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The detection of vital parameters with traditional approaches, as the electrocardiograph, requires to appro-

priately place electrodes in direct contact with patients’ skin, often causing irritation. On the other hand,
contactless measurement of physiological parameters provides an unobtrusive and comfortable instrument for
subjects’ conditions monitoring, with application to home monitoring of aging people and in particular to
those suffering of heart disease. In this paper two contactless techniques are proposed, based on radar technol-
ogy and on video processing from an RGB camera. In order to validate their precision, the proposed methods
are compared with three wearable low cost devices, taken as a reference for the outcomes. The developed ap-
proaches prove to achieve excellent performances, with an estimated mean relative error of 0.55% with respect

to a commercial cardiac strap device.

1 INTRODUCTION

The Heart Rate (HR) measurement represents an im-
portant indicator of people’s health condition. In the
last years, research about contactless HR estimation
methods gained an increasing attention, especially
since they can represent a non-invasive alternative to
conventional devices to detect different pathologies
related to cardiac problems before getting a clinical
diagnosis. Clinical devices in fact are often expensive
and usually require the physical presence of patients
in the hospital environment, which may be a difficulty
especially for the elder people. Furthermore, clinical
examination are equipped with electrodes that may re-
act with the patient’s skin and in some case cause sig-
nificant damages. In addition other available contact
sensors require exact positioning, while contactless
methods allow to obtain a precise measurement also
for patients that are not completely autonomous. Ag-
ing population represents the category of people who
can take the most advantage of the use of contactless
HR monitoring devices directly in their homes, where
a complete electrocardiogram (ECG) recording may
not be easy to perform. A continuous HR contactless
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monitoring can find an application in several contexts,
for example in driving conditions (Lee et al., 2018), or
to indicate a mental stress state (Kumar et al., 2007).

The design of contactless HR detection algorithms
with a high accuracy is still an open problem. As
a benchmark, the reliability of their performance
is usually compared with those derived from stan-
dard methods, such as electrocardiography (ECG), or
from other provably reliable non-invasive technolo-
gies, such as wearable devices (Georgiou et al., 2018).

Several methodologies for contactless HR have
been proposed over the years. Consolidated sys-
tems exploit the use of the Microwave Impulse Radar
(MIR) (Michahelles et al., 2004) or the Ultra Wide-
band (UWB) radar (Paulson et al., 2005; Zetik et al.,
2007), which are non invasive and non contact meth-
ods based on very short radar impulses. These tech-
niques use a wider bandwidth than conventional radar
systems, enabling a positive impact on the informa-
tion content of the received signal, proportional to the
bandwidth of the low power transmitted signal. An
alternative solution is given by the use of automotive
radars. These sensors work in the mmWave range,
with very high bandwidth and low cost. Also thanks
to their operating frequencies, automotive Radars
have a very small dimension, thus allowing to eas-
ily use them for healthcare applications (Wang et al.,
2015; Hsu and Tseng, 2016).
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Another well-known short-range contactless HR
estimation approach is represented by image and
video processing (Li et al., 2014; Rouast et al., 2018;
Sanyal and Nundy, 2018). It is mainly based on the
detection of changes in the skin color due to the blood
flow, which is usually imperceptible to the human eye.
Since people’s faces are an uncovered area, the face
acquisition with an RGB camera is suitable for HR
extraction by video processing. The Eulerian Video
Magnification (EVM) method allows to enhance the
skin color due to the blood flow, and it is a widely
used approach in several studies (Alghoul et al., 2017;
Gambi et al., 2017; Bennett et al., 2017; Aubakir
et al., 2016).

