
A Framework for Creating Policy-agnostic Programming Languages

Fabian Bruckner1, Julia Pampus1 and Falk Howar2

1Data Business, Fraunhofer ISST, Emil-Figge-Strasse 91, 44227 Dortmund, Germany
2Chair for Software Engineering, TU Dortmund, Otto-Hahn-Strasse 12, 44227 Dortmund, Germany

Keywords: Usage Control, Data Sovereignty, Code Generation, Model-driven Software Development, Domain Specific
Language, Cross-compilation, Policy-agnostic Programming, Industry 4.0.

Abstract: This paper introduces the policy system of the domain specific language D◦ (spoken di’grē). The central fea-
ture of this DSL is the automatic integration of usage control mechanisms into the application logic. The intro-
duced DSL is cross-compiled to a host language. D◦ implements the policy-agnostic programming paradigm
which means that application logic and policy enforcement are considered separately during the development.
Both aspects are combined (automatically) in a later state. We propose the well-defined combination of black-
listing and whitelisting which we define as greylisting. Based on a simple example, we present the different
aspects of the proposed policy system. Extensibility of the policy system and D◦ is another central func-
tionality of the DSL. We demonstrate how the policy system and the language itself can be extended by new
elements by implementing a simple use case. For this implementation, we use a prototypically implementation
of D◦ which uses Java as host language.

1 INTRODUCTION

Nowadays, many business models are based mainly
on data handling and processing (Zolnowski et al.,
2016). Well-known examples for companies that
rely on data-driven business models are Facebook,
Google, and Uber. For this reason, data is evolving
into an increasingly important good. This in turn re-
quires that data is reliably protected, especially if the
data is shared or exchanged with different entities.
Usage control “as a fundamental enhancement of the
access matrix” (Sandhu and Park, 2003) can provide
the technical implementation for these requirements.

To provide a common solution for the different
entities facing the same challenges during data ex-
change, the International Data Spaces (IDS) have
been developed (Otto and Jarke, 2019). The main
goal of the IDS is to provide their participants a com-
mon ecosystem that ensures a secure and trustful data
exchange. Every participant can define rules that de-
termine how other participants can use parts of own
data. To match the specific requirements of different
domains, multiple verticalizations are developed. Ex-
amples for such verticalizations are the Medical Data
Space and the Logistics Data Space.

The IDS offer solutions for tracking and limiting
data usage (Schuette and Brost, 2018) as well as for

adding usage control to existing software (Jung et al.,
2014; Eitel et al., 2019). However, there is no solu-
tion to consider usage control when developing new
services to be used within the IDS.

In order to close this gap, we developed a do-
main specific programming language called D◦ (spo-
ken di’grē). One of the main goals of D◦ is to take
usage control into account from the beginning of soft-
ware development. In this way, the usage control con-
structs are directly integrated into D◦-executables. At
the same time, the correct usage of these mechanisms
should be simplified by using D◦.

D◦ is neither an interpreted language nor is it di-
rectly translated to machine code. Instead, the D◦-
compiler performs a translation to an arbitrary host
language. We developed a prototypically implemen-
tation which uses Java as host language. The gen-
erated host language code is later compiled to exe-
cutable code. This way, it is possible to use D◦ on all
platforms and machines that are able to run the host
language.

Different scenarios require different types of ap-
plications. For example, on the one hand, a multi-
user service that needs to be accessible from remote
machines may be best implemented as a REST-service.
On the other hand, for a data transformation that takes
place within a workflow on a single machine, a com-

Bruckner, F., Pampus, J. and Howar, F.
A Framework for Creating Policy-agnostic Programming Languages.
DOI: 10.5220/0009782200310042
In Proceedings of the 9th International Conference on Data Science, Technology and Applications (DATA 2020), pages 31-42
ISBN: 978-989-758-440-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

31

mand line tool is more suitable.
In order to make D◦ usable for all these different

scenarios, the code generation is capable of generat-
ing various kinds of applications in the host language.
The application type is determined by the configura-
tion which is part of the application code.

