
Modern Federated Database Systems: An Overview

Leonardo Guerreiro Azevedo, Elton Figueiredo de Souza Soares, Renan Souza
and Marcio Ferreira Moreno

IBM Research, Brazil

Keywords: Federated Database, Polyglot Database, Multistore, Polystore, Multidatabase, Heterogeneous Data Stores,
NoSQL, Dbaas, Distributed File System, Data Processing Frameworks.

Abstract: Usually, modern applications manipulate datasets with diverse models, usages, and storages. “One size fits
all” approaches are not sufficient for heterogeneous data, storages, and schemes. The rise of new kinds of data
stores and processing, like NoSQL data stores, distributed file systems, and new data processing frameworks,
brought new possibilities to meet this scenario’s requirements. However, semantic, schema and storage het-
erogeneity, autonomy, and distributed processing are still among the main concerns when building data-driven
applications. This work surveys the literature aiming at giving an overview of the state of the art of modern
federated database systems. It presents the background, characterizes existing tools, depicts guidelines one
should follow when creating solutions, and points out research challenges to consider in future work. This
work gives fundamentals for researchers and practitioners in the area.

1 INTRODUCTION

Several modern applications manipulate diverse
datasets with different models and usages, e.g., med-
ical informatics, intelligent transportation, etc. “One
size fits all” is not effective in such scenarios. The
use of a single database and a unique data model for
all data in different data models may degrade perfor-
mance and executing ETL (Extract-Transform-Load)
processes to load all data in a single database may be
very expensive (Stonebraker et al., 2007). Besides,
manual data curation and maintenance of the ETL
pipelines (due to adaptations caused by, e.g., domain
evolution) are labor-intensive (Tan et al., 2017) (Bon-
diombouy and Valduriez, 2016) (Stonebraker, 2015).

The problem of accessing heterogeneous data
sources has been studied in the context of multi-
database and data integration systems (Kolev et al.,
2016a). Several new data management solutions have
emerged, such as distributed file systems (e.g., GFS1

and HDFS2), NoSQL data stores (e.g., MongoDB,
Allegrograph, Neo4J, Titan, Dynamo, BigTable, Re-
dis) and new data processing frameworks (e.g.,
Spark) as well as hybrid (multimodal, e.g., OrientDB,
ArangoDB, or NewSQL, e.g., Google F1, LeanX-
cale). The RDBMS (Relational Database Manage-

1Google File System.
2Hadoop Distributed File System.

ment System) has been evolved to manage different
kinds of data (e.g., multimedia objects, XML docu-
ments, spatial data), like IBM DB23 which was built
on a standard SQL engine, but it has evolved to be
a hybrid data management system for structured and
unstructured data. Usually, using one single DBMS
results in loss of performance and flexibility for spe-
cific applications. For instance, a column-oriented
DBMS is one order of magnitude better for On-
line Analytical Processing (OLAP) workloads than an
RDBMS (Özsu and Valduriez, 2020), while SDBMS
(Stream Database Management System) is more effi-
cient for stream data, which RDBMS does not even
support (Nayak et al., 2013). Thus, a variety of data-
processing architectures may be required for special-
ized markets (Stonebraker et al., 2007).

Schema, semantic, and data sources heterogene-
ity, autonomy, and distributed processing are still
concerns (Tan et al., 2017). A federated system
arises as a solution. It is a middleware that provides
a seamless interface to heterogeneous data systems
with an independent data model and (perhaps) data
schemes (Stonebraker, 2015).

This work overviews the state-of-the-art of the
new generation federation systems.

It is divided as follows. Section 2 presents the
main concepts. Section 3 characterizes existing tools.

3https://www.ibm.com/analytics/db2

276
Azevedo, L., Soares, E., Souza, R. and Moreno, M.
Modern Federated Database Systems: An Overview.
DOI: 10.5220/0009795402760283
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 1, pages 276-283
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Section 4 presents guidelines and research challenges.
Finally, Section 5 concludes.

2 MAIN CONCEPTS

The shift in the federation database has arisen due
to the storage requirements of modern applications,
which resulted in the development of several distinct
storage technologies to meet specific needs. Now, it is
a requirement for these technologies to work together.
This section overviews the state-of-the-art.