Starting from the above considerations, this paper
develops and deepens the work shown in (Ciattaglia
et al., 2019), by the proposition of two methods to
estimate HR through different contactless technolo-
gies. In particular, we consider signals obtained from
an automotive radar and from video, which are elabo-
rated to detect the HR of subjects with different char-
acteristics. For the implementation of the proposed
methodologies we exploit low cost commercial de-
vices originally designed for other purposes, show-
ing that we are able to achieve good precision perfor-
mances. In order to estimate their accuracy, we com-
pare the results obtained with those measured with
more standard and provably precise contactless tech-
nologies, such as a pulse oximeter, a Polar wearable
sensor and a Garmin smartwatch, which can be easily
self-applied in a domestic context. Besides the mea-
surement of the average value of the HR in a fixed
interval, we also prove that by exploiting the consid-
ered contactless methodologies it is possible to assess
the time variation of the HR, achieving a small and in
some case negligible error with respect to more con-
ventional technologies.

2 RELATED WORK

The use of radar systems in contexts other than the
original one, such as the ambient assisted living, has
seen an important technological advancement in the
last years. Recently, these systems have attracted the
attention of the medical field, thanks to their ability
to provide high precision measurements at a reduced
cost. In particular, a special interest has raised about
the remote monitoring of vital parameters (Pisa et al.,
2016). In (Wang et al., 2013; Lin et al., 1979) vital
signs are extracted by using a Continuous Wave (CW)
radar, while the same analysis is performed through
an impulsive Ultra wideband (UWB) radar in (Ren
etal., 2016) and a Frequency-Modulated Continuous-
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Wave (FMCW) radar in (Wang et al., 2015; Mufoz-
Ferreras et al., 2019). The operational frequency of
this kind of radar is in the range 24-80 GHz (De Ponte
Miiller, 2017); the use of such high frequencies allows
measurements with good resolution, thus making it
possible to analyze variations in very small displace-
ments, such as those produced by the heartbeat.

Examples of remote monitoring of the heart pulse
through the Photoplethysmography (PPG) are given
in (Li et al., 2014; Rouast et al., 2018; Verkruysse
et al., 2008). The PPG signal can be extracted through
a pulse oximeter by exploiting a lightweight optical
device (Tremper, 1989) for measuring oxygen satura-
tion and heart beats in clinical use. Recently has been
proved that PPG signal can be measured using a dig-
ital camera and the ambient light as an illumination
source. When the digital camera is used to acquire
a video, Videoplethysmography (VPG) (Ruminski,
2016; Couderc et al., 2015; Gambi et al., 2017) is
defined as the signal derived by the RGB frame se-
quences processing.

In the paper here presented, we describe the VPG
signal extracted from the subjects’ face, using a face
detection process (Viola and Jones, 2004), through
the luminance component obtained by transforming
the RGB in YIQ (Y-luminance, IQ chrominance)
space color. The Regions of Interest Region of Inter-
ests (ROIs) are selected manually and they represent
a percentage of a detected face; these ROIs are ap-
plied for every subjects under tests in the same way.
Deep learning is exploited in (Hsu et al., 2017; Sebe
et al., 2019) to track the better facial ROI by using a
set of landmarks, but, differently from this work, the
authors use an approach based on Independent Com-
ponent Analysis (ICA) (Alghoul et al., 2017) or by
extracting the sample mean sequences of the R, G,
and B channels. On the contrary, in this study we
adopt the EVM approach to highlight the blood flow
after the heart pumping. The EVM method allows to
amplify the color values assumed by the pixels in a
specific frequency band. This means that our algo-
rithm is able to recognize a periodic variation in a se-
quence, and amplifies that variations in the frequency
range selected in the input.

The rest of the paper is organized as follows. In
Sec. 3 radar setup and signal processing are de-
scribed, also considering a Multiple-Input Multiple-
Output (MIMO) configuration, while in Sec. 4 the
video signal processing developed is presented. Sec.
5 contains the results obtained and the comparison be-
tween the considered measurement techniques. Final
considerations and remarks are provided in Sec. 6.



3 HEART RATE ESTIMATION
FROM RADAR

The use of radar systems to determine the physiolog-
ical parameters of a subject is implemented with the
application of a technology that comes from the au-
tomotive world. Automotive radars are in fact capa-
ble of achieving extremely high precision at reduced
costs. In our tests we exploit the AWR1843 radar
provided by Texas Instruments (Instruments, 2019), a
MIMO radar with a fully integrated system containing
a RF section, a DSP processor, an analog-to-digital
converter (ADC) and a micro-controller; 4 receivers
and 3 transmitters are available. A scheme of the de-
vice is reported in Fig. 1.