The focus of this paper is the policy system of D◦

and its different components. The policy system al-
lows to define custom policies which can be attached
to other language constructs. D◦ ensures that the re-
quired enforcement takes places in the correspond-
ing situations. We demonstrate how a combination of
black- and whitelisting can be used to obtain a very
generic enforcement algorithm that can be used for
various scenarios. We show that the proposed pol-
icy system has a structure that allows the creation of
policy-agnostic and highly extensible programming
languages. Using Java as an example, we show how
the features of a host language can be utilized by the
policy system by using cross-compilation.

Related Work. There are various existing ap-
proaches and solutions for usage control and policy
systems. JFlow extends the Java language by spe-
cific annotations in order to add the possibility for
statically-checked information flows (Myers, 1999).
In addition, it is extended by a byte code checker to
provide information flow checks on source code as
well as on byte code (Barthe et al., 2006). Since
JFlow is extending the Java language, there is some
overhead involved in using it. In addition, the user is
responsible for the correct usage of the JFlow mech-
anisms. The policy system, which we propose in this
paper, tries to remove much of the overhead and re-
sponsibility from the developer.

Another solution is Jeeves (Yang, 2015). Jeeves is
a policy-agnostic language for automatically enforc-
ing information policies. It can either be used stan-
dalone or embedded into a host language (Yang et al.,
2012). Jeeves has an available extension for faceted
values (Austin et al., 2013). One feature of Jeeves
is that it does not simple reject data flows which do
not comply to policies. Instead, the data can be mod-
ified in a manner that the affected policies are ful-
filled. The proposed policy system will not provide
such data manipulating features since it can lead to
unwanted behavior in some scenarios.

LUCON uses a label-based approach in order to
track and limit how data is used within distributed
systems (Schuette and Brost, 2018). Actions within
workflows can create, consume, and check the exis-
tence of labels which are attached to the data. In or-
der to efficiently use LUCON, profound knowledge
about the services, which shall work with labels, is

required. Otherwise it is not possible to define mean-
ingful and useful rules and labels. On the other hand
the proposed policy system does not require detailed
knowledge about the internal implementation of ele-
ments to be used correctly.

Another domain specific language for developing
data-centric applications is LIFTY (Polikarpova et al.,
2018). It follows the policy-agnostic programming
paradigm and uses program synthesis to patch the pol-
icy enforcement code into the application logic. This
application logic was previously implemented with-
out respecting policies. LIFTY focuses on informa-
tion flow and (unintentional) information leaks which
are prevented at compile time. The proposed policy
system is operating at runtime.

Outline. The rest of this paper is structured as fol-
lows. Section 2 introduces the example which is used
throughout the paper in order to better demonstrate
the different components of the proposed policy sys-
tem. Section 3 shows the different design goals that
were applied during the development of the policy
system. Section 4 introduces the different compo-
nents and functionalities of the policy system and how
the previously introduced design goals are fulfilled.

2 EXAMPLE

In order to provide a better understanding of D◦, we
start with a simple example that will be used through-
out this paper. The example is elaborated and men-
tioned at appropriate places in the paper.

CompA is a company that specializes in providing
backup services for its users. In addition, CompA is
involved in various IDS verticalizations as a partici-
pant. Therefore, CompA wants to develop a backup
service which is well-suited for usages within the
IDS.

CompA wants the backup service to provide an
HTTP-endpoint to which users can send files. These
files are stored on the backup server. The users have to
authenticate by using JSON Web Tokens (JWT) created
by CompA’s authorization server. The files can nei-
ther be overwritten nor deleted. Each user has a con-
tract with CompA. These contracts define how much
storage space the user can use for his or her backups.
There are no restrictions on the files that can be sent
to the backup service. Therefore, the only policy for
this scenario is that each user has to comply with their
contractually regulated quota.

Because the service has not been implemented
yet and there is a policy which has to be enforced,
CompA decides to use D◦ as programming language.