2.1 Storage Solutions

There are three main layers of storage: distributed
storage; database management; and, distributed pro-
cessing (Bondiombouy and Valduriez, 2016).
Distributed Storages. Include files and objects stor-
ages. File storage works on unstructured data (i.e.,
sequences of bytes), organizing them as fixed-length
or variable-length records. The system organizes
files hierarchically, and stores file metadata (e.g., file
name, owner, access permission) separate from con-
tent. For shared-nothing, examples are GFS, HDFS,
and GlusterFS; for shared disk, an example is Global
File System 2 (GFS2). Object storage stores data
as an object which has a unique identifier (oid),
properties and metadata. Examples are Lustre and
XtreemFS. Also, Ceph and Ozone are systems that
combine block and object storage.
NoSQL (Not Only SQL) Systems. Emphasize scal-
ability, fault-tolerance, and availability, sometimes at
the expense of consistency. The main categories are
key-value, wide column, document, and graph, as
well as hybrid (multimodel or NewSQL) (Özsu and
Valduriez, 2020). SolidIT4 presents a comparison of
systems.
Key-value Systems: store data as key-value pairs
where the key identifies the record and the value
is a schemaless data. Their typical operations
are put(key, value), get(key) and delete(key).
Examples are Redis, Dynamo, Memcached, and Riak.
Extended Key-Value systems store records (a set of
key-value pairs) in collections (or domains), e.g., the
domain Customers where each customer has Cus-
tomer Id, first name, last name, etc. Examples are
Amazon SimpleDB and Oracle NoSQL Database.
Wide Column Systems: store data as a table but allow-
ing nested values in a schemaless way where a column
may have column values. Each column has a name, a

4https://db-engines.com/en/ranking

value, and a timestamp (used for versioning). Exam-
ples are Google Bigtable, Apache HBase, Cassandra,
and Accumulo.
Document Systems: are advanced key-value systems
where values are of the document type, such as JSON,
YAML, or XML. It stores records in collections (sim-
ilar to tables). Records in a collection may have
different schemes. Besides simple key-value oper-
ations, document stores offer an API or query lan-
guage. Examples are MongoDB, CouchDB, Couch-
base, RavenDB, and Elasticsearch.
Graph Database Systems: manipulate data as graphs.
Their use has grown to manage data with inherent
graph-like nature, e.g., Web, geographical systems,
transportation, telephones, social and biological net-
works. The graph database model represents schema
and instances as a (labeled)(directed) graph or gener-
alization of the graph structure (e.g., hypergraphs or
hypernodes) and graph integrity constraints (Angles
and Gutierrez, 2008). Data are represented as nodes
and edges (which connect two nodes). E.g., horse
and apple nodes and a likes edge to represent horse
likes apple. Nodes and edges may have properties,
e.g., name and birthday properties for horse and color
for apple. Often, these systems provide query lan-
guages that allow for graph traversals and other typi-
cal graph operations, like breadth and depth search.
Examples are Neo4J, Infinite Graph, Titan, Graph-
Base, Trinity, and Sparksee.
Triplestores: or RDF stores, are the matter of choice
for storing and querying semantic datasets (Hasl-
hofer et al., 2011)(Iancu and Georgescu, 2018), which
are often described using RDF (Resource Description
Framework), a standard model for data interchange.
In RDF, datasets are represented as triples (subject,
predicate, object). That is a value (object) of a prop-
erty (predicate) of a resource (subject) (Zulkefli et al.,
2013). E.g., (LeonardoDaVinci, hasCreated,
TheMonalisa). Each part is represented as a Uniform
Resource Identifier (URI). RDFS (RDF Schema) and
OWL (Web Ontology Language) are RDF serializ-
able vocabularies, commonly used to represent on-
tologies, which define classes and attributes of URIs
and their relationships (Iancu and Georgescu, 2018).
Moreover, triplestores are capable of processing a
large amount of RDF data (Modoni et al., 2014), han-
dling semantic queries and using inference for uncov-
ering new information out of the existing relations.
Examples are AllegroGraph, GraphDB, MarkLogic,
Mulgara, Profium Sense, Blazegraph, Virtuoso, Mar-
motta, Stardog, Apache Jena, RDF4 (former Sesame),
Oracle Database 12c (Iancu and Georgescu, 2018).
Hybrid Data Stores: combines capabilities typically
found in different data stores and DBMS. They

