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Abstract: Since the rise of Big Data, working with large files became the rule and no longer the exception. Despite
this fact, some data at-rest encryption modes of operation, namely CBC, are being used even though they do
not take into account the heavy cost of running sequential encryption operations over a big volume of data.
This led to some attempts that aim to parallelizing such operations either by only chaining isolated subsets of
the plaintext, or by using hash functions to reflect any changes made to the plaintext before running parallel
encryption operations. However, we noticed that such solutions present some security issues of different levels
of severity. In this paper, we propose a Distributed version of CBC, which we refer to as DCBC, that uses an
IV generation layer to ensure some level of chaining between multiple CBC encryption operations that run in
parallel, while keeping CPA security intact and even adding new operations such as appending data without
compromising the encryption mode’s security. We will, also, make a theoretical performance comparison
between DCBC and CBC under different circumstances to study optimal conditions for running our proposed
mode. We show in this comparison that our solution largely outperforms CBC, when it comes to large files.

1 INTRODUCTION

Data security is becoming a very competitive field as
the strategic value of data as a resource is increasing.
However, adding security layers usually adds some
performance cost overhead which gets even more no-
ticeable for systems that handle large volumes of data
with a relatively high velocity. Such systems are usu-
ally qualified as Big Data systems, for which securing
data in storage while keeping an acceptable perfor-
mance is a highly critical requirement, as data must
be available for processing as soon as possible.

Moreover, Big Data systems have special charac-
teristics and principles. For instance, increasing stor-
age space usage in favor of enhancing performance
and security is acceptable and even encouraged. Also,
larger computational resources may be available ei-
ther locally or in a cluster, so not taking advantage of
such assets would be a waste of resources.

To ensure data security, we resort to implement-
ing encryption mechanisms. However, these mech-
anisms usually use classical modes of operation that
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can’t present a solution for the previously mentioned
requirements while respecting Big Data systems char-
acteristics.

Modes of operation are defined as algorithms used
to extend the use of Block Ciphers from the encryp-
tion of a single block made of a limited number of
bytes, to a plaintext made of a, theoretically, infinite
number of bytes. Each of these modes focuses either
on performance or diffusion. Diffusion refers to hav-
ing multiple bits flipped in the output when one or
many bits in the input are flipped.

The most simplistic implementation of the cur-
rently existing modes is ECB (Pittalia, 2019) which
consists on encrypting each block separately and con-
catenating the results in order to form the final cipher
making it highly parallelizable and offering a cipher-
text with no additional overhead in size. However,
this solution presents multiple security issues and is
not recommended in practice except for short mes-
sages where additional overhead in the ciphertext’s
size can be problematic (Stallings, 2010). This makes
ECB unusable in a big data environment.

Chained Block Cipher (CBC) mode was sug-
gested to offer some level of diffusion by chaining the
different blocks of data (Dworkin, 2005). This ended
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up offering multiple security features such as Seman-
tic Security (Phan and Pointcheval, 2004), while re-
quiring a sequential execution of the encryption op-
eration as well as an overhead in the ciphertext’s size
because of the need to save an extra block contain-
ing an Initialization Vector (IV) used by this mode to
ensure semantic security. Even though CBC seems
to respect the requirement for securing data in stor-
age by offering the diffusion property as defined in
(Katos, 2005), it doesn’t quite take advantage of the
large computational resources that are usually offered
by big data systems as the encryption process is se-
quential and therefore uses only a single CPU.

Other modes of operation opted for using the un-
derlying Block Cipher as a key generator for a stream
cipher. Unlike block ciphers that encrypt the message
one block at a time, stream ciphers encrypt it bit by bit
until the full message is encrypted. In all these modes
of operation this is ensured thanks to the One Time
Pad (OTP) that relies on the XOR operation to en-
crypt the plaintext using a secret key that is only used
once per message. The most known modes that work
in this manner are: Counter (CTR), Output Feedback
(OFB) and Cipher Feedback (CFB) (Stallings, 2010).

When it comes to these three stream ciphers, they
are not optimal for securing stored data as they are
rarely used in systems where strong cryptographic se-
curity is required (Verdult, 2001). For instance CTR
presents some security limitations such as malleabil-
ity (McGrew, 2002) making it unsuitable for securing
data at rest. Data at-rest encryption refers to encrypt-
ing data that will be persisted on a storage device, as
opposed to data-in motion encryption which refers to
encrypting data for transmission, generally over a net-
work (Shetty and Manjaiah, 2017).

For the previously mentioned reasons, when it
comes to securing data at-rest, multiple security tools
opt for using CBC and therefore suffer from the cost
of running a sequential encryption across all blocks.
For this reason, there have been some attempts to
provide parallelizable implementations derived from
CBC, either by chaining only a subset of blocks at a
time such as with Interleaved Chained Block Cipher
(ICBC) (Duţǎ et al., 2013), or by using a hash-based
solution to offer a link between the plaintext blocks
instead of CBC’s chaining (Sahi et al., 2018). In both
these cases, some weaknesses, that we will detail in
section 5, were introduced in order to allow for paral-
lel execution. For this reason, we looked for a solu-
tion that can provide a reasonable trade-off between
the chaining level and performance while keeping the
mode’s security intact.

In this paper, we will suggest a hash-based solu-
tion that offers a parallelizable encryption and decryp-

tion process while keeping some level of chaining be-
tween the different blocks of the plaintext. First we
describe the suggested solution along with the encryp-
tion and decryption processes associated to it. Next,
we cover some security aspects of the solution and
how it behaves in cases where appending or editing
data is necessary. Then, we estimate a theoretical cost
of running the proposed mode and compare it to the
cost of running CBC in multiple scenarios. Finally,
we present in more depth other works that are related
to this subject and compare them to the results we
found for our proposed mode and proceed to a con-
clusion and some perspectives.

