Root Cause Analysis and Remediation for Quality and Value
Improvement in Machine Learning Driven Information Models

Keywords:

Abstract:

Shelernaz Azimi and Claus Pahl
Free University of Bozen - Bolzano, Bolzano, Italy

Data Quality, Information Quality, Information Value, Machine Learning, Data Quality Improvement, Data
Analysis, Root Cause Analysis, Data Quality Remediation.

Data quality is an important factor that determines the value of information in organisations. Information
creates financial value, but depends largely on the quality of the underlying data. Today, data is more and more
processed using machine-learning techniques applied to data in order to convert raw source data into valuable
information. Furthermore, data and information are not directly accessed by their users, but are provided in
the form of ’as-a-service’ offerings. We introduce here a framework based on a number of quality factors for
machine-learning generated information models. Our aim is to link back the quality of these machine-learned
information models to the quality of the underlying source data. This would enable to (i) determine the cause
of information quality deficiencies arising from machine-learned information models in the data space and (ii)
allowing to rectify problems by proposing remedial actions at data level and increase the overall value. We
will investigate this for data in the Internet-of-Things context.

1 INTRODUCTION

Large volumes of data are today continuously pro-
duced in many contexts. The Internet-of-Things (IoT)
is a so-called big data context where high ’volumes’
of a ’variety’ of data types are produced with high
’velocity’ (speed), often subject to ’veracity’ (uncer-
tainty) concerns (Saha and Srivastava, 2014). An-
other aspect of this V-model for big data is ’value’
that needs to be created from data (Nguyen, 2018).

Raw data originating from various sources needs
to be structured and organised to provide informa-
tion that is then ready for consumption, i.e., provid-
ing value for the consumer. In recent times, machine
learning (ML) is more and more often used to derive
particularly non-obvious information from raw data,
thus enhancing the value of that information for the
consumer. Machine learning creates valuable infor-
mation when manual processing and creation of func-
tions on data is not possible due to time and space
needs. Value is created if this information aids in
monetising data in products or services that are pro-
vided. Information can also support organisations in
improving operational and strategic decision making.
Furthermore, self-adaptive systems can be controlled
by this information, even dynamically.

The impact of data volume, variety, velocity and
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veracity on the quality and value can be a challenge,
particularly if the information is derived through a
machine learning approach. In order to better frame
the problem, we need to define a quality framework
that links data and the ML function level. We aim here
to close the loop, i.e., mapping ML functional quality
problems back to their data origins by identifying the
symptoms of low quality precisely and map these to
the root causes of these deficiencies. Furthermore, re-
medial actions to solve the data quality problem shall
ultimately be proposed by our framework.

Our contribution in this paper consists of two
parts: firstly, a layered data and information archi-
tecture for data and ML function layers with associ-
ated quality aspects; secondly, a symptom and root
cause analysis, closing the loop to link observed qual-
ity concerns at ML model level to data quality at the
source data level that might have caused the observed
problems. This extends work presented in (Azimi and
Pahl, 2020a), in particular in the second aspect, but
also using a different core quality model here. The
novelty of our approach lies in, firstly, the layering
of data and ML model quality based on dedicated
ML function types and, secondly, when data quality
might not be directly observable, we provide a new
way of inferring quality problem causes when needed.
It also complements work in (Ehrlinger et al., 2019)
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where ML quality analysis is proposed for an Industry
4.0 use case, but without providing a comprehensive
quality framework. We report on case studies that we
are conducting with a regional IT solution and ser-
vice provider around Internet-of-Things applications
(IoT). IoT is a typical domain that satisfies the V-
model of big data. Therefore, we use IoT here as the
application context in order to make qualities and im-
pacting factors more concrete.

2 BACKGROUND
TECHNOLOGIES

With our investigation, we target here the quality of
information, specifically information that is created
from data by using machine learning techniques. We
will briefly introduce these aspects and also explain
the role of IoT as the chosen application domain here.
Data is a valuable asset in the IoT technology domain
as a source for creating information and knowledge.

Data Quality: refers to how well data meets the
requirements of its users. Each data user or consumer
expects the respective data to meet given criteria that
are essential for a task or objective. These criteria
(also referred to as aspects or attributes of data qual-
ity) are for example Accuracy, Timeliness, Precision,
Completeness, or Reliability.