Modern Federated Database Systems: An Overview

277



may be multimodel NoSQL systems, which com-
bines multiple data models (examples are OrientDB,
ArangoDB, and Microsoft Azure Cosmos DB), and
NewSQL DBMSs, which combines the scalability of
NoSQL with the strong consistency and usability of
relational DBMS (examples are Google F1, LeanX-
cale, Apache Ignite, among others). Hybrid Trans-
action and Analytics Processing (HTAP) is a class of
New SQL aiming at performing OLAP and OLTP in
the same data allowing real-time analysis and avoid-
ing ETL processing.
Data Processing Frameworks. Handle a high vol-
ume of data in real-time (Zheng et al., 2015). They
focus on data analysis to increase understanding, pat-
tern discovery, and gain insights. They handle data
in batches, in a continuous stream or both ways (Gu-
rusamy et al., 2017). Typically, those systems support
operators that are automatically parallelized (Bon-
diombouy and Valduriez, 2016). Examples are (Gu-
rusamy et al., 2017): (i) Batch-only: Hadoop MapRe-
duce; (ii) Stream-only: Apache Storm and Apache
Samza; (iii) Hybrid: Apache Spark and Apache Flink.

2.2 Taxonomies

There are two main taxonomies to classify federated
data systems.

Tan et al. proposed a taxonomy of four categories
considering heterogeneity in data stores and query in-
terfaces (Tan et al., 2017):

• Federated Database System. Homogeneous
data stores and single standard query inter-
face. They feature mediator-wrapper architecture
and employ schema-mapping and entity-merging
techniques for data integration. Semantics hetero-
geneity is a challenge. Example: Multibase.

• Polyglot System. Homogeneous data stores and
multiple query interfaces. Different query inter-
faces provide semantics, which significantly sim-
plifies query formulation. Example: Spark SQL
allows access to data in relational and procedural
modes.

• Multistore System. Heterogeneous data stores
and single query interface, categorized as:

– Systems that integrate distributed file systems
with RDBMs, such as HadoopDB, Polybase,
and JEN.

– Systems that integrate NoSQL systems with
RDBMSs, such as BigIntegrator, Forward, and
D4M.

– Systems focused on optimizing data placement
across data stores for query performance, such
as ESTOCADA, Odyssey, and MISO.

– Systems that adopt ontologies and apply
semantic approaches (schema-mapping and
entity-resolution techniques) to mediate rela-
tional and non-relational data sources, such as
TATOOINE and OPTIQUE.

• Polystore System. Heterogeneous data stores
and multiple query interfaces, categorized as:

– Systems focused on query answering, such as:
BigDAWG, Myria and Apache Drill.

– Systems that concentrate on multi-platform
data-flow scheduling and analytics, such as
QoX, Musketeer, and Rheem.

– Systems focused on data ingestion and deriva-
tion with heterogeneous data stores, such as
AWESOME.

Bondiombouy and Valduriez’s classification is based
on the data coupling of the systems (Bondiombouy
and Valduriez, 2016). They base their work in cloud
data stores and call them as multistore. Multistore is a
system that provides integrated access to several data
stores, such as NoSQL, RDBMS, or HDFS, some-
times through a data processing framework. Multi-
stores can be classified as:

• Loosely Coupled System. Autonomous local
data stores accessed by a common language or
by their local language. Examples: BigIntegra-
tor, Forward, and Qox.

• Tightly Coupled System. Local data stores ac-
cessed by the multistore system using a single lan-
guage for querying structured and unstructured
data. They aim at efficient querying for (big) data
analytics and/or self-tuning. Examples: Polybase,
HadoopDB, Estocada, Odyssey, and JEN.

• Hybrid Systems. Some data stores are loosely
coupled, while others are tightly coupled. Exam-
ples: Spark SQL, CloudMdsQL, and BigDAWG.

2.3 Frameworks for Multidatabase
Federation Characterization

Besides the taxonomies, Tan et al. and Bondiom-
bouy and Valduriez proposed frameworks for feder-
ated data systems characterization.

