ ൌ
2 ൈ ݊݋݅ݏ݅ܿ݁ݎ݌ ൈ ݈݈ܽܿ݁ݎ
݊݋݅ݏ݅ܿ݁ݎ݌ ൅ ݈݈ܽܿ݁ݎ

(11)

Instrumentation: The instrumentation process
started with the environment configuration for the
achievement of the controlled experiment; data
collection planning; and the development and
execution of the assessed algorithms. The used
materials/resources were: Keras (Fraçois et al,
2015), Scikit-learn (Pedregosa et al, 2011), Gensim
(Rehurek and Sojka, 2010), and a computer with
Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz, 16
GB RAM - 64 bits. The preparation of the test
environment was done by downloading and
installing all the mentioned libraries.

4.3 Execution

After all preparation, the experiment was performed.
First, the dataset was loaded and a cleanup process
was performed. Some special characters and

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

162

numbers were eliminated so as not to confuse the
training process and to improve the quality of the
features. Then the data was submitted to the training
model. At the end, leave-one-out cross-project
validation was carried out on the 10 projects.

4.4 Data Validation

We used two statistical tests to validate our results:
Student's t-test and Shapiro-Wilk test. Student's t-
test is used to determine if the difference between
two means is statistically significant. For this, it is
necessary that the distribution of samples is normal.
Normality is tested using Shapiro-Wilk.

5 RESULTS

After performing the training and testing of the
LSTM model, the results of the classification were
obtained through the leave-one-out cross-project
validation process. Table 2 and 3 present the results

achieved for each project and metric in the design
classification SATDs and requirement SATDs
respectively. We use the abbreviations for precision
(Pr), recall (Rc), and f-measure (F1) because of the
little space available in the table. The best result for
each metric is highlighted in bold.
The results show that without pre-processing with
Word2vec, LSTM has higher recall than Auto-
sklearn (AS) and Maximum Entropy (ME), but loses
in precision and f-measure. When pre-processing
with Word2vec is applied, we have a significant
improvement in precision, and consequently in the f-
measure. The model without word embedding
showed a 56% improvement in recall compared to
Auto-sklearn and Maximum Entropy in the design
SATD classification. With the application of
Word2vec, the improvement in recall was
approximately 36% in both cases. Despite having a
lower recall, when we apply a pre-processing
with word embedding, the precision of the
LSTM network increases by approximately 135%.
For design SATD, the Auto-sklearn classifier from

Table 2: Comparison of the metrics obtained in the design SATD classifications.

 LSTM + word2vec LSTM Auto-sklearn Maximum entropy

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Ant 0.621 0.608 0.614 0.228 0.821 0.357 0.676 0.301 0.360 0.554 0.484 0.517
ArgoUML 0.940 0.798 0.863 0.443 0.963 0.607 0.784 0.703 0.741 0.788 0.843 0.814
Columba 0.658 0.813 0.728 0.148 0.952 0.256 0.765 0.940 0.842 0.792 0.484 0.601

EMF 0.346 0.613 0.442 0.069 0.910 0.129 0.802 0.501 0.604 0.574 0.397 0.470
Hibernate 0.735 0.912 0.814 0.467 0.873 0.609 0.833 0.450 0.583 0.877 0.645 0.744

JEdit 0.316 0.837 0.459 0.214 0.744 0.333 0.943 0.701 0.810 0.779 0.378 0.509
JFreeChart 0.418 0.733 0.532 0.277 0.885 0.422 0.872 0.250 0.390 0.646 0.397 0.492

JMeter 0.734 0.859 0.791 0.233 0.854 0.367 0.706 0.420 0.530 0.808 0.668 0.731
JRuby 0.845 0.838 0.841 0.362 0.932 0.522 0.856 0.750 0.801 0.798 0.770 0.784

Squirrel 0.545 0.708 0.616 0.192 0.894 0.317 0.903 0.630 0.740 0.544 0.536 0.540
Average 0.616 0.772 0.670 0.263 0.882 0.391 0.814 0.564 0.640 0.716 0.560 0.620

Table 3: Comparison of the metrics obtained in the requirement SATD classifications.

 LSTM + word2vec LSTM Auto-sklearn Maximum entropy

Pr Rc F1 Pr Rc F1 Pr Rc F1 Pr Rc F1

Ant 0.230 0.500 0.315 0.013 0.692 0.026 0.650 0.136 0.226 0.154 0.154 0.154
ArgoUML 0.839 0.683 0.753 0.388 0.854 0.533 0.779 0.762 0.771 0.663 0.540 0.595
Columba 0.860 0.755 0.804 0.107 1.000 0.194 0.781 0.935 0.851 0.755 0.860 0.804

EMF 0.375 0.750 0.500 0.015 0.562 0.030 0.826 0.682 0.747 0.800 0.250 0.381
Hibernate 0.765 0.765 0.765 0.165 0.921 0.281 0.809 0.435 0.566 0.610 0.391 0.476