Quality frameworks for data and information have
already been presented (O’Brien et al., 2013). There
is also a commonly accepted classification of (big)
data aspects that can help in organising and managing
the quality concerns, often called the 4V model (Saha
and Srivastava, 2014; Nguyen, 2018): volume (scale,
size), velocity (change rate/streaming/real-time), va-
riety (form/format) and veracity (uncertainty, accu-
racy, applicability). Our chosen IoT domain exhibits
all of those characteristics.

Machine Learning: (ML) techniques build a for-
mal model based on given data (the training data) aim-
ing to make predictions or decisions without having
been programmed to do this. Machine learning tech-
niques are typically classified into supervised learn-
ing, unsupervised learning and reinforcement learn-
ing. In supervised learning, the machine learning
algorithm builds a formal model from a set of data
that contains both the inputs and the desired outputs.
Classification and regression algorithms are types of
supervised learning. Classification is used when the
output is a discrete number and regression is used
when the output is a continuous one. In unsupervised
learning, applying ML builds a model from a set of
data that contains only inputs and no desired output
labels. Unsupervised learning algorithms are used to

find structure in the data, like grouping or clustering
of data points. Reinforcement learning algorithms are
given feedback in the form of positive or negative re-
inforcement in a dynamic environment.

In the Internet-of-Things (IoT), so-called things
(such as sensors and actuators) produce and consume
data in order to provide services (Pahl et al., 2018;
Azimi and Pahl, 2020b). In case the underlying data is
inaccurate, then any extracted information and knowl-
edge and also derived actions based on it are likely to
be unsound. Furthermore, the environment in which
the data harvesting occurs is often rapidly changing
and volatile. As a result, many characteristics such
uncertain, erroneous, noisy, distributed and volumi-
nous apply (Pahl et al., 2019).

IoT is the application context here. In order to fo-
cus our investigation, we make the following assump-
tions: (i) all data is numerical in nature (i.e., text or
multimedia data and corresponding quality concerns
regarding formatting and syntax are not considered
here) and (ii) data can be stateful or stateless. Thus,
10T is here a representative application domain for our
investigation characterised as a V-model-compliant
big data context with a specific set of applicable data
types, making our results transferable to similar tech-
nical environments.

3 RELATED WORK

The related work shall now be discussed in terms of
data level, machine learning process perspective and
machine learning model layer aspects separately.
Data level quality was investigated in (O’Brien
et al., 2013),(Casado-Vara et al., 2018),(Sicari et al.,
2016). In the first paper, data quality problems where
classified into 2 groups of context-independent and
context-dependant from the data and user perspective
and in the second one, a new architecture based on
Blockchain technology was proposed to improve data
quality and false data detection. In the third paper,
a lightweight and cross-domain prototype of a dis-
tributed architecture for IoT was also presented, sup-
porting the assessment of data quality. We adapt here
(O’Brien et al., 2013) to out IoT application context.
The ML process perspective was discussed in
(Amershi et al., ). A machine learning workflow with
nine stages was presented in which the early stages
are data oriented. Usually the workflows connected
to machine learning are highly non-linear and often
contain several feedback loops to previous stages. If
the system contain multiple machine learning compo-
nents, which interact together in complex and unex-
pected ways, this workflow can become more com-
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plex. We investigate here a broader loop from the
later final ML function stages to the initial data and
ML training configuration stages, which has not been
comprehensively attempted yet.

The machine learning model layer has been stud-
ied in multiple papers (Plewczynski et al., 2006),
(Caruana and Niculescu-Mizil, 2006), (Kleiman and
Page, 2019), (Sridhar et al., 2018), (Ehrlinger et al.,
2019). Different supervised learning approaches were
used. They observed that different methods have dif-
ferent applications and analysed in this context the
effect of calibrating the models via Platt scaling and
isotonic regression on their performance as a quality
concern.

In some of the above papers, specific quality met-
rics applied to machine learning techniques have been
presented. (Kleiman and Page, 2019) for example dis-
cusses the area under the receiver operating character-
istic curve (AUC) as an instance of quality for classi-
fication models. In (Sridhar et al., 2018), the authors
propose a solution for model governance in produc-
tion machine learning. In their approach, one can
meaningfully track and understand the who, where,
what, when and how a machine learning prediction
came to be. Also the quality of data in machine learn-
ing has been investigated. An application use case
was presented with no systematic coverage of quality
aspects. We aim here to condense the different indi-
vidual quality concerns in a joint ML-level model.