Tan et al. proposed a framework inspired
on (Sheth and Larson, 1990) and composed by
five dimensions: (i) Heterogeneity; (ii) Autonomy;
(iii) Transparency; (iv) Flexibility; (v) Optimality.
Heterogeneity: in data-integration systems, implies
the design intent is threefold: (i) Uniform access and
management of stores’ data; (ii) Advantage of com-
ponent processing engines; (iii) Minimal loss of ex-

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

278



pressiveness of the underlying query interfaces. Het-
erogeneity may be classified in:
1. Data-store Heterogeneity: different modeling

techniques, e.g., column store, key-value stores.
2. Processing-engine Heterogeneity: different pro-

cessing capabilities, e.g., processing engines mod-
eled around relations, arrays, and graphs.

3. Query-interface Heterogeneity: different data
models in query engines, supporting various for-
mal algebras, towards expressiveness in a seman-
tic context, e.g., a system with relational and array
query interface allows expressing simple linear-
algebra operations on relational data.

Autonomy: relates to regulations and constraints:
1. Association Autonomy: local data stores decide

when to associate and dissociate itself from the
federation.

2. Execution Autonomy: local data stores may sup-
port federation and native applications. They de-
cide prioritization when required.

3. Evolution Autonomy: local stores’ databases
evolve independently from the federation, which
has to adapt to the changes.

Transparency: concerns to integration details of
storage and layout:
1. Location Transparency: local stores provide

mechanisms to hide location details.
2. Transformation Transparency: local stores pro-

vide mechanisms to hide details of data types and
structures. Users can focus on logical-level trans-
formations, and the transparent system infers and
map data types, and adjust data structures.

Flexibility: concerns the capacity to manage arbitrary
formats and to support flexible workflows and user-
defined functions.
1. Schema Flexibility: allows user-defined schemata

and dynamic schema discovery, making it possi-
ble to automate transformations.

2. Interface Flexibility: the query interface allows
user-defined functions and extensions instead of
being around a fixed algebra.

3. Architectural Flexibility: provide a modularized
architecture allowing customization to different
scenarios, making possible extending query inter-
face, query optimizer, backend engines, etc.

Optimality: concerns opportunities for optimization
through improvements in data placement and feder-
ated query plan generation.
1. Federated Plan Optimization: federated query

plans for sub-queries or data transformation and
migration to achieve better performance.

2. Data-placement Optimization: place the data in
the best fitting engine using, e.g., rule-based and
cost-based methods.

Tan et al. analyze polystore systems whose de-
sign and implementation emphasize query-processing
and query-answering challenges, such as BigDAWG,
CloudMdsQL, Myria, and Apache Drill.

The framework proposed by Bondiombouy and
Valduriez to compare multistore systems is based on
two dimensions: (i) Functionality: concerns the di-
mensions objective, data model, query language, and
data stores that are supported; (ii) Implementation
Techniques: concern the dimensions special modules,
schema management, query processing, and query
optimization (Bondiombouy and Valduriez, 2016).
Related to Functionality, they point out:
• The major Objective of multistore is the ability to

integrate relational data (stored in RDBMS) with
other kinds of data in different data stores;

• Each multistore supports different kinds of Data
Stores (e.g., RDBMS, NoSQL, BigTable, HDFS,
Array DBMS, DSMS).

• In terms of the Data Model, most systems pro-
vide a relational abstraction. BigIntegrator, Poly-
base, and HadoopDB have relational data mod-
els. Forward and CloudMdsQL are JSON-based.
QoX has a more general graph abstraction to cap-
ture analytic data flows. SparkSQL has a nested
model. BigDAWG and Estocada have no unique
model since they allow access data stores with
their native (or island) languages.

• Considering Query Language, most systems pro-
vide a SQL-like language, like BigIntegrator,
HadoopDB (HiveQL), SparkSQL, CloudMdsQL
(with native subqueries). Polybase uses SQL.
QoX is XML-Based. Estocada and BigDAWG
use native query languages.

Related to Implementation Techniques:
• Special Modules: refine the generic architecture

or bring new functionalities. Examples for the
first are importer, absorber and finalizer, query
processor, query planner. Examples for the sec-
ond are dataflow engine, HDFS bridge, storage
advisor.

• For Schema Management, most multistore man-
age a Global-as-View (GAV) or a Local-as-view
(LAV) 5 global schema approach, which indicates
how the elements of the global schema can be de-
rived, when needed, from the elements of the data

5In LAV, each data source schema is treated as a view defi-
nition of the global schema. In GAV, the global schema is
defined as a set of views over the data source schemes.