2 PROPOSED SOLUTION

In this paper, we propose a partially parallelizable en-
cryption mode based on CBC and the use of hash
functions, which we will be referring to as Distributed
Cipher Block Chaining or DCBC. Before we proceed
to describing our proposed solution, we first need to
fully understand how Cipher Block Chaining (CBC)
works.

2.1 Distributed Cipher Block Chaining:
DCBC

DCBC will operate on multiple chunks of data in a
parallel manner, while using a chaining layer to al-
low for some level of diffusion between them. Up
until now, we have only discussed the plaintext as the
concatenation of blocks of data. Blocks of data are
a subset of the plaintext for which the size is deter-
mined by the underlying Block Cipher. For instance,
when using the Advanced Encryption Standard (AES)
a block of data would refer to 16 bytes of data, how-
ever with the Data Encryption Standard (DES) a block
refers to 8 bytes of data. When it comes to DCBC, we
will be introducing what we refer to as a Chunk of
data, which is a subset of the plaintext of a size deter-
mined by the user. Each of these chunks will be seper-
ately encrypted using CBC, so it is recommended to
choose a chunk size that is a multiple of the block
size used by the underlying Block Cipher, in order to
avoid unnecessary padding with each chunk’s CBC
encryption. As shown in figure 1, the full plaintext
message is made of multiple chunks, which in turn
can be considered as a series of blocks for which the
size is predetermined by the Block Cipher.

In the subsequent sections we will be using the
following notations: Mi, Hi and Ci,respectively, de-
note the plaintext and ciphertext and Hash relative to
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Figure 1: The adapted plaintext subsets.

the chunk of index i. IVi represents the calculated Ini-
tialization Vector used to encrypt Mi and IV is the Ini-
tialization Vector supplied by the user to DCBC. The
operations we will be using are: the hash function H,
the CBC encryption and decryption functions ECBC
and DCBC, the IV generation function G and finally
the encryption using a block cipher for the IV Gener-
ation EG.

In order for DCBC to be a usable mode of opera-
tion, it must satisfy some requirements that cover both
its security and its performance which we will define
in the next section.

2.2 Target Criteria

Our work on DCBC, will focus on four axes.

1. Semantic Security under Chosen Plaintext Attack:
in a perfect system, the ciphertext should not re-
veal any information about the plaintext. This
concept has been introduced as Perfect Secrecy by
(Daemen and Rijmen, 1999). Semantic Security
under Chosen-Plaintext Attack: is a looser and
more applicable version of Perfect Secrecy as it
refers to preventing an attacker from being able to
extract any information about the plaintext using
only the ciphertext in a polynomial time (Phan and
Pointcheval, 2004). To achieve this level of secu-
rity, an attacker must be unable to link different
messages to their respective ciphertexts. As CBC
is secure against Chosen Plaintext Attacks (CPA),
as proved by (Bellare et al., 1997), DCBC must
keep that property intact.

2. Diffusion: DCBC should provide some level of
chaining to ensure that a slight difference in the
input will affect all following blocks in the output.

3. Parallelizability: DCBC must be parallelizable
to allow for the full use of available resources
(CPUs, Cores or Machines).

4. Secure Append Operations: DCBC must allow for
appending data securely without having to decrypt
and re-encrypt the full plaintext.

2.3 How Does DCBC Work?

A message M is divided into multiple chunks of
a fixed size. Each chunk can be encrypted using
CBC independently from the encryption of all other

chunks, while using a function H to provide a “sum-
mary” of the corresponding chunk, which will be used
later, to ensure some level of chaining throughout the
whole message. This would allow us to run the en-
cryption of the block n and all following blocks on a
different CPU as soon as H finishes execution. Also,
H runs on the plaintext and is independent of the en-
cryption operation. So, H is a function that will take
as input a chunk of data which will have its length
be determined by the user and always output a fixed
number of bytes that should be representative of the
whole chunk taken as input. For this we chose to use
hash functions as their properties correspond to these
needs. Once the hashes are calculated, an operation is
needed to ensure the chaining of the different blocks.
We will be referring to it in this article as the IV Gen-
erator, since its output will be used as an IV for the
CBC encryption of the chunk. The properties of this
IV generator and the reasons behind them will be dis-
cussed in section 2.5, but for now all we need to know
is that it takes as input the output of H when ran on the
current chunk, as well as the IV of the previous chunk.

To sum up, the mode we are proposing can be
viewed as the combination of three layers of process-
ing, two of which are the most costly ones but are
fully parallelizable and one is sequential but of very
low cost.

The first layer is a hashing operation (H), where
each chunk will be hashed independently from all pre-
vious chunks. The second layer is an IV generation
layer (G), which generates a pseudo-random IV from
the hash of the current layer and the IV generated by
the previous layer, thus guaranteeing that any IV de-
pends on all previous chunks. Moreover, the gener-
ated IV must be pseudo-random to ensure some secu-
rity properties that we will discuss later in this arti-
cle. The third layer is a regular CBC encryption layer
(ECBC), in which every chunk is encrypted indepen-
dently from all other chunks’ encryption results, mak-
ing it parallelizable.

2.4 Encryption and Decryption in
DCBC

In this section we will be presenting the encryption
and decryption operations at a chunk level as well as
at a block level.
We denote by encryption at a chunk level, the expres-
sion of the encryption operation as a function using
full chunks of plaintext as opposed to the encryption
at a block level, where the operation is expressed as a
function using single blocks of plaintext.