4 INFORMATION AND DATA
QUALITY: ANALYSIS AND
REMEDIATION

Information is created from data by organising
and structuring raw data that originates from data-
producing sources (e.g., sensors in IoT environ-
ments), thus adding meaning and consequently value
to data. We can illustrate the value aspect in differ-
ent [oT applications (we choose weather and mobility
here): (a) paid weather forecasting service, i.e., direct
monetisation of the data and information takes place
[weather); (b) long-term strategic decisions, e.g., city
planning, can be based on road mobility patterns [mo-
bility]; (c) short-term operational planning, e.g., event
management in city or region can be based on com-
mon and extraordinary mobility behaviour [mobility];
(d) immediate operation, e.g., in self-adaptive traf-
fic management systems such as situation-dependent
traffic lights [mobility].

In the remainder of this section, we introduce the
context of data and ML with the respective quality
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models in Subsections 4.1, 4.2 and 4.3, then present
in 4.3 the architecture of the feedback loop, address
the se analysis for observed quality problems in 4.5
and 4.6, and finally look into remediation and the au-
tomation of the process in 4.7 and 4.8.

4.1 Data and Machine Learning

Our central hypothesis is that information, as opposed
to just data, is increasingly provided through func-
tions and models created using an machine learning
(ML) approach. In many domains, such as IoT, there
is historical information available that allows func-
tions to be derived as machine learning models.

The ML functions fall into different categories.
We distinguish here the following ML function types:

* predictor: predicts a future event in a state-based
context were historical data is available.

e estimator (or calculator): is a function that aims
to calculate a value for a given question, which is
an estimation rather than a calculation if accuracy
cannot be guaranteed.

* adaptor: is a function that calculates setting
or configuration values in a state-based context
where a system is present that can be reconfigured
to produce different data.

4.2 Data and Information Quality

At the core of our framework is a layered data archi-
tecture, see Figure 1, that captures qualities of the data
and the ML information model layer. Machine learn-
ing connects the two layers.

The base layer is the raw data layer consisting
of unstructured and unorganised data, which would
come from IoT sources in our case. Following
(O’Brien et al., 2013), we can distinguish context-
dependent and context-independent data quality as-
pects. We adjust the framework proposed in (O’Brien
et al., 2013) to numeric data (i.e., we exclude text-
based or image data for example):

e Context-independent data quality: miss-
ing/incomplete, duplicate, incorrect/inaccurate
value, incorrect format, outdated, inconsis-
tent/violation of generic constraint

¢ Context-dependent data quality: violation of

domain-specific constraint

These form the lower data quality layer in Figure 1.
The upper layer of the model, at the top of Figure
1, is an ML-enhanced information model.
* To define a quality framework for the informa-
tion function, we considered as input for function
quality the following structural model quality:
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Figure 1: Layered Data and ML Information Model Architecture.

completeness, correctness, consistency, ac-
curacy and optimality

* Based on these we associate a primary function
quality aspect for each of the function types!:

— predictor: correctness, accuracy.
— estimator: effective, complete,

— adaptor: effective, optimal.

It is essential to assess the quality provided by the ML
models in order to provide value, which emerges in
the different types such as predictors, estimators or
adaptors. In Figure 1, we grouped source data into re-
ality and rules aspects (this is sometimes called the
intrinsic data quality category) and space and time
aspects (called the contextual data quality category).
We aligned the six individual qualities with these. At
the ML model layer, the three functions predictor, es-
timator and adaptor are shown, which each of them
having their primary quality concern attached.

In some situations, we need to refine the quality
classification. For the adaptor function, effectiveness
and optimality are criteria that often involve multi-
ple goals, e.g., for the primary goal ’effective’ for
one aspect (which could be a performance threshold
in a technical system), we could have as secondary
goal “optimality’ for another aspect (such as energy or
amount of resources sent to maintain performance).

1Other, so-called ethical model or function qualities
such as fairness, sustainability or privacy-preservation have
been introduced (Rajkomar et al., 2018). However, as there
is uncertainty about their definition, we will exclude these.