Modern Federated Database Systems: An Overview

279



source schemes (Lenzerini, 2002). E.g., QoX, Es-
tocada, SparkSQL, and CloudMdsQL do not sup-
port global schemes, although they provide mech-
anisms to deal with the data stores’ local schemes.

• The Query Processing techniques usually are ex-
tensions of known techniques from distributed
database systems, e.g., data/function shipping,
query decomposition (based on the data stores’
capabilities, bind join, select pushdown).

• The Query Optimizations are usually supported
by a (simple) cost model or heuristics.

3 TOOLS

This section characterizes existing polystore tools.

• BigDAWG (Big Data Analytics Working
Group) (Elmore et al., 2015; Tan et al., 2017).
– Description: Polystore system for large-scale

analytics, real-time streaming support, smaller
analytics at interactive speeds, data visual-
ization, and query processing over multiple
databases. Each storage engine may have a dif-
ferent data model.

– Owner/License: Intel Science and Technology
Center for Big Data (ISTC)6 – BSD-37.

– Goal: data integration with federated archi-
tecture over collections of vertically integrated
database engines.

– Internal Data Representation and Platform
for Data Operations: it employs no internal
data model or intermediate algebra for query
translation and data transformation.

– Context Segregation: BigDAWG separates
data in islands where each island has a data
model, logical structure, query language or al-
gebra, and one or more backend engines for
data storage and query execution, e.g., a rela-
tional island may be composed by PostgreSQL
and MySQL DBMSs.

– Queries Specification: in the scope of the is-
land, e.g., a SQL query to a relational island.

– Query Execution: queries are decomposed in
subqueries executed by the database engines
connected to the island. The queries over more
than one island are expressed using a SCOPE
operator. A CAST operator is used to change
the semantic context in a cross-island query.

6https://bigdawg.mit.edu
7https://github.com/bigdawg-istc/bigdawg/blob/master/
license.txt

– Heterogeneity: handled by wrappers’ (shims).
– Main Components:
∗ Query-planning module (planner/optimizer);
∗ Performance-monitoring module (monitor);
∗ Data-migration module (migrator): moves

data across database engines when needed;
∗ Query-execution module (executor).

– Demonstration: BigDAWG was demonstrated
using MIMIC II (or “Multiparameter Intelli-
gent Monitoring in Intensive Care II”) use case,
which includes the relational, array, stream, and
key-value databases.

• CloudMdsQL (Tan et al., 2017; Kolev et al., 2016a;
Kolev et al., 2016b).
– Definition: CloudMdsQL (Cloud Multidata

store Query Language) is a functional SQL-
like language, designed for querying multiple
heterogeneous databases within a single query
containing nested subqueries. The CloudMd-
sQL technology is now at LeanXcale, in a pro-
prietary product. Only the compiler remains
available for research.

– Owner/License: LeanXcale8 – proprietary.
– Goal: develop a functional SQL-like language

for heterogeneous databases within a single
query containing nested subqueries.

– Highlight: CloudMdsQL exploits local data
stores by allowing part of the query to be
expressed and processed using local native
queries (e.g., a breadth-first search in a graph
database) which can be called as functions, and
at the same time be optimized using a cost
model like pushing down select predicates, us-
ing binding join, performing join order, or plan-
ning intermediate data shipping.

– Internal Data Representation and Platform
for Data Operations: it uses a table-based
common data model that supports other data
types, like arrays and JSON objects to handle
non-flat and nested data with basic operators
over them.

– Context Segregation: by database engines.
– Query Specification: SQL based on embed-

ded functional subqueries written in the native
query languages of the database engines. The
language also addresses distributed processing
frameworks (e.g., Apache Spark), allowing us-
age of user-defined map/filter/reduce operator
as subqueries.

– Query Execution: a subquery is defined as a
named table expression where the user defines

8https://www.leanxcale.com

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

280



the columns and types of the table and expres-
sion in SQL SELECT (which the compiler can
analyze and possibly rewrite) or a native ex-
pression (which is directly delegated to the cor-
responding data store). E.g., two named ta-
ble expressions may query a relational database
and a document store, and be joined to produce
the result. The query compiler decomposes the
query into a query execution plan (QEP) in a
directed acyclic graph of relational operators.
Leaf nodes correspond to subqueries to be exe-
cuted by the wrappers over the data stores.