Figure 2 illustrates how the previously mentioned
operations (ECBC, H and G) interact and depend on
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Figure 2: DCBC encryption.

each other for encrypting a message M.
The decryption process, as shown in figure 3, is

fully parallel, as each chunk’s ciphertext is decrypted
independently from all others, using its corresponding
IV which was generated and stored in the encryption
phase.

Figure 3: DCBC decryption.

At a chunk level, the resulting equations for encryp-
tion and decryption are:
Ci = ECBC(Mi, IVi) AND Mi = DCBC(Ci, IVi)

At a block level, the cipher corresponding to the
message block Bi, j, where i is the index of the chunk
the message block is situated in and j is its index in-
side that chunk, is given by the following expressions:

Ci, j =

{
E(Bi, j⊕Ci, j−1) if j > 0
E(Bi,0⊕ IVi) if j = 0

The decryption is also as straight forward:

Bi, j =

{
D(Ci, j)⊕Ci, j−1 if j > 0
D(Ci,0)⊕ IVi if j = 0

In both these cases IVi is generated as follows:

IVi =

{
G(Hi, IVi−1) if i > 0
G(H0, IV ) otherwise

Where G is an IV Generator respecting the properties
we will be detailing in the following section.

2.5 IV Generator

Even though the efficiency of this approach depends
heavily on the Block Cipher and the hashing func-
tion used for encryption and hashing, its security re-
lies mainly on the security of the IV generation algo-
rithm which is why we propose three main conditions
that must be met by any function in order for it to be
usable as an IV generator for this mode.

1. The IV of a chunk i must depend on the IV of its
previous chunk i−1, in order to ensure some level
of chaining between the different chunks. The
first chunk is the only exception to this rule, for
which an Initialisation Vector (IV) is used.

2. The IV of chunk i must depend on the chunk’s
hash, to make sure the IV is updated for every up-
date on the chunk, and thus avoid having a pre-
dictable/known IV when modifying the contents
of existing chunks.

3. The IV generator must be CPA secure to keep the
CPA security of CBC intact. This will be detailed
further in section 3.1.

For the purposes of this paper, we will be using the
following function G:

G(Hi, IVi−1) = EG(Hi⊕ IVi−1)

Each of the components of the proposed IV Genera-
tion function verifies one of the three conditions we
just mentioned:

1. Hi: Since each Initialisation Vector IVi depends
on the hash of Mi (Hi), this would ensure the ex-
istence of a link between the plaintext and the ini-
tialisation vector. One advantage to having this
link is that, when Mi is updated, so is IVi.

2. IVi−1: By using IVi−1 in the expression of IVi, the
latter would depend on all previous Initialisation
Vectors and therefore on all previous plaintext
chunks, since each Initialisation vector depends
on the plaintext chunk associated to it thanks to
the use of Hi. This ensures the existence of some
level of chaining between the different chunks.

3. EG: Using a Block Cipher, the Initialisation Vec-
tor generated will be unpredictable, even when Hi
and IVi−1 are known to potential attackers, which

DCBC: A Distributed High-performance Block-Cipher Mode of Operation

89



is very important to the security of DCBC. The
use of this property will be further detailed in sec-
tions 3.2.1 and 3.2.2

Notice that this suggestion is not a universal solution.
It is designed for a particular case where the output of
the hashing operation H is of equal size to the input
of the Block Cipher used for CBC encryption. Sim-
ilarly, we assumed that the Block Cipher used in the
IV generation algorithm has an input of the same size
as the one used in the CBC encryption. If this is not
the case, a slightly more complex IV generation algo-
rithm might be required.

Many of the choices mentioned in this section are
adopted to ensure some security properties for our
proposed solution. In the next section, we define
these properties and explain how they are ensured by
DCBC.

3 SECURITY PROPERTIES

3.1 CPA Security

CBC’s CPA security was proved by (Bellare et al.,
1997), under the condition that the IV is not pre-
dictable (Stallings, 2010). In its essence, the proposed
mode is formed by multiple CBC encryption opera-
tions using calculated IVs instead of randomly gen-
erated ones. In this section we will demonstrate that
the CPA security of the IV Generator G is a necessary
condition for the CPA security of DCBC. In order to
do this, we will show that if G is not CPA secure, then
DCBC is not CPA secure either. Consider the follow-
ing cryptographic game:

• The Attacker A sends two different messages M0
and M1 to the Challenger.

• The Challenger C chooses a message b randomly
and return Cb =EDCBC(Mb), where the first blocks
of Cb are the IVs used for the encryption.

• The Attacker inspects Cb and outputs b′ ∈ 0,1.

The advantage of A is defined as:
AdvCPA(A) = |Pr[b = b′]−Pr[b 6= b′]|

If the IV Generator is not CPA secure, A can use
the blocks containing the IVs, to figure out which
of the messages M0 or M1 has been used to gener-
ate them and then conclude which message the ci-
pher represents. This would give A an advantage of
AdvCPA(A) = 1 and DCBC would not be CPA secure.
Therefore, the CPA security of the IV Generator is a
necessary condition for the CPA security of DCBC.

3.2 Blockwise Adaptive Chosen
Plaintext Attack Security

Even though CPA security ensures Semantic Secu-
rity, it is limited to messages that are presented as
an atomic unit, meaning that a message is fully re-
ceived, fully encrypted and only then is the full ci-
pher returned to the user or potential attacker. Block-
wise Adaptive Chosen Plaintext Attack (BACPA), as
described by (Joux et al., 2002), removes this con-
straint and handles non atomic messages. This in-
cludes cases where the plaintext message is either sent
one or a few blocks at a time, or is appended to old,
already encrypted data using the existing cipher’s last
block as IV for the newly received blocks’ encryption.