JEdit 0.571 0.666 0.615 0.014 0.785 0.028 0.937 0.715 0.811 0.125 0.071 0.091
JFreeChart 0.800 0.266 0.400 0.064 0.800 0.118 0.846 0.280 0.421 0.220 0.600 0.321

JMeter 0.619 0.565 0.590 0.029 0.952 0.057 0.693 0.418 0.522 0.153 0.524 0.237
JRuby 0.572 0.900 0.700 0.296 0.763 0.427 0.859 0.749 0.800 0.686 0.318 0.435

Squirrel 0.780 0.513 0.619 0.060 0.760 0.112 0.848 0.535 0.656 0.657 0.460 0.541
Average 0.414 0.636 0.606 0.115 0.809 0.180 0.803 0.565 0.637 0.482 0.416 0.403

Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection

163

Wattanakriengkrai et al. (2018) obtained the best
results in precision.

The good results achieved in the SATD design
classification were not maintained in the SATD
requirement classification. The SATD requirement
dataset has a lower number of positive cases, which
makes it difficult to train the LSTM network. In this
case, the f-measure results were statistically
compatible between the LSTM and Auto-sklearn
models. The Auto-sklearn classifier was superior in
precision, but produced a lower recall than LSTM
models with and without word embedding.

Although the LSTM model has a higher average
recall and f-measure, it was necessary to follow a
statistical validation to verify if the improvement
was significant. The next step was to perform the
Shapiro-Wilk test with the set of metrics. The
Shapiro-Wilk test showed that the distribution of the
metrics is normal. In this way, we applied the
Student's t-test for paired samples to verify if the
difference was statistically significant.

Table 4, 5, and 6 presents the p-values calculated
from the average precision, recall and f-measure
respectively obtained with the classification models
for design and requirement SATDs detection. As can
be seen, the improvements in recall and f-measure in
the design SATD classification and improvement in
recall in requirement SATD have p-values lower
than the significance level of 0.05. This indicates
that only for these cases the improvement was
statistically significant. The reason for this may be
related to the lower amount of requirement SATDs
for training the LSTM network, which shows that
the LSTM network is dependent on a larger dataset
for better results.

Table 4: Results from t-test for average precision.

LSTM +
word2vec vs
Classifiers

Design Requirement
p-

value
Result

p-
value

Result

Maximum
entropy

0.11 Retain ܪ଴ 0.11 Retain ܪ଴

Auto-sklearn 0.03 Refute ܪ଴ 0.03 Refute ܪ଴
Only LSTM 0.00 Refute ܪ଴ 0.00 Refute ܪ଴

Table 5: Results from t-test for average recall.

LSTM +
word2vec vs
Classifiers

Design Requirement
p-

value
Result

p-
value

Result

Maximum
entropy

0.00 Refute ܪ଴ 0.05 Refute ܪ଴

Auto-sklearn 0.01 Refute ܪ଴ 0.23 Retain ܪ଴
Only LSTM 0.01 Refute ܪ଴ 0.03 Refute ܪ଴

Table 6: Results from t-test for average f-measure.

LSTM +
word2vec vs
Classifiers

Design Requirement
p-

value
Result

p-
value

Result

Maximum
entropy

0.01 Refute ܪ଴ 0.00 Refute ܪ଴

Auto-sklearn 0.66 Retain ܪ଴ 0.47 Retain ܪ଴
Only LSTM 0.00 Refute ܪ଴ 0.00 Refute ܪ଴

5.1 Threats to Validity

There are some aspects of an experiment that define
the validity of the results achieved during its
execution. It is ideal that all threats to the validity of
the experiment are known and that measures are
taken to have them reduced or eliminated. The
following are threats found during the planning and
execution of the experiment:
1. Construct validity

a. The implementation of an LSTM neural
network algorithm must meet the
theoretical requirements and any changes
may compromise its results. To ensure that
a correct implementation of the LSTM
neural network was evaluated, we used the
Keras (Fraçois et al, 2015) library that has
thousands of citations in study
publications;

b. A manually annotated dataset may contain
errors caused by human failure, such as
incorrect labelling and labelling bias. This
may compromise classifier performance. In
this case, we compared the LSTM model
with other classifiers that used the same
dataset and followed the same process of
validation of the experiment.

6 CONCLUSION AND FUTURE
WORKS

In this work, we evaluated a neural network LSTM
model with Word2vec in the classification of design
and requirement self-admitted technical debts
through a controlled experiment. The results were
compared with two other natural language
processing approaches: auto-sklearn and maximum
entropy classifiers.

At the end of the experiment, it was possible to
verify that the LSTM model improved the recall and
f-measure in design SATDs classification and recall
in requirement SATD. The average f-measure was
statistically the same as the model with better
precision, in this case the Auto-sklearn classifiers.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

164

Recall may be more important than precision
depending on the problem being discussed (Hand
and Christen, 2018). Someone may accept a slightly
higher rate of false positives to get more true
positives, if the trade-off is considered interesting.