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

32

1 App configuration
2 namespace : example
3 name : backupService
4 port : 8080
5 url: backup
6

7 App code
8 [fileName = $FileName , fileContent =

$Base64] -> begin
9 result = $Text()

10 [result] = ProtectedBackupFile(
fileName , fileContent);

11 return [result]
12 end

Figure 1: Backup Service Developed with D◦.

The corresponding functionality for file retrieval will
not be covered within this example.

Figure 1 shows the D◦ implementation of the ser-
vice described above. The code for the service is
devided into two sections. The first section ranges
from line 1 to 5 and contains the application’s con-
figuration. Beside general configuration items for the
application name and namespace, the provided con-
figuration is used to determine the generated type
of application. Since the shown service has config-
uration items for a used port (line 4) and url (line
5), the compiler will generate a Data App with a
HTTP-interface. The service will be reachable at
${IP}:8080/backup. The second section of the code
goes from line 7 to 12 and contains the actual ap-
plication logic. The inputs of the service are de-
scribed in line 8. The given application has two in-
puts: An object of type FileName, named fileName,
and an object of type Base64, named fileContent.
A variable of type Text, named result, is declared
in line 9. The variable is initialized with the de-
fault value for the data type Text which is the empty
string. Line 10 contains the call of the activity
ProtectedBackupFile. The application’s inputs are
used as inputs for the activity as well. The application
returns a single value of type Text which is written
to the previously declared variable. The result is re-
turned to the caller in line 11.

Although the description of the example contains
a policy which needs to be enforced by the applica-
tion, the actual code lacks matching source code for
policy enforcement. This is because the policy defi-
nition and enforcement code is not part of the appli-
cation itself. The application logic and policy code
will be combined automatically during the compila-
tion. This is a central feature of D◦ and will be de-
scribed in the following sections.

3 DESIGN

Access control is not capable of fulfilling the re-
quirements of modern applications regarding the se-
curity of used data (Sandhu and Park, 2003; Park and
Sandhu, 2004; Lazouski et al., 2010). For example,
nowadays, it is not sufficient to use policies which de-
fine who is allowed to access specific data.

“In today’s highly dynamic, distributed en-
vironment, obligations and conditions are
also crucial decision factors for richer
and finer controls on usage of digital re-
sources.” (Sandhu and Park, 2003)

To match these new requirements, the ABC mod-
els for usage control have been developed (Park,
2003). Access control uses attributes of subjects and
objects in order to determine if specific resource ac-
cesses are permitted. The ABC models extend the tra-
ditional access control by obligations and conditions.
That way, it is possible to not only make access based
decisions. Rather, it is possible to define rules which
apply for the usage of resources.

At the same time, realistic and useful usage poli-
cies can be quite complex (Zdancewic, 2004). Policy
systems, that are capable of enforcing many different
kinds of policies, use rather low levels of abstraction
within policies. This prevents ambiguities regarding
the implementation and simplifies the implementation
of the system since each individual enforceable ele-
ment is rather simple. At the same time, this means
that policies have to be constructed with the primitives
provided by the policy system. Based on that, defin-
ing a policy that allows to send aggregated data to all
users and unedited data only to specific ones may not
be an easy task.

In addition to the increased requirements, the
complexity to implement correct solutions for pro-
tecting data has increased. There are many differ-
ent types of policies which may require very different
checking and enforcement logic. These policies may
have to be enforced at different times and may get
combined in order to form more complex policies.

While solutions that allow to extend existing soft-
ware by usage control are required, the problem can
be handled differently for software which gets devel-
oped in the context of these new requirements. It is
possible to consider usage control right from the be-
ginning of the development and integrate it directly
into the application. This could be achieved by manu-
ally implementing the required handling and enforce-
ment of policies, or by using middleware. Both ap-
proaches can be very cumbersome and require expert
knowledge in order to create well-functioning sys-
tems. A better solution may be to integrate the re-

A Framework for Creating Policy-agnostic Programming Languages

33

quired usage control concepts directly into the used
programming language and hide the complexity of us-
age control as much as possible from the developer.