4.3 ML Models Quality

The function qualities are defined in Table 1. In prac-
tical terms, the complexity of the quality calculation
is of importance, since in an implementation the ML
function assessment would need to be automated: The
complexity of the quality assessment is a principle
concern. Furthermore, often we need to wait for an
actual observable result event (adaptor) as an exam-
ple. We will return to this automation aspect later.

Table 1: Information Quality Definitions.
Quality | Quality Definition
correctness | Correctness is a boolean value that
indicates whether a prediction was
successful
Accuracy is the degree to which a
prediction was successful
Effectiveness is a boolean value that
incdicates the correctness of a cal-
culation
Completeness is the degree to
which a estimator covers the whole
input space
Optimility is a boolean value indi-
cating whether the optimimal solu-
tion has been reached

accuracy

effective

complete

optimal
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Figure 2: Closed Feedback Loop.

4.4 Quality Analysis: Architecture and
MAPE-K Feedback Loop

Our objective is to analyse the reasons behind pos-
sible poor quality and performance of ML models
and to identify insufficient data qualities either in the
training data selection or the collected raw data as the
root causes of the observed ML quality deficiency.

Our proposed quality processing architecture —
shown in Figure 2 — implements the so-called MAPE-
K control loop for self-adaptive systems. As inputs
we have raw/source data from sources such as sen-
sors in the IoT case. the MAPE-K feedback loop
works as follows: Monitor: continuously monitor the
performance of the ML models; Analyse: analyse
the causes of possible quality problems; Plan: iden-
tify root causes and recommend remedial strategies;
Execute: implement the recommended remedies and
improvements. K represents the Knowledge compo-
nent with the monitoring data, analysis mechanisms
and catalog of proposable remedies. Output is an en-
hanced ML information model after improvement that
remedies the quality problems. This is a feedback
loop to control data and information quality.

4.5 Root Cause Analysis: Quality
Mapping from ML Model to Data

Within the quality processing architecture, the map-
ping of ML function quality to data quality is the core
of the MAPE-K Analysis stage. In order to illustrate
some principles, we select a few cases of mappings
of observed ML model problems to possible underly-
ing data quality concerns (root causes), see Table 2.
Some cases depend on whether the application con-
text is stateful or stateless as in the “outdated’ case.
Across the layers of the data and information ar-
chitecture, we have shown cross-layer dependencies.
In Figure 4, we can see a mesh of dependencies,
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Table 2: Information Quality (upper layer) to Data Quality
(lower layer) Mapping.

Information | Data Quality (Possible Root

Quality Cause)

(Observed

Symptom)

Predictor Possible  Causes: data in-

accuracy complete, data incorrect,
data  duplication, outdated.
Example: count/average services
per areas (hospitals) could suffer
from outdated or duplicate data

Predictor same as above

correctness

Estimator Possible Causes: outdated data.

effectiveness | Example: applies sometimes as in
heating systems in building, when
measurements are not reflect up-
to-date

Adaptor Possible  Causes: could be

ineffective caused by incorrect data format.
Example: Celsius vs Fahrenheit in
temperature measurements

with only adaptors not strictly requiring space qual-
ities (i.e., allow systems to work in the case of incom-
pleteness by not taking an action) and estimators not
essentially based on a state/time notion.

4.6 Possible Root Causes: Data in IoT

The dependency mesh in Figure 4 shows possible
causes of problems at the data layer. This can be
advanced one step by also looking at the causes of
data quality problems, which would in our case arise
from the underlying IoT infrastructure that provides
the raw data (Samir and Pahl, 2019). We analysed
possible causes and categorise them as follows:

* Deployment Scale. 10T is often deployed on a
global scale. Data comes from a variety of devices
and sensors. A large number of devices increases
the chance of errors and resulting low data quality.

* Resources Constraints. Things in IoT suffer of-
ten from a lack of resources (e.g. power, stor-
age, etc.). Their computational and storage capa-
bilities do not allow complex operations support.
Considering the scarce resources, data collection
policies, where trade-offs are generally made, are
adopted, which affect the quality of data.

* Network. Intermittent loss of connection in IoT is
frequent. IoT can be seen as a constrained IP net-
work with a higher ratio of packet losses. Things
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are often only capable of transmitting small-sized
messages due to constrained resources.