Attacks against BACPA-vulnerable implementa-
tions have already been proved feasible, for instance
they have been used to attack some old implementa-
tions of SSL as described in (Bard, 2006).
BACPA is a threat in two cases:

1. Editing existing data: The plaintext is modified
but the old IV is preserved for the new encryption.

2. Appending new data: New blocks are encrypted
using CBC’s logic (Ci−1 serves as IV for the en-
cryption of Ci) and appended to the existing ci-
pher.

3.2.1 Editing Existing Data

When it comes to modifying existing data, if CBC is
used, it is mandatory that the whole message gets de-
crypted, modified then re-encrypted with a new IV.
This is due to the fact that if we only edit the con-
cerned blocks then re-encrypt them using their respec-
tive previous cipher blocks as IVs, we would be vul-
nerable to attacks that abuse predictable IVs.

Using our proposed mode, re-encrypting the
whole message is recommended but not mandatory.

Since the IV of a chunk depends on the hash of
the chunk itself, once a chunk is updated, its IV is
also modified in an unpredictable manner thanks to
the use of a Block Cipher. For this reason, it is possi-
ble to update only the concerned chunk and the ones
following it without having to deal with all previous
chunks, while keeping the mode’s semantic security
intact. However, doing things this way allows attack-
ers to detect the first chunk where changes took place.
In case this information is critical to the security of
the encrypted data, it is recommended to re-encrypt
the full plaintext.
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3.2.2 Appending New Data

Chaining the chunks as described in this paper offers
security against Adaptive Chosen Plaintext Attacks at
a chunk level, meaning that it’s possible to append
new chunks to the existing data securely without hav-
ing to interact with any of the old chunks. This is
due to the fact that the IV used in each chunk is not
deducible from any previously calculated values, in-
cluding previous IVs, ciphers, hashes, etc ...

In general, an append operation will go through
the following steps:
If the size of the last chunk is less than the predefined
Chunk Size:
1. Decrypt the final chunk. We will consider n to be

its index.
2. Append the new blocks to the plaintext of the final

chunk.
3. Encrypt the resulting chunk/chunks using the pro-

posed method and by providing the IV of the
chunk n−1 to the initial IV Generator.

Otherwise, we get a simple one step process:
1. Encrypt the new chunk/chunks using the proposed

method and by providing the IV of the last chunk
(chunk n) to the initial IV Generator.

Using these steps to append data, the operation is se-
cure and costs at most one extra decryption operation
over a single chunk while retaining the chaining be-
tween old and newly added data.

4 THEORETICAL
PERFORMANCE COST

In this section we will be running a theoretical per-
formance comparison between the respective costs of
using DCBC and CBC to encrypt some plaintext mes-
sage M.

4.1 Assumptions

In this section we make the following assumptions:
• The time threads take to hash different chunks

(h(CS)) is only function of the chunk’s size.
• The time threads take to encrypt different chunks

(e(CS)) is only function of the chunk’s size.
• The time threads take to generate the IV for

chunks of the same size (g) is constant.
• The whole encryption process of a chunk takes

place on the same CPU.
• At the start of the operation all CPUs are free.

4.2 Theoretical Performance
Comparison

In this section, our goal is to compare the theoreti-
cal cost of running DCBC to that of running CBC in
different scenarios.

To do so, we need to define a function C represent-
ing the cost of computing the encryption of a given
chunk starting from the origin, which we define as the
point in time when the encryption of the first chunk
started. We will denote by i, the index of the chunk
we are interested in, so: i ∈ [0,L].
The expression of C(i) is, ∀i ∈ [0,L[:
Case 1: (N−1)×g≤ e(CS)+h(CS):
C(i) = (div(i,N) + 1) × (h(CS) + e(CS) + g) +
mod(i,N)×g
Case 2: (N−1)×g > e(CS)+h(CS)
C(i) = h(CS)+(i+1)×g+ e(CS)

The proof behind the equations defining the function
C is provided in the appendix.

In order to compare the function C to the cost of
running plain CBC, we respectively vary the file size
S, the chunk size CS then the number of CPUs N.
For the fixed variables, we will work with empirically
estimated values which requires us to specify the al-
gorithms used for each step of DCBC’s execution as
well as the definition of a method that allows for a fair
estimate of the needed values.

In this section, we will use MD5 for H, AES (Dae-
men and Rijmen, 1999) for E and EG. As for G we
will use: G(Hi, IVi−1) = EG(Hi⊕ IVi−1).

When it comes to estimating a value empirically,
we will use the following method:
1. The operation for which we wish to estimate the

cost, is executed 100 times and the duration of
each iteration’s execution is saved.

2. The mean value is calculated over all recorded
values.

3. Outliers are detected using simple conditions and
replaced with the calculated mean value: We con-
sider a value to be an outlier if the distance be-
tween it and the mean value is higher then 3 times
the standard deviation.

4. If any outliers have been found, go to step 2. Oth-
erwise exit and use the calculated mean value as
the cost of that operation.

The results shown in table [1], will be used to calcu-
late the theoretical performance of DCBC in different
scenarios in order to compare it to the performance of
CBC. When it comes to the IV generation, its cost is
a constant value since it is independent of the size of
the plaintext.
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Table 1: Empiric Cost for AES CBC and MD5.