Receivers
T‘Y I((;\\ BUS LVDS DSP
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\ W and
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Figure 1: AWR1843 scheme.

A high precision in the definition of the target position
is needed for the subject’s HR detection, since, as de-
scribed in the following, the heart activity is studied
through the analysis of the phase of the signal Fast
Fourier Transform (FFT). Accuracy can be improved
by exploiting MIMO. Moreover, as discussed in (Lee
et al., 2019), MIMO turns out to be extremely effec-
tive for the simultaneous monitoring of the HR of two
subjects, thanks of the possibility of identifying the
angular dimension of the subject.

A description of the MIMO technology applied to
radar systems is contained in (Fishler et al., 2004).
Differently from classic communication systems ap-
plication, the main goal in a radar context is to in-
crease the angular resolution without adding com-
plexity to the system. As stated in (Jian and Stoica,
2009), the result is a virtual receiving antenna, whose
characteristics depend on the position of the transmit-
ter and the receivers.

3.1 Radar Signal Processing

As described in (Ciattaglia et al., 2019), the HR ex-
traction procedure from radar works as follows. The
radar transmits a sequence of chirps divided into
frames. Each chirp is designed to be able to pre-
cisely detect the position of a subject. It is possible
to use only one frame for each chirp, thus not cre-
ating a data overhead during the processing phase.
It is important to carefully set the duration of each
chirp and the number of the contained frames within
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it, since these values directly impact on the sample
rate of the HR. From (Instruments, 2019) the sam-
pling frequency along the slow time can be written as

k
tperiodicity ’
where k is the number of chirps inside one frame and
tperiodicity T€Presents the frame duration.

For a better target position identification the
MIMO technology is applied. Using this technique
is possible to identify not only the distance but also
the angle position, this is an improvement of the algo-
rithm accuracy (Ding et al., 2016; Xiong et al., 2018).

A Field Programmable Gate Array (FPGA) is
used to collect the samples of the beat signals from
the ADCs. These signals come from four receivers’
lines, and it is possible to store the samples in a data
cube. This cube is depicted in Fig. 2. Samples of
a single chirps are stored along the fast time, sam-
ples of different chirps are stored along the slow time,
while samples of different receivers are stored along
the spatial sampling. The fast time is used to detect
the range distance of the subject, the spatial sampling
and the slow time detect the angle and the velocity,
respectively.

ey

fsampling [HR] —

Fast Time

Figure 2: MIMO Data Cube.

By performing a bi-dimensional FFT on the Fast Time
- Spatial Sampling plane, we obtain information about
the subject position for each transmitted chirp. In our
tests the target is static and there is no great variation
in the FFT of the different chirps. In Fig. 3 we show
an example of this FFT, where the red square repre-
sents the subject.

Once evaluated the target position, it is possible to ap-
ply the algorithm for the extraction of the HR. The
displacement variation due to the heart contraction
is far below the radar range resolution, thus making
the phase analysis the only way of extracting the HR.
The HR in fact produces a phase modulation of the
FFT signal corresponding to the target position, as de-
scribed in (Ding et al., 2016). After this identification
is possible to extract the signal of interest along the
slow time. The information is inside the phase, for
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Figure 3: Subject position identification.

Table 1: Filters parameters.

| Parameter | Value \
Filter Type | FIR Equiripple
Sstopl 0.8 Hz
Spassi 1.1 Hz
Sstop2 2.5Hz
Spass2 2.8 Hz

this reason a phase extraction and unwrap operation
are needed. After having obtained the phase signal
we can filter it in the range of the heartbeat, i.e. be-
tween 60 beats/min and 150 beats/min. The values
used in our setting are reported in Tab. 1.