Sensors. Embedded sensors may lack precision or
suffer from loss of calibration or even low accu-
racy especially when they are of low cost. Faulty
sensors may also result in inconsistencies in data
sensing. The casing or the measurement devices
could be damaged due to extreme conditions like
extreme heating or freezing which can also cause
mechanical failures. The conversion operation be-
tween measured quantities is often imprecise.

Environment. The sensor devices are not only de-
ployed in safe environments. In order to monitor
some phenomena (e.g., weather), sensors are de-
ployed in environments with extreme conditions.
The maintenance of such sensors is rarely en-
sured considering the inaccessibility of terrains.
In those conditions, sensors may become non-
functional or unstable due to a variety of events
(e.g., snow accumulation, dirt accumulation).

Vandalism. Things are generally defenseless from
outside physical threats. In addition, their deploy-
ment in the open nature makes them susceptible
to vandalism. Such acts often result in render-
ing sensors non-functional, which definitely af-
fects the quality of produced data.

Fail-dirty. Here a sensor node fails, but keeps up
reporting readings which are erroneous. It is gen-
erally an important source of outlier readings.

Privacy Preservation Processing. Data quality
could be intentionally reduced in the context of
privacy preservation processing.

Security Vulnerability. Devices are vulnerable to
security attacks. Their lack of resources makes
them harder to protect from security threats (e.g.,
no support for cryptographic operations because
of their high consumption of resources). It is pos-
sible for a malicious entity to alter data in sensor
nodes causing data integrity problems.

Data Stream Processing. Data gathered by things
are sent in the form of streams to back-end appli-
cations which process them further. These data
streams could be processed for a variety of pur-
poses (e.g., extracting knowledge, decreasing the
data stream volume to save up on the scarce re-
sources). Here, data stream processing operators
(e.g., selection) could, under certain conditions,
affect the quality of the underlying data.

4.7 Remediation: Problem Causes and
Remedial Actions

The association of root causes allows us to use anal-
ysis results for remediation and improvement. Rec-
ommendations for remedies and improvement actions
can be given. Two principle recommendation targets
exist, indicated in Figure 2. Data collection: the sug-
gestion could be to collect other raw/source data (for
instance more, different or less data), guided by the
above problem causes in the IoT infrastructure do-
main. ML training: the proposition to configure other
ML training/testing data to be selected in the prob-
lem can be attributed to the ML training process rather
than the data quality itself.

4.8 Automation of Analysis and
Remediation

Another concern is how to automate the problem
cause identification. We propose here the use of sta-
tistical and probabilistic models, e.g., Hidden Markov
Models (HMM) allow us to map observable ML
function quality to hidden data quality via reason-
based probability assignment, which could address
the above assignment of root causes to symptoms.
The proposal would be a probability assignment of
the cause likelihood. This kind of implementation,
however, remains at this stage future work.

S VALIDATION AND
EVALUATION

ML functions provide information value for (i)
monetisation through services/products and (ii) for
decision support for strategic (long-term), operational
(mid-term) and adaptive (short-term/immediate)
needs. We have already used weather and traffic
data for motivation. In order to illustrate better and
validate our framework, we first discuss a more
detailed use case in Section 5.1, before looking at
some other evaluation criteria in Section 5.2.

5.1 Use Case Validation

We now detail the Mobility case further, which actu-
ally also involves weather data. This serves here as an
illustration, but also validation of our concepts.

5.1.1 Collected Data

The raw data sets from the traffic and weather sen-
sor sources are (1) road traffic data: number of ve-
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hicles (categorised), collected every hour and is ac-
cumulated, (2) meteorological data: temperature and
precipitation, collected every 5 minutes. From this,
a joined data set emerges that links traffic data with
the meteorological data. Since we cannot assume the
weather and traffic data collection points to be co-
located, for each traffic data collection point, we as-
sociate the nearest weather collection point.

5.1.2 Information Models and Their Value

Machine learning can in this situation be utilised to
derive different types of information: (1) the predicted
number of vehicles for the next 5 days at a certain lo-
cation; (2) the predicted level of traffic (in 4 categories
light, moderate, high, very high) for the next 5 days at
a certain location; (3) an estimation of average num-
ber of vehicles in a particular period (which needs to
be abstracted from concrete weather-dependent num-
bers in the data); (4) an estimation of the correct type
of the vehicle such as car or motorbike; (5) an adapta-
tion through the determination of suitable speed lim-
its, in order to control (reduce) accidents or emissions.