Size (MB) E (ms) H (ms) S (ms)
128 607.169 196.278

0.004

256 1209.63 386.864
384 1807.156 558.95
512 2410.118 771.739
640 3007.476 930.84
768 3612.55 1117.435
896 4219.523 1301.641

1024 4825.55 1542.107

As we mentioned earlier, in order to estimate the to-
tal cost of running DCBC we will resort to the ex-
pression of C(i) which, at the beginning of the sec-
tion, we defined as the duration it takes to encrypt
the chunk of index i since the start of the encryp-
tion of first chunk (chunk 0). This means that the
cost of encrypting the whole plaintext is equal to the
cost of encrypting the last chunk (chunk L− 1). So,
from this point on, we will be using the expression of
C(L−1) as the cost of encrypting the whole plaintext.
Also, as you may notice, the value of g is negligible
compared to that of e(x) + h(x), where x represents
values from the size column in table 1. This means
that for realistic values of N, we will always verify:
(N−1)×g≤ e(CS)+h(CS) which in turn means that
we only need to consider the expression of C(i) ac-
cording to Case 1. We conclude that the cost of run-
ning DCBC over the whole plaintext is:
C(L− 1) = (div(L− 1,N) + 1)× (h(CS) + e(CS) +
g)+mod(L−1,N)×g
Which is equivalent to:
C(L− 1) = (div(L− 1,N)+ 1)× (h(CS)+ e(CS))+
(div(L−1,N)+1+mod(L−1,N))×g

However, we will need to use the chunk size CS as
a parameter instead of the number of chunks L.
So, for all following sections, instead of using the
number of chunks as a constant L, we will be calcu-
lating it by ceiling the result of dividing the full plain-

text’s size by the size of a single chunk: L = ceil(
S

CS
)

4.2.1 Scenario 1: Varying the Plaintext Size

For this case, we will be using a function f1(x) to
refer to the cost of encrypting a file of size x using
DCBC, where x is expressed in MB. The expression
of f1 will be:

f1(x) = (div(ceil(
x

CS
) − 1,N) + 1) × (e(CS) +

h(CS)) + (div(ceil(
x

CS
) − 1,N) + 1 +

mod(ceil(
x

CS
)−1,N))×g, ∀x > 0

Our goal is to compare the cost of running CBC (rep-
resented by the function e(x), where x is the size of
the plaintext), and DCBC for various file sizes while
fixing all other parameters: N = 4 and CS = 128MB.
To do this we start by plotting f1(x) and e(x), for
x ∈ {128,256,512,513,1024}. First, we use the em-
pirically estimated values taken by e(x) listed in table
1. Then, to get the values taken by f1(x), we use the
value of e(128) we got from the previous step as well
as the approximation of h(128).

Figure 4: Performance comparison for various values of S.

The results shown in Figure 4, present some interest-
ing findings: when running the encryption on a plain-
text of size 128MB, DCBC shows a slightly worse
performance compared to CBC. This is to be expected
since with 128MB of data and a Chunk Size of 128MB
as well, DCBC will be using a single chunk and will
therefore, not only run in a sequential manner over the
whole plaintext, but also suffer from the added weight
of the extra hashing operation compared to CBC.

We also notice that f1 is constant for the interval
[128,512] and is doubled for x ∈]512,1024]. This is
due to the fact that, in the example we considered,
we are using N = 4 and CS = 128, therefore, for a
plaintext of size x ≤ 512, we will be running a single
iteration of encryption. However, for any value of x
such that x ∈]512,1024], two iterations are required,
which explains why the cost doubles.

When running the encryption on a plaintext of
256MB of data or more, we notice that, the larger the
plaintext, the higher the difference between the cost of
running CBC and that of running DCBC, except for
the points where transitions from using n iterations to
n+1 iterations take place (x ∈]512,640] in our case),
where this difference in performance gets slightly re-
duced especially for much bigger plaintexts.

In conclusion, DCBC presents a much bigger ad-
vantage in performance as the plaintext gets bigger
in size, but it is not recommended for cases where the
plaintext is of almost equal size to the Chunk Size cho-
sen by the user. This leads us to watch how various
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values for the Chunk Size can affect the performance
of DCBC.

4.2.2 Scenario 2: Varying the Chunk Size

We will be using a function f2 to represent the cost of
encrypting a plaintext of a known size S (1024) with
4 CPUs using DCBC with various values for CS:

f2(x) = (div(ceil(
S
x
)− 1,N) + 1)× (e(x) + h(x)) +

(div(ceil(
S
x
)− 1,N)+ 1+mod(ceil(

S
x
)− 1,N))× g,

∀x > 0

Figure 5: Performance comparison for various values of CS.

Notice that, since CBC does not use chunks, the cost
of encryption using CBC, e(x), is independent of the
Chunk Size and will therefore be represented by a
constant function. As shown in Figure 5, the cost
of using a Chunk Size of 128MB or 256MB is ex-
actly the same. This is explained by the fact that,
even though running the encryption over a chunk of
size 128MB takes half the time required to encrypt
a chunk of 256MB, using a Chunk Size of 128MB
will require two full iterations of execution over all
4 CPUs whereas using a chunk Size of 256MB will
only require one. So even though running DCBC with
a Chunk Size of 128MB will take only half the time
to encrypt a single chunk when compared to using a
Chunk Size of 256MB, it would in return need to run
twice as many times as in the latter case, which would
eventually even out the results.

When CS is set to a value of 512MB, we notice
that the cost of running DCBC doubles.
Intuitively, this is to be expected since S = 1024,
therefore the plaintext will be split into only two
chunks, which means that only 2 of the 4 CPUs will
be used for the encryption as opposed to using all 4
CPUs when CS ≤ 256. More generally, if the Chunk
Size is higher then 256MB, only a subset of 4 avail-
able CPUs will be used. Also, encryption and hashing
over a single chunk will cost more time the higher the
Chunk Size is. These two factors add up to an overall
higher cost when running DCBC with CS≥ 256.