The LSTM model without Word2vec has a better
recall rate but lower precision. Combining
Word2vec and LSTM brings a great advantage to
the overall performance.

In future works, others neural networks and deep
learning architectures can be evaluated in this
context. There are results that show that the
combination of convolutional neural networks and
LSTM achieve good results in the task of text (Zhou
et al, 2015). In addition, more in-depth research
should be done to find ways to reduce the amount of
false negatives produced by the LSTM model in this
dataset. Overall, we found that the LSTM model and
word2vec can outperform other models.

REFERENCES

Cunningham, W. (1992). The WyCash portfolio
management system. ACM SIGPLAN OOPS
Messenger, 4(2), 29-30.

Seaman, C., & Guo, Y. (2011). Measuring and monitoring
technical debt. In Advances in Computers (Vol. 82,
pp. 25-46). Elsevier.

Potdar, A., & Shihab, E. (2014, September). An
exploratory study on self-admitted technical debt. In
2014 IEEE International Conference on Software
Maintenance and Evolution (pp. 91-100). IEEE.

Guo, Y., & Seaman, C. (2011, May). A portfolio approach
to technical debt management. In Proceedings of the
2nd Workshop on Managing Technical Debt (pp. 31-
34).

Codabux, Z., & Williams, B. (2013, May). Managing
technical debt: An industrial case study. In 2013 4th
International Workshop on Managing Technical Debt
(MTD) (pp. 8-15). IEEE.

Nord, R. L., Ozkaya, I., Kruchten, P., & Gonzalez-Rojas,
M. (2012, August). In search of a metric for managing
architectural technical debt. In 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture (pp.
91-100). IEEE.

Marinescu, R. (2012). Assessing technical debt by
identifying design flaws in software systems. IBM
Journal of Research and Development, 56(5), 9-1.

Alves, N. S., Ribeiro, L. F., Caires, V., Mendes, T. S., &
Spínola, R. O. (2014, September). Towards an
ontology of terms on technical debt. In 2014 Sixth
International Workshop on Managing Technical Debt
(pp. 1-7). IEEE.

Maldonado, E. D. S., & Shihab, E. (2015, October).
Detecting and quantifying different types of self-

admitted technical debt. In 2015 IEEE 7th
International Workshop on Managing Technical Debt
(MTD) (pp. 9-15). IEEE.

da Silva Maldonado, E., Shihab, E., & Tsantalis, N.
(2017). Using natural language processing to
automatically detect self-admitted technical debt.
IEEE Transactions on Software Engineering, 43(11),
1044-1062.

Wattanakriengkrai, S., Maipradit, R., Hata, H.,
Choetkiertikul, M., Sunetnanta, T., & Matsumoto, K.
(2018, December). Identifying design and requirement
self-admitted technical debt using n-gram idf. In 2018
9th International Workshop on Empirical Software
Engineering in Practice (IWESEP) (pp. 7-12). IEEE.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. nature, 521(7553), 436-444.

Zhou, C., Sun, C., Liu, Z., & Lau, F. (2015). A C-LSTM
neural network for text classification. arXiv preprint
arXiv:1511.08630.

Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B.
(2016). Text classification improved by integrating
bidirectional LSTM with two-dimensional max
pooling. arXiv preprint arXiv:1611.06639.

Hand, D., & Christen, P. (2018). A note on using the F-
measure for evaluating record linkage algorithms.
Statistics and Computing, 28(3), 539-547.

Huang, Q., Shihab, E., Xia, X., Lo, D., & Li, S. (2018).
Identifying self-admitted technical debt in open source
projects using text mining. Empirical Software
Engineering, 23(1), 418-451.

Liu, Z., Huang, Q., Xia, X., Shihab, E., Lo, D., & Li, S.
(2018, May). Satd detector: A text-mining-based self-
admitted technical debt detection tool. In Proceedings
of the 40th International Conference on Software
Engineering: Companion Proceeedings (pp. 9-12).

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018).
Recent trends in deep learning based natural language
processing. ieee Computational intelligenCe magazine,
13(3), 55-75.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,
Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

Basili, V. R., & Weiss, D. M. (1984). A methodology for
collecting valid software engineering data. IEEE
Transactions on software engineering, (6), 728-738.

François, C. et al. (2015). Keras, https://keras.io
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Vanderplas, J. (2011). Scikit-
learn: Machine learning in Python. Journal of machine
learning research, 12(Oct), 2825-2830.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. A.
(2015). U.S. Patent No. 9,037,464. Washington, DC:
U.S. Patent and Trademark Office.

Rehurek, R., & Sojka, P. (2010). Software framework for
topic modelling with large corpora. In In Proceedings
of the LREC 2010 Workshop on New Challenges for
NLP Frameworks.

Long Term-short Memory Neural Networks and Word2vec for Self-admitted Technical Debt Detection

165