The ML model creation process can use different
techniques, including decision trees, random forests,
KNN, neural networks etc. This ultimately driven by
aneed for accuracy as a key quality concern. A model
will be created for each traffic location. ML model
creation (training) takes into account historical data,
which in our case is a full year of meteorological and
traffic data for all locations.

The purpose is to support the following objectives
across several value types, with objective and ML
function: strategic: for road construction based on
prediction/estimation; operational: for holiday man-
agement based on prediction; adaptive: for speed lim-
its based on adaptation.

5.1.3 Quality Analysis of ML Functions

We now select four functions, covering the three func-
tion types, that shall be described in more detail in
terms of their functionality and quality:

 Strategic [Estimator].

— Function: the long-term strategic aspect is
based on traffic, but not weather. The estimated
average number of vehicles over different peri-
ods is here relevant.

— Construction: supervised learning — classify.

— Quality: effective (allows useful interpretation,
i.e., effective road planning), complete (avail-
able for all stations)

* Operational [Predictor].
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— Function I: the operational aspect needs to pre-
dict based on past weather and past traffic, tak-
ing into account a future event (holiday period
here). Concrete predictions are traffic level and
traffic volume (number of cars)

— Construction: supervised learning — classify.

— Quality: correct (right traffic level is predicted),
accurate (number of cars predicted is reason-
able close to the later real value)

¢ Operational [Predictor].

— Function 2: a second operational function
could determine the type of car, e.g., if trucks
or buses should be treated differently

— Construction: unsupervised — cluster.

— Quality: correct (right vehicle is determined),
accurate (categories determined are correct for
correct input data)

¢ Adaptive [Adaptor].

— Function: a self-adaptive function that changes
speed limit settings autonomously, guided by
an objective (such as reducing accidents or low-
ering emissions).

— Construction: unsupervised learning — rein-
forcement learning.

— Quality: effective (speed reduction is effective),
optimal (achieves goals with proposed action)

5.1.4 Quality Root Causes in Data

The quality of the raw data can be a problem in the
following cases: incomplete: can arise as a conse-
quence of problems with sensor connectivity and late
arrival of data (causing incompleteness until the ar-
rival), duplicate: sensors might be sending data twice
(e.g., if there is no acknowledgement), incorrect: as
a consequence of sensor faults, incorrect format: if
temperature data is send in Fahrenheit instead of Cel-
sius as expected, outdated: if either the observed ob-
ject has changed since data collected (road capacity
has changed) or data that has arrived late, inconsis-
tent: where generic consistency constraints such as
"not null” in data records are violated.

5.1.5 Use Case Discussion

With this use case, we can validate the suitability of
our quality framework. The use case is sufficiently
rich in features to allow meaningful statements about
the framework: (i) all information value types (strate-
gic, operational, adaptive) are covered, (ii) all ML
function types (predictor, estimator, adaptor) are cov-
ered, and (iii) all ML function qualities are relevant
and applicable. In Table 3, the root cause analysis of
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Table 3: ML Model Quality Problem and Root Cause Analysis. Notes: 1 —for this supervised learning case, only true positives
and false negatives apply; 2 — Example: no complete record, e.g., for a specific period and varying weather conditions; 3 —

Example: no complete record, e.g., for a specific period none at all.

ML Func- | ML Quality | Reason — Data Quality Technical Root Cause (examples
tion / Model | Problem only)
Estimator accuracy’ raw data: completeness, accuracy, | completeness: sensor failure; loss
consistency of network connection
effectiveness” | training data: incomplete incomplete: similar situations not
covered in training data
raw data: accuracy, incompleteness | incomplete: sensor outages cause
records to be missing
completeness3 [as for effectiveness] [examples as above]
Predictor 1 accuracy raw data: completeness, accuracy completeness: no data for similar
situations available
training data: incorrect labelling similar relevant items are incor-
rectly labeled
correctness raw data: correctness correctness: sensor failure
Predictor 2 accuracy raw data: incorrect incorrect sensor data
completeness | raw data: completeness incomplete sensor data
Adaptor effective raw data sensor / environment failure
optimal training data: incomplete, incorrect | incomplete: not all relevant cate-
labeling gories are labeled in sufficient num-
bers in training data
raw data: incorrect caused by malfunctioning sensors

ML model quality problems for our use case is pre-
sented. The table here is not meant to be exhaustive,
i.e., does not reflect a comprehensive analysis of the
problem cases. The aim is to illustrate the possibility
of attributing data deficiencies and, if possible, under-
lying root causes to the ML model problems. A note
applies to the likelihood of these. The table reflects
the possible problem causes. An assignment of proba-
bilities would be possible if extensive experience with
monitoring and analysing these systems existed.