Finally, we notice that at a certain point, DCBC
presents a worse performance in comparison to CBC,
as the cost of the added hashing over a relatively large
chunk will surpass the benefit of running the encryp-
tion in parallel. In conclusion, the choice of the chunk
size is important to the performance of DCBC, and
even though it seems that, in theory, the smaller the
Chunk Size is, the better the performance gets, this has
to be verified in practice, as many other factors may
interfere. We also have to keep in mind that we are

working on cases where (div(ceil(
S

CS
)− 1,N)+ 1+

mod(ceil(
S

CS
)− 1,N))× g happens to be of negligi-

ble effect over the results. If this constraint is negated
by the use of a very small Chunk Size compared to

the full plaintext size, the value of
S

CS
might get big

enough for the previous expression to have an impor-
tant impact on the results, even though g≈ 0.004.

4.2.3 Scenario 3: Varying the Number of CPUs

We will be using a function f3 to represent the cost of
encrypting a plaintext of a known size S = 1024MB
and a fixed Chunk Size CS = 128MB using DCBC
with various values for the Number of CPUs N:

f3(x) = (div(ceil(
S

CS
) − 1,x) + 1) × (e(CS) +

h(CS))+(div(ceil(
S

CS
)−1,x)+1+mod(ceil(

S
CS

)−
1,x))×g, ∀x > 0

Figure 6: Performance comparison for various values of N.

Notice that the cost of running CBC encryption (e(x))
is independent of the Number of CPUs used, since
it is a sequential process that, in theory, runs on a
single process. Therefore e presents a constant func-
tion in this case. As Figure 6 shows, when N = 1,
DCBC presents a much worse performance compared
to CBC, as it will be running sequentially with the
added weight of using the hash function H.

For N = 2, since S = 1024 and CS = 128 we will
be encrypting L = 8 chunks of data. Each of the 2
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CPUs will be responsible for encrypting 4 of these
chunks, which is equivalent to encrypting and hashing
128MB of data 4 times. However, using CBC, the en-
cryption will be sequential over a single CPU for the
full 1024MB of data which results in a relatively high
difference in performance as the overhead of hash-
ing 128MB of data 4 times is less significant than the
difference in time between running CBC over a full
1024MB of data and only 128MB of data 4 times.
This result is confirmed by the distance between f3(2)
and e(2), in Figure 6.

For N = 4, the cost is reduced by half compared to
using only 2 CPUs. However, using 6 CPUs instead
of 4 doesn’t affect at all the performance of DCBC,
this is because in both cases we will have to run a
total of 2 iterations.

For N ≥ 8, we notice that the cost of running
DCBC becomes constant. This is due to the fact that
at this point we are only running a single iteration of
encryption which gives the lowest cost possible, so all
extra CPUs are not being used.

Even though these results make perfect sense in
theory, in practice there can be a slightly different be-
haviour.
In a modern system, multiple other processes might
be running alongside the DCBC encryption operation.
This can cause a slightly higher cost than the theo-
retical values calculated above. It can also result in
a slight improvement of performance when using 6
CPUs compared to the actual cost of using 4 CPUs
and further increasing the number of CPUs will help
us approach this theoretical value.

In conclusion, the performance of DCBC de-
pends, not only on the computational resources avail-
able, but also on the chunk size chosen by the user
and the size of the file they look to encrypt.

5 RELATED WORK

Some attempts have been made to reduce the cost
of encrypting data through parallelism while keeping
some level of chaining between the different blocks.

For instance, the works presented by (Duţǎ et al.,
2013) and (Desai et al., 2013) use Interleaved Cipher
Block Chaining (ICBC) to parallelize the encryption
process and enhance its performance.
ICBC consists on running N independent CBC oper-
ations with a randomly generated IV for each one.

In each operation, the chaining will occur on
blocks with a step of N blocks. So, the first CBC
encryption will run with blocks 0, N, 2N, 3N, ..., the
second one on blocks 1, N+1, 2N+1, 3N+1, ... and
so on. Using ICBC, the more we parallelize the en-

cryption (the bigger N is), the less chained blocks we
get. This means that there is a strict trade-off between
performance and diffusion.

By comparison, our proposed solution presents a
middle ground between performance and diffusion, as
chaining is preserved for the whole plaintext no mat-
ter how parallelized the encryption gets, but in return,
an added cost is present because of the hashing oper-
ation.

Other attempts tried to ensure parallelism and dif-
fusion using hash-based solutions, such as the work
presented by (Sahi et al., 2018), where the full plain-
text is hashed, then the hash (H(P)) is used along with
the IV and the encryption key K to generate a new
key that will be used to encrypt the plaintext block Pi:
Yi = E(Pi, IV ⊕K⊕H(P)).

However, this solution presents multiple issues:
Appending Data. Just like in CBC, it is not possible
to append data directly to the ciphertext. Any append
operation would require the full decryption and re-
encryption of the whole plaintext. In comparison, in
the worst case scenario, our proposed solution only
requires the decryption and re-encryption of the last
chunk as well as the encryption of the appended data.
Hashing Cost. Even though the hash operation would
take considerably less time then the encryption, run-
ning the hash function on the plaintext can prove to
be very costly for very large files. In this aspect, our
solution presents the advantage of parallelizing the
hashing operation as well and not just the encryption.
CPA Security. The presented mode does not offer se-
curity against chosen plaintext attacks, since all mes-
sage blocks Pi are encrypted using the same key and
with no IV.

A simple game scenario to show this is as fol-
lows: An attacker sends a message M1 composed of
two identical blocks (M10 = M11) and a message M2
made of two distinct blocks (M20 6= M21). In the re-
sulting Cipher returned by the encryption oracle, if
C0 = C1 then output 0, else output 1. This results
in an advantage equal to 1 for the adversary, which
means that the attacker can tell which of the two mes-
sages M1 and M2 was encrypted by the oracle, thus,
making the discussed solution vulnerable to CPA.