– Heterogeneity: is handled through a medi-
ator/wrapper architecture and the table-based
common model.

– Main Components:
∗ Query Planner: performs lexical and syntax

analysis besides query rewrite plans;
∗ Capability Manager: validates rewritten sub-

queries against datastore capabilities;
∗ Query Optimizer: uses cost functions and

database statistics in a cost model to select
the best plan. Besides, users may define cost
and selectivity functions. The optimizer may
rewrite the QEP generated by the query com-
piler. CloudMdsQL uses bind join to perform
semi-joins across heterogeneous data stores.

∗ QEP Builder: generates plans and serializes
them in JSON.

∗ Query Execution Controller: parses QEP,
identifies sub-plans, and invokes wrappers.

∗ Finalizer: translates subquery plans into na-
tive queries that can be executed by the en-
gine.

∗ X-Ray (Guimarães and Pereira, 2015): Moni-
tors execution. .

• Myria9 (Tan et al., 2017; Halperin et al., 2014).

– Definition: cloud service for big data manage-
ment and analytics.

– Goal: simplify data upload and data science
tasks with efficient query execution to process
and explore the data.

– Owner/License: the University of Washing-
ton10 – BSD 311.

– Internal Data Representation and Platform
for Data Operations: relational data represen-
tation with a relational-algebra compiler.

9https://myria.cs.washington.edu/
10http://www.washington.edu/
11https://github.com/uwescience/myria/blob/master/

LICENSE

– Context Segregation: in the level of the en-
capsulated data stores.

– Query Specification: in MyriaL, an
imperative-declarative hybrid language, or
via a Python API. It supports user-defined
function (UDP) and user-defined aggregates
(UDA) via an exposed Python API.

– Query Execution: the Relational Algebra
Compiler (RACO) parses queries in Myria al-
gebra and transforms them into the specific API
calls or the query primitives supported by the
local database engines. RACO uses rule-based
optimization to generate federated query plans
that take advantage of the performance charac-
teristics of the supported database engines.

– Main Components:
∗ MariaX: query-execution engine that uses a

parallel, pipelined, possibly cyclic graph of
dataflow operators with built-in support for
asynchronous evaluation of recursive queries.

∗ RACO: query optimizer and federated query
executor that uses relational algebra extended
with imperative constructs capturing the se-
mantics of array, graph, and key-value data
models.

• Apache Drill (Tan et al., 2017; Hausenblas and
Nadeau, 2013).
– Definition: distributed, massively parallel

query engine.
– Owner/License: the Apache Software Founda-

tion12 – Apache License13.
– Goal: answer fast to ad-hoc queries over a

huge amount of unstructured and weakly struc-
tured data spread across servers.

– Internal Data Representation and Plat-
form for Data Operations: JSON-based data
model.

– Context Segregation: in the level of the en-
capsulated data stores.

– Query Specification: supports ANSI SQL and
MongoDB QL, and user-defined functions.

– Query Execution: queries are parsed and
transformed into a logical plan, which is trans-
formed and optimized into a physical plan.

– Main Components:
∗ Drillbit: daemon service running cluster

nodes aiming at maximizing data locality.
∗ Zookeeper: broker between the clients and

Drillbits, and among Drillbits.
12https://drill.apache.org/
13https://drill.apache.org/apacheASF/

Modern Federated Database Systems: An Overview

281



4 REQUIREMENTS AND
RESEARCH CHALLENGES

The modern federated database system main require-
ments are:

• Location and Data Sources Encapsulation (El-
more et al., 2015): Provide a smooth interface
to free programmers from having to learn several
query languages and store engines.

• The Deployment: should support cloud prac-
tices (Halperin et al., 2014) complexity and cost
of installation, administration, and maintenance
should not be prohibitive; mechanisms for pre-
dicting and debugging performance, as well as
controlling costs, should be available.

• Query Language (Kolev et al., 2016b): should
work on heterogeneous data stores; support arbi-
trary chain of queries, i.e., a query result in one
database be input for a query in another database;
be schema independent, i.e., allow the integration
of databases with or without schema; allow data-
metadata transformation, e.g., convert attributes
or relations into data and vice-versa.

• Query Tools: should support users and algo-
rithm designers with an easy-to-use set of inter-
faces, languages, and APIs that scale from sim-
ple SPJ (Select-Project-Join) queries to advanced
application-specific ones (Halperin et al., 2014).