4 HEART RATE ESTIMATION
FROM VIDEO

This section describes the techniques and algorithms
applied for HR extraction through the video process-
ing of a subject’s face, by exploiting the face detection
and the slight variations in skin color, generated by
the blood flow in the tissues, amplified with the EVM
method. The entire algorithm is briefly presented in
Fig. 4.

The video is captured with GoPro Hero 6 with a
frame rate of 60 fps (2400 frames for a sequence of
40 seconds) and resolution 1920 x 1080 pixels. Each
frame composing the video is converted from RGB
to YIQ space color to process only the luminance sig-
nal (Y), which constitutes the Videoplethysmographic
(VPG) signal.

The face detection algorithm is derived by Vi-
ola and Jones approach. A face detector of at most
300 x 300 pixel is applied in order to extract the face
of the subjects under test. The variations in skin color,
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Figure 4: Main scheme of the video signal processing algo-
rithm.

Figure 5: ROI selection on a subject’s face. F stand for
Forehead, C for Cheek and N for Neck.

imperceptible to human eye, reveal the subject HR
thanks to the support of technological innovation. In
particular, in each frame of the acquired video, we
applied the EVM method (Wu et al., 2012), which al-
lows to amplify skin color with the blood flow follow-
ing the pumping of the heart, by deploying advanced
image processing techniques. The algorithm analy-



ses the sequences of frames by performing a spatial
decomposition and a time filtering to determine the
skin color changes in a specific frequency range. In
the spatial decomposition, realized with four levels of
a Gaussian pyramid in which the higher level is the
smallest one, each image is down-sampled so that,
starting with a level of 300 x 300 px, the higher level
has 18x18 pixel size. The time filtering is developed
on each spatial band with Infinite Impulse Response
(ITIR) band-pass filters to extract the frequency bands
of interest.

As regards the emphasis on the skin colours varia-
tion, the main principle underlying the EVM consists
in the amplification of the color values assumed by
the pixels in a selected area or ROIs, realized by a
specific parameter, i.e. the magnification factor or o-
factor, set to 50. The selected ROIs are constituted by
the forehead, cheeks and neck. The mean luminances
extracted in each ROI must be added up to realize a
total ROI and to process the VPG signal. As shown
in Fig. 5 ROIs are chosen by setting the percentages
of the box identified by the face detector and the ROIs
size are respectively 90 x 30, 30 x 30 and 30 x 26 pix-
els. The VPG signal corresponds to the average val-
ues of the Y-component of all the pixels values inside
the selected ROIs. We are able to extract the subject
HR by setting the plausible cut-off frequencies for a
healthy subject, which in this work correspond to (50
bpm/60) Hz for the lower and to (174 bpm/60) Hz for
the higher, and applying first a third order Butterworth
band-pass filter and then a FFT.

S EXPERIMENTAL RESULTS

Experimental tests were conducted at the ICT Labo-
ratory of the Polytechnic University of Marche on a
set of 15 Caucasian and Asian people of different age
and weight. Radar and GoPro Hero 6 were placed
on two tripods, radar at a distance of about 20 cm
from the subject’s chest and GoPro at about 50 cm
from the subject’s face. The subjects under test were
in a standing position. The used measurement setup
is depicted in Fig. 6. During the video acquisition,
the subjects were asked minimize their movements in
order to avoid noisy signals or face tracking errors.
Videos are captured in indoor conditions, hence we
used a standard lamp (see Fig. 6) in addition to the
ceiling light to better illuminate the subjects’ faces.

Radar configuration parameters are reported in
Tab. 2; it is possible to note that the heartbeat of the
subject is sampled with a frequency of 20 Hz, which
is a much larger value than Nyquist’s limit.

In Tab. 3 we report the characteristics of the sub-
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Figure 6: Measurement setup.

Table 2: RADAR parameters.