On the other hand, we claim that our proposed so-
lution is CPA secure thanks to the use of unpredictable
IVs for the different CBC encryption operations run-
ning on the different chunks as explained previously.
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6 CONCLUSION AND FUTURE
WORK

In its essence, DCBC consists on running a chaining
layer on top of multiple CBC encryption operations
that run in parallel. This allows for a configurable
trade-off between performance and diffusion by ma-
nipulating the number of independent CBC encryp-
tion operations that we run, which is equivalent to
manipulating the Chunk Size, as each chunk will go
through its own CBC encryption.

For its security, DCBC inherits the same proper-
ties as CBC but requires an equally secure IV Gen-
erator to make sure the underlying CBC encryption
operations’ security will not be compromised. In this
article we offered a suggestion for such a function,
but it may be possible to find more examples that re-
spect the requirements we specified for a usable IV
Generator.

When it comes to performance, the calculated the-
oretical values show promising results compared to
using CBC, and the gap in performance seems to get
even more interesting for larger files. This re-enforces
the initial idea of adopting DCBC especially in Big
Data environments.

Currently, we are looking to validate these theoret-
ical findings with empiric experiments by implement-
ing DCBC and running it on multiple cores locally
and/or on multiple machines in a distributed system.
Running tests on a working DCBC implementation
would, also, allow us to compare the level of diffu-
sion and its randomness, when using DCBC and CBC
modes.

Later, we will study the effect of running DCBC
on a real Big Data system by implementing its logic
in a resource manager such as YARN (Vavilapalli and
al., 2013).

Finally, we will look into generalizing the idea
used to create DCBC, in order to give a more global
solution that offers this trade-off between parallel ex-
ecution and diffusion using any underlying mode of
operation and not just CBC.
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APPENDIX

We aim to calculate a theoretical approximation for
the cost of encrypting some plain text M that will
be divided into L chunks and encrypted using N
CPUs/Cores.

First, we will define C(i) as a combination of two
different expressions over two disjoint intervals:
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1. 0 ≤ i < N: We will be referring to it as the first
iteration, during which the first batch of chunks
will be encrypted.

2. i≥ N, which represents all following iterations.

Then, we will look to provide a unified expression for
the cost function over both of these intervals.

First Iteration: 0≤ I <N. During the first iteration
of encryption operations, all CPUs are free. So, the
encryption of a chunk i starts as soon as the chunk (i−
1) finishes the IV Generation step (except, of course,
for the initial chunk). So, we define C(i) as follows:

C(i) =

{
h(CS)+g+ e(CS), if i = 0
C(i−1)+g, if i≥ 1

We can proceed by induction to show that the pre-
vious expression is equivalent to:

C(i) = h(CS)+ i×g+g+ e(CS), ∀i ∈ [0,N[ (1)

Where i × g represents how long it takes for the
previous IV to be calculated using the function G.
Base case(i = 0): By definition:

C(0) = h(CS)+g+ e(CS)
⇐⇒ C(0) = h(CS)+0×g+g+ e(CS)

So C(0) is correct.
Induction Hypothesis: Suppose that there exists i < N
such that: ∀k ≤ i, C(k) = h(CS)+ k×g+g+ e(CS)
Induction step: We need to prove that:
C(i+1) = h(CS)+(i+1)×g+g+ e(CS)
We know that i≥ 0, so i+1≥ 1 which gives the fol-
lowing expression of C(i+1):

C(i+1) =C(i+1−1)+g
=C(i)+g
= h(CS)+ i×g+g+ e(CS)+g
= h(CS)+(i+1)×g+g+ e(CS)

Therefore, ∀i ∈ [0,N[, equation 1 is correct.

Following Iterations: N ≤ I < L. In general, C(i)
can be expressed as the sum of: the duration it took
for the current chunk to get on the CPU (which is the
same as calculating the cost of encrypting the chunk
i−N), the hashing duration, the encryption duration,
the IV generation duration and, possibly, a waiting
duration where the thread is blocked until the previous
IV is generated.
This translates into the following formula:

C(i) =C(i−N)+h(CS)+wd(i)+g+ e(CS) (2)

For all iterations except the first one, the wait-
ing duration for chunk i is the difference between

the point in time where the previous IV is calculated,
which is expressed by (C(i−1)−e(CS)), and the one
where the hashing operation for chunk i finishes exe-
cution, denoted by (C(i−N)+h(CS)):
(C(i−1)− e(CS))− (C(i−N)+h(CS))
The waiting duration is either a positive value or 0, so
instead we define the waiting duration wd(i) as:
max(0, [C(i−1)− e(CS)]− [C(i−N)+h(CS)])

Since the expression of wd(i) depends on the sign
of (C(i− 1)− e(CS))− (C(i−N)+ h(CS)), then so
does the expression of C(i).
When replacing wd(i) by its expression we get:
Case 1: wd(i) = 0

C(i) =C(i−N)+h(CS)+g+ e(CS) (3)

Case 2: wd(i)> 0

C(i) =C(i−1)+g (4)

Figure 7, helps visualize the execution scenario of
DCBC’s threads on each CPU for both cases 1 and
2. * Case 1: wd(i) = 0

Figure 7: DCBC’s execution scenario according to Cases 1
and 2.