• Processing (Halperin et al., 2014): should be effi-
cient and support: scale queries and optimization
combining state-of-the-art and novel techniques,
e.g., use of bind joins, semi-joins, core parallel
query processing concepts.

• Real-time Decision Support (Elmore et al.,
2015): through stream processing able to connect
historical and stream data.

• Visualization Tools (Elmore et al., 2015): sup-
porting disparate data models and new user in-
teraction mechanisms. E.g., big data application
visualization should support questions like “give
me something interesting from data” in an ex-
ploratory way.

• Shuffle Data among Backends (Elmore et al.,
2015): i.e., supporting moving data and interme-
diate results from one storage to another as needed
to fit a user’s query and high performance. E.g.,
each engine may know how to read binary data
in parallel directly from another engine (Elmore
et al., 2015). Using a monitoring system that
learns types of queries, and move data accord-
ingly, i.e., it transfers the data to the engine that
has the best data model to answer the query.

• Cross-system Solution (Elmore et al., 2015):
able to include other polystores.

The research challenges are (Stonebraker, 2015)(Bon-
diombouy and Valduriez, 2016)(Elmore et al., 2015):

• Query Language: easy to use query language
with efficient processing over diverse stores.
SQL-like language facilitates integration with ex-
isting tools but comprises efficiency. Alternatives
are to access stores directly or to use a functional
query language that allows native subqueries as
functions within the query language.

• Complex Analytics: efficient combination of
data from multiple stores with linear algebra al-
gorithms. Analytics tasks have been moved from
relational analytics (e.g., COUNT, SUM, AVG
with group by) to predictive models (e.g., ma-
chine learning, regression, statics). The majority
of such predictive models are based on linear alge-
bra algorithms, such as regression analysis, singu-
lar value decomposition, eigenanalysis, k-means
clustering, etc. Although linear algebra pack-
ages are optimized by software and hardware,
they have different characteristics when compared
to data systems, e.g., size of computation tiles,
choice of networks, compression techniques. So,
algebra packages and data stores should be decou-
pled, and data should be converted back and forth
between them in a non-expensive manner.

• Query Optimization: optimization should han-
dle data-flow and multi-platform scheduling able
to update the cost model or add new heuristics
when data stores join or disjoin the system.

• Semantic Mapping and Record Linkage: auto-
matic translation of utterances to the local dialect
of a storage system and integration of the results.

• Automatic Copy: efficient copy of data between
stores and federated system, considering data
transformation and memory access techniques.

• Distributed Transactions: handle transactions
over distributed, heterogeneous store systems with
diverse local transaction models. The problem is
harder when considering, e.g., NoSQL data stores
that do not provide ACID14 transaction support.

• Automatic Load Balancing and Provisioning:
automatically balance data load among data
stores by replications or moving data, which re-
quires a monitoring feature.

• Novel User Interfaces: innovative data mining,
visualization, and browsing user interfaces. Typi-
cal user interaction flows may not fit modern fed-

14Atomicity, Consistency, Isolation, and Durability.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

282



eration. E.g., as new data sources may join or dis-
join the federation, new data may rise or disap-
pear, which brings new knowledge.

• Benchmarks: should be developed to evalu-
ate federations addressing store combinations and
multiple query language processing, like Poly-
Bench (Karimov et al., 2018).

5 CONCLUSION

Modern applications require the manipulation of
structured and unstructured data, usually in high vol-
ume, over distributed and heterogeneous data sources.
The pattern “one size fits all” does not hold any-
more. Thus, innovative solutions capable of access-
ing and manipulating data in such an environment are
required.

This work presented the state-of-the-art, detailed
solutions, their main components, how queries are
specified and executed, and other features. Afterward,
we presented guidelines and challenges the solutions
should address. Researchers and practitioners can use
our finds to focus their work.

As future work, we aim at evaluating the tools in
practice through case studies and experiments to iden-
tify the level they meet the challenges and to bring
new open issues. We also intend to perform a system-
atic review towards a broader analysis improving the
overview presented in this work.

REFERENCES

Angles, R. and Gutierrez, C. (2008). Survey of graph
database models. ACM Comp. Surveys, 40(1):1–39.

Bondiombouy, C. and Valduriez, P. (2016). Query process-
ing in multistore systems: an overview. Research Re-
port RR-8890, INRIA.

Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M.,
Cetintemel, U., Gadepally, V., Heer, J., Howe, B.,
Kepner, J., Kraska, T., et al. (2015). A demonstra-
tion of the bigdawg polystore system. Proceedings of
the VLDB Endowment, 8(12):1908–1911.

Guimarães, P. and Pereira, J. (2015). X-ray: Monitoring
and analysis of distributed database queries. In IFIP
International Conference on Distributed Applications
and Interoperable Systems, pages 80–93. Springer.

Gurusamy, V., Kannan, S., and Nandhini, K. (2017). The
Real Time Big Data Processing Framework: Advan-
tages and Limitations. Intl. Journal of Computer Sci-
ences and Engineering (JCSE), 5(12):305–312.

Halperin, D., Teixeira de Almeida, V., Choo, L. L., and et al.
(2014). Demonstration of the myria big data manage-
ment service. In Proceedings of the 2014 ACM SIG-
MOD Intl. Conf. on Mngt. of Data, pages 881–884.

Haslhofer, B., Momeni Roochi, E., Schandl, B., and Zan-
der, S. (2011). Europeana rdf store report. Technical
report, University of Vienna.

Hausenblas, M. and Nadeau, J. (2013). Apache drill: in-
teractive ad-hoc analysis at scale. Big data, 1(2):100–
104.

Iancu, B. and Georgescu, T. M. (2018). Saving Large Se-
mantic Data in Cloud: A Survey of the Main DBaaS
Solutions. Informatica Economica, 22(1).

Karimov, J., Rabl, T., and Markl, V. (2018). Polybench: The
first benchmark for polystores. In Technology Confer-
ence on Performance Evaluation and Benchmarking,
pages 24–41. Springer.

Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris,
R., Pau, R., and Pereira, J. (2016a). The CloudMdsQL
Multistore System. In Proc. of Intl. Conf. on Manage-
ment of Data (SIGMOD’16), pages 2113–2116. ACM.

Kolev, B., Valduriez, P., Bondiombouy, C., Jimenez-Peris,
R., Pau, R., and Pereira, J. (2016b). CloudMd-
sQL: Querying Heterogeneous Cloud Data Stores
with a Common Language. Distributed and parallel
databases, 34(4):463–503.

Lenzerini, M. (2002). Data integration: A theoretical per-
spective. In Proceedings of the Twenty-First ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 233–246. ACM.

Modoni, G. E., Sacco, M., and Terkaj, W. (2014). A survey
of rdf store solutions. In Intl. Conf. on Engineering,
Technology and Innovation (ICE), pages 1–7. IEEE.

Nayak, A., Poriya, A., and Poojary, D. (2013). Type of
NOSQL databases and its comparison with relational
databases. International Journal of Applied Informa-
tion Systems, 5(4):16–19.

Özsu, M. T. and Valduriez, P. (2020). Principles of dis-
tributed database systems. Springer, 4th edition.

Sheth, A. P. and Larson, J. A. (1990). Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys
(CSUR), 22(3):183–236.

Stonebraker, M. (2015). The case for polystore. https://wp.
sigmod.org/?p=1629.

Stonebraker, M., Bear, C., Çetintemel, U., Cherniack, M.,
Ge, T., Hachem, N., Harizopoulos, S., Lifter, J.,
Rogers, J., and Zdonik, S. (2007). One size fits all?
part 2: Benchmarking results. In Proc. CIDR.

Tan, R., Chirkova, R., Gadepally, V., and Mattson, T. G.
(2017). Enabling query processing across heteroge-
neous data models: A survey. In IEEE Intl. Conf. on
Big Data (Big Data), pages 3211–3220. IEEE.

Zheng, Z., Wang, P., Liu, J., and Sun, S. (2015). Real-Time
Big Data Processing Framework: Challenges and So-
lutions. Applied Math. & Inf. Sciences, 9(6):3169.

Zulkefli, N. S. S., Rahman, N. A., Bakar, Z. A., Nordin, S.,
Sembok, T. M. T., and Teo, N. H. I. (2013). Evalua-
tion of triple indices in retrieving web documents. In
Intl. Conf. on Advanced Computer Science Applica-
tions and Technologies (ACSAT), pages 525–529.

Modern Federated Database Systems: An Overview

283