] Parameter \ Value \
Lchirp 15.7 ms
Bandwidth 3.99 GHz
Lperiodicity 50 ms
No. chirps in frame 1
No. samples in chirp 128
fsampling 4 MSps
Rinax 42184 m
fsamplingHR 20 Hz
Used TX and RX TX1/RX1-RX4

jects participating to the tests and in Tab. 4 the results
of the corresponding average heartbeat obtained with
both the considered methods, radar (indicated as R)
and video (V) processing, with respect to values given
by Pulse Oximeter (POx). Since the EVM method
amplifies the skin color, the subjects’ characteristics
are described to highlight any possible influence on
the HR estimation. People with beard or make-up
may generate a greater error in the VPG processing.
The average heartbeat has been evaluated by consid-
ering the peak value obtained after applying a FFT to
the entire signal. The peak value in frequency is then
multiplied by 60 to convert it in bpm.

In Figs. 7 and 8 we show an example of the am-
plitude (or luminance) evolution of the VPG signal as
a function of time, where 40 seconds of acquisition
are considered, and frequency for subject 14 in Tab.
4. Fig. 8 underlines the presence of a peak, which
corresponds to the maximum value of the HR, that is
equal to 92 bpm.

The relative percent errors Er% between different
methods shown in Tab. 4 are calculated as follows

[Ref — Al

Erd = =/ 21 00 2
1% =y 100, @)

where Ref is the reference value and A is the value
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Table 3: Characteristics of the subjects under test.

| S [Age[Weight]  Characteristics |
1] 22 66 Caucasian
2122 85 Caucasian, Beard
3| 37 75 Caucasian, Make-up
4 | 28 58 Caucasian, Beard
5127 54 Caucasian, Make-up
6| 26 54 Caucasian
7| 37 75 Caucasian, Tanned skin
8| 25 74 Caucasian, Beard
9124 75 Asian
10| 25 64 Caucasian
11| 45 70 Caucasian
12| 31 70 Caucasian, Beard
13| 29 63 Caucasian
14| 29 63 Caucasian
15| 36 58 Caucasian, Make-up
16| 29 50 Caucasian

Table 4: Tests Results.

’ S ‘ A% ‘ POx ‘ R ‘ Er‘P*RI% ‘ Erlpfvl% ‘
1|77 76 | 77 1.05 1.32
2199|102 |98.4| 3.53 2.94
3196 | 93 | 91 1.94 3.23
4165| 67 | 70 3.88 2.99
5|61 | 64 | 64 0.62 4.69
6|72 73 |73 0.27 1.37
7190| 93 |924| 0.65 3.23
8| 77| 72 | 71 1.67 6.94
9174 | 73 | 72 1.37 1.37
101 79| 81 | 83 222 247
11179 78 | 79 1.54 1.28
121103 | 103 | 104 0.97 0.00
13721 72 | 67 6.67 0.00
14192 | 93 | 82 12.26 1.08
15|/ 81| 83 | 80 3.13 241
161 70 | 71 | 72 1.41 1.41

estimated using the contactless approach. The Mean
Relative Errors (MRESs) (Srivastava, 2014), computed
by averaging the relative percentage errors Er%, be-
tween Radar and Pulse Oximeter and VPG and Pulse
Oximeter, are reported in Tab. 5, showing that errors
obtained are very similar. The small errors measured
also prove that both contactless methods can be used
as a valid alternative to the Pulse Oximeter.

Table 5: Results and characteristics of the subjects under
test.

MRE POx-R
2.76%

MRE POx-V
2.35%
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Figure 7: VPG signal extracted in terms of amplitude as a
function of time.
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Figure 8: VPG signal extracted in terms of amplitude as a

function of frequency. The peak at 1.526 Hz corresponds to

92 bpm.

A second kind of analysis is then carried out by
analysing the time evolution of the VPG and Radar
signals. As a reference, we considered the results
obtained from two additional devices, a Polar H7
Bluetooth smart heart rate sensor, in association with
the smartphone application Heart Rate Monitors, and
a Garmin Vivoactive 3 smartwatch. They are both
cheap but highly reliable HR monitoring devices.