Our goal is to prove that equation (3) is equivalent to:

C(i)= (div(i,N)+1)×(h(CS)+e(CS)+g)+mod(i,N)×g

(5)
To prove this, we will proceed by induction:
Base case: i = N

C(N) =C(0)+h(CS)+g+ e(CS)
= 2× (h(CS)+g+ e(CS))

So C(N) is correct.
Induction Hypothesis: Suppose that there exists an i
such that ∀k ≤ i:
C(k) = (div(k,N) + 1) × (h(CS) + e(CS) + g) +
mod(k,N)×g
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Induction step: We need to prove that ∀i≥ N:
C(i+ 1) = ((div(i+ 1),N) + 1)× (h(CS) + e(CS) +
g)+mod(i+1,N)×g
According to equation (3):
C(i+1) =C(i+1−N)+h(CS)+g+ e(CS)
So, we need to distinguish between two cases:
i+1−N < N and i+1−N ≥ N.
*If i+1−N < N, we can apply equation (1):
C(i+1) = h(CS)+(i+1−N +1)×g+ e(CS)+h(CS)

+g+ e(CS)
= 2× (h(CS)+g+ e(CS))+(i+1−N)×g

However, 0 < i+1−N < N
⇐⇒ N < i+1 < 2N
⇐⇒ div(i+1,N) = 1
⇒ mod(i+1,N) = (i+1)−div(i+1,N)×N
⇒ mod(i+1,N) = i+1−N⇒C(i+1) = 2× (h(CS)+ e(CS)+g)+(i−N +1)×g

= (div(i+1,N)+1)× (h(CS)+ e(CS)+g)
+mod(i+1,N)×g

So, equation (5) is correct for i+1 if i+1−N < N.
*If i+1−N ≥ N: According to equation (3):
C(i+1) =C(i+1−N)+h(CS)+g+ e(CS)
Since N≥ 1 then, i+1−N≤ i, therefore the induction
hypothesis is applicable to i+1−N, which gives us:
C(i+1) = (div(i+1−N,N)+1)× (h(CS)+ e(CS)+g)

+mod(i+1−N,N)×g+h(CS)+g+ e(CS)
= (div(i+1,N)−1+1)× (h(CS)+ e(CS)+g)
+mod(i+1,N)×g+(h(CS)+g+ e(CS))
= (div(i+1,N))× (h(CS)+ e(CS)+g)
+(h(CS)+g+ e(CS))+mod(i+1,N)×g
= (div(i+1,N)+1)× (h(CS)+ e(CS)+g)
+mod(i+1,N)×g

So, equation (5) is correct for i+1 if i+1−N ≥ N.
By induction, we conclude that, ∀i ≥ N, equation

(5) is correct.
* Case 2: wd(i)> 0
In this Case, we will be considering the expression of
C(i) as given by equation (4).
We notice that in this case C(i) is just an extension
of the expression we calculated for the first iteration
over the interval [N,L[. In conclusion, ∀i ∈ [N,L[:
C(i) = h(CS)+(i+1)×g+ e(CS)

General Formula. In this section, we will calculate
an expression for C(i), ∀i ∈ [0,L[. For the first case:
wd(i) = 0, we notice that if we apply the expression
of C(i), as defined by equation (5), for i < N we get:

C(i) = (div(i,N)+1)× (h(CS)+ e(CS)+g)
+mod(i,N)×g
= (0+1)× (h(CS)+ e(CS)+g)+ i×g
= h(CS)+(i+1)×g+ e(CS)

So, for i<N, both equations (5) and (1) are equivalent
and we can use equation (5) as a general expression
for C(i), ∀i ∈ [0,L[, as long as wd(i) = 0.

For the other case, where wd(i) > 0, C(i) has the
same expression for all iterations. So equation (1) will
be the general expression of C(i) under that condition.

In conclusion, we can express C(i) as: ∀i ∈ [0,L[,
if wd(i) = 0: C(i) = (div(i,N) + 1) × (h(CS) +
e(CS)+g)+mod(i,N)×g
otherwise: C(i) = h(CS)+(i+1)×g+ e(CS)
Now that the expression of C(i) is determined, we
need to simplify the conditional expression wd(i)> 0,
to have it use initial parameters only.
If we consider wd(i)> 0, then in this case:

wd(i) =C(i−1)− e(CS)−C(i−N)−h(CS) (6)

We will be proceeding by induction to prove that:

wd(i) = (N−1)×g− (e(CS)+h(CS)) (7)

Base case: i = N

wd(N) =C(N−1)− e(CS)−C(0)−h(CS)
=C(N−1)−C(0)− (e(CS)+h(CS))

Using the expression of C(i) in equation (1), we get:

wd(N) = (N−1)×g− (e(CS)+h(CS))

Which means that, wd(N) is correct.
Induction Hypothesis:
∀k ≤ i, wd(k) = (N−1)×g− (e(CS)+h(CS))
Induction step: We need to prove that:
wd(i+1) = (N−1)×g− (e(CS)+h(CS)), i≥ N
wd(i)> 0, then according to equation (4):
C(i) =C(i−1)+g
⇒ wd(i+1) =C(i)− e(CS)−C(i+1−N)−h(CS)

=C(i−1)+g− e(CS)− (C(i−N)+g)−h(CS)

=C(i−1)− e(CS)−C(i−N)−h(CS)

= wd(i) = (N−1)×g− (e(CS)+h(CS))

So, equation (7) is correct for i+1.
By induction, we conclude that if wd(i) > 0, then
equation (7) is correct ∀i ∈ [N,L[.

In conclusion, ∀i≥ N:
wd(i)> 0 ⇐⇒ (N−1)×g > e(CS)+h(CS)
∀i ∈ [0,L[, the final expression of C(i) is:

Case 1: (N−1)×g≤ (e(CS)+h(CS)):
C(i) = (div(i,N) + 1) × (h(CS) + e(CS) + g) +
mod(i,N)×g
Case 2: (N−1)×g > (e(CS)+h(CS))
C(i) = h(CS)+(i+1)×g+ e(CS)
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