5.2 Technical Evaluation

The evaluation aims at validating the proposed quality
framework. Partly, the traffic use case we discussed
above serves as a proof-of-concept application. How-
ever, we also cover other criteria more systematically
and comprehensively.

The General Evaluation Criteria for our quality
framework are the following: (i) completeness of the
selected qualities at both data and information model
levels, (ii) necessity of all selected quality attributes,
i.e., that all are required for the chosen use case do-
mains, (iii) conformance of the mapping between the
layers, (iv) feasibility of automation and complexity
of function quality calculation, and (v) transferabil-
ity to other domains beyond IoT. The first, second
and fifth criteria have already been demonstrated else-

where (Azimi and Pahl, 2020a), where the basics of
the layered quality model were introduced (here we
add the close loop with the analysis and remediation
part as novel elements.

The Conformance of the ML model with the un-
derlying data sets is the key concern here in this inves-
tigation. This relates to a core property of ML mod-
els: accuracy, i.e., how well the model represents the
underlying real truth. This is largely linked to the ML
model construction through training. As said, it con-
cerns a key property, but since it requires the consider-
ation of concrete ML training details, this shall not be
discussed here in full detail. Some general statements
can, however, be made.

For a concrete application, the accuracy can be
measured through precision and recall. Precision
(positive predictive value) is the fraction of relevant
instances among the retrieved instances. Recall (sen-
sitivity) is the fraction of relevant instances that have
been retrieved over the total amount of relevant in-
stances. They are based on true and false positives
and negatives calculated by the model. The aim is
perfect precision (no false positives) and perfect recall
(no false negatives). This is application-specific, but
the metrics for their calculation are generally agreed.

Automation applies here to the automation of the
quality assessment, i.e., whether human intervention
is necessary for ML model assessment and subse-
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quent analysis and also the time aspect (whether as-
sessment is immediately possible). This applies to (i)
the initial ML model quality assessment (e.g., accu-
racy as described above), (ii) the mapping of model
quality to data quality through probabilistic models
as suggested, and (iii) root cause identification of data
quality deficiencies, also using probabilistic models.

It needs to be noted that some aspects such as
qualities of predictors and adaptors refer to future
events (an external event will have happened for pre-
dictors or a future system adaptation will have be-
come effective for adaptors). This still allows to make
quality assessments, but just not immediately. A de-
tailed coverage of this aspect is beyond the scope of
this paper and shall be addressed at a later stage.

6 CONCLUSIONS

Raw data is without additional processing of little
value. More and more, machine learning can help
with this processing to create meaningful information.
We developed here a quality framework that com-
bines quality aspects of the raw source data as well as
the quality of the machine-learned information mod-
els derived from the data, We provided a fine-granular
model covering a range of quality concerns organ-
ised around some common types of machine learning
function types.

The central contribution here is the mapping of
observable ML information model deficiencies to un-
derlying, possible hidden data quality problems. The
aim was a root cause analysis for observed symp-
toms. Furthermore, recommending remedial actions
for identified problems and causes is another part of
the framework.

Some open problems for future work emerge from
our discussion. The assessment of the information
model requires further exploration. We provide in-
formal definitions for all concepts, but all aspects be-
yond accuracy need to be fully formalised. The au-
tomation of assessment and analyses is a further con-
cern. In the paper here, we only covered the frame-
work from a conceptual perspective. A further part of
future work is to move the framework towards digital
twins. Digital twins is a concept that refers to a digital
replica of physical assets such as processes, locations,
systems and devices. These are often based on IoT-
generated data with enhances models and function
provided through machine learning. We plan to in-
vestigate deeper the complexity of these digital twins
and the respective quality concerns that would apply.
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