The variability of HR is captured in the entire tem-
poral sequence according the approach described in
the following. Acquisitions of 40s were taken by si-
multaneously placing the Radar and the GoPro, wear-
ing the Polar using a chest strap and the Garmin
smartwatch. We investigated the FFT in the frequency
domain by segmenting the VPG and Radar signals in
the time domain in portions of 10 seconds, with 1
second of overlapping windows. The result is then
interpolated and filtered using a Savitzky-Golayand
(Theodor, 1996) filter, a Finite Impulse Response
(FIR) optimal filter that minimizes the least-squares
error in a polynomial fitting applied to noisy data. Fi-
nally, the outcome is compared to those extracted us-
ing the wearable devices.

The beats values resulted from the time domain
analysis are shown in Fig. 9. All the examined curves
lead to similar trends in their second part (which cor-
responds to 20-40 seconds of acquisition), although
the radar exhibits a maximum value slightly shifted



with respect to the other methods. However, we also
observe that radar trend significantly differs from the
others in the first 20 seconds of observation, and this
is probably due to the fact that the algorithm used for
radar signal processing is sensitive to the inevitable
micro oscillations of subjects in standing position. On
the other hand, the error measured on the radar is lim-
ited with respect to the Polar, which represents our
main and most precise reference, as shown in Tab. 6.

-- VPG
—Polar
----Garmin

o
o

Amplitude [bpm]
©
o

©
o

85 ‘ ‘ ‘ |
0 10 20 30 40

Time [s]
Figure 9: Comparison between contactless measurements
and wearable devices.

Tab. 6 also reports MREs calculated comparing dif-
ferent methods, where P stands for Polar sensor and G
for Garmin smartwatch. The minimum error achieved
between Polar and VPG signal proves that the video
contactless HR estimation represents a very precise
approach. Radar shows a greater error with respect to
other methods, but even in the worst case it remains
below the threshold of 3%, thus demonstrating good
overall performances.

Table 6: MRE between Polar (P), Garmin (G), VPG (V)
and Radar (R) estimated values. The first letter indicates
the reference device.

Methods compared | MRE value
P-G 1.74%
P-V 0.55%
G-V 1.93%
P-R 2.09%
G-R 2.92%
V-R 1.93%

5.1 Discussion

The proposed contactless approaches for HR mea-
surement have proved to be valid and effective meth-
ods, with the advantage of an ease-of-installation in
a home environment, thus allowing the monitoring
of the elderly people in a simple way to reproduce.
The cheapness of the commercial devices, such as the

Contactless Heart Rate Measurements using RGB-camera and Radar

Go Pro RGB camera or the radar used in this work,
makes also easy to reproduce the setup in different
rooms of the house, in order to extend the HR mon-
itoring to a domestic environment. The main error
sources of the considered measurements are proba-
bly represented by the noise caused by the subjects’
movements during the HR detection and by the dis-
tances between people and contactless devices. These
distances can be further reduced, especially in a do-
mestic scenario. In addition, the radar captures other
signals which overlap to the HR, being focused on an
area not sufficiently small. However, this problem can
be avoided by applying a proper filtering.

6 CONCLUSIONS AND FUTURE
WORK

Different contactless methodologies to estimate heart
rate have been proposed. The application of these
methodologies has relevance especially in contexts
where the user is not able to properly handle the
measurement devices, as the non-contact measure-
ment provides for the user a simple positioning, even
seated. We exploited low cost devices, in particular
an automotive radar and a commercial camera, to ex-
tract physiological parameters from a set of 15 sub-
jects with various characteristics. In order to validate
our results, we have compared them with provably re-
liable technologies and we have shown that it is pos-
sible to assess the time variation of the heart rate with
a small and in some case negligible error. The errors
of 0.55% obtained with VPG approach and 2.09% us-
ing radar, compared with the Polar H7, taken as ref-
erence device, have proven the system precision and
reliability of the developed methods. Further analy-
ses could involve the evaluation of the proposed ap-
proaches by using an extended data-set comprising of
different characteristics of the subjects, including eth-
nicity and lifestyle.
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