In order to address the presented problems, we de-
veloped the domain specific programming language
D◦. It aims at the development of data process-
ing applications (so called Data Apps). D◦ is cross-
compiled to a host language. Most high-level pro-
gramming languages can be used as host language.
For evaluation purposes, we implemented a prototype
which uses Java as host language. During the compi-
lation, the language’s policy system is integrated into
the application. The usage control system of D◦ aims
an easy usage. We identified a set of design goals for
the policy system of D◦ which will be covered in the
following paragraphs.

3.1 Policy-agnostic

The policy-agnostic programming paradigm is based
on the separation of program code and policies which
need to be enforced and was introduced as part of
the programming language Jeeves (Yang, 2015; Yang
et al., 2012). The paradigm aims at the usability and
enforcement of information flow policies. The pro-
gram code and the policies are combined during a
later stage (runtime or compile time) to ensure that
the usage control policies are enforced in all neces-
sary situations. For the developer, however, there is
no difference whether there are policies or not. D◦

adapts the policy-agnostic programming paradigm for
multiple reasons.

The most important one is that it allows to form
different groups of developers with different skills.
While a policy expert can implement usage control
policies, a developer can use D◦ to develop Data
Apps. Both of these two user groups can work in-
dependently. The only situation where the two user
groups may have to interact is when application logic
and usage control concepts need to be combined.

In addition, the policy-agnostic programming
paradigm can prevent errors because the code re-
quired for policy enforcement is automatically gen-
erated, making it less prone to human error.

3.1.1 Example

It is easy to see how D◦ implements the policy-
agnostic programming paradigm if we take a look at
the example introduced in Section 2.

Separation of Application Logic and Policy En-
forcement. Figure 1 in Section 2 shows the example

implemented with D◦. Besides the application con-
figuration, the application code consists of a variable
declaration, a single statement that creates a backup
of the given file, and a return statement that returns
the result of the backup creation (e.g. success).

Each D◦ application code has a special preamble
which is used to configure the application. It consists
of an arbitrary number of key-value pairs which can
be set based on the individual requirements. In the
application’s code, there is no reference to the policy
required to enforce the previously defined behavior
regarding quotas and different users.

3.2 Adjustable Enforcement

When it comes to the enforcement of usage control
policies, a defined process is necessary. This is impor-
tant to ensure that it is always clear and reproducible
why a specific decision was made by the enforcement
logic.

Most common policy enforcing systems either
use whitelisting or blacklisting for their enforcement.
This has implications on the policies, as well as on
the behavior in case there are no applicable policies.
Depending on the requirements of the used system,
as well as the individual use case, either of these
approaches may be most appropriate. For example,
on the one hand, an application that performs anal-
ysis on critical business data is a good candidate for
whitelisting, since all actions that are not explicitly
allowed will be prohibited. On the other hand, a ser-
vice which does statistical evaluation for some gen-
eral, non-critical data is a good candidate for black-
listing. That way, only the restrictions for this service
are expressed and enforced.

Choosing the correct type of enforcing is all about
determining whether falsely allowed or prohibited ac-
tions are less problematic. In the course of this, errors
are a result of policies which are enforced and do not
match predefined requirements.

Because the developed policy system should be
flexible in order to be applicable for as many use cases
and scenarios as possible, a combination of whitelist-
ing and blacklisting is used. Basically, a well-defined
process is used to avoid any kind of ambiguities. That
way, the decisions made by the policy enforcing are
reproducible as well as predictable. This is crucial for
the creation of an easy to use policy system.

3.3 Extensibility

It can be observed that well-known and sound meth-
ods like e.g. the access matrix do not meet the re-
quirements of modern systems and applications and

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

34

therefore need changes and enhancement in order to
do so (Sandhu and Park, 2003; Katt et al., 2008; Park,
2003; Park et al., 2004). This is correct, as these
methods only allow a limited number of decisions and
therefore do not meet current requirements. For ex-
ample, a system designed solely to determine whether
access to resources should be granted cannot be used
to restrict usage after access has been granted.

To provide a policy system which can adapt new
requirements, at least to some extend, the proposed
policy system is designed with a high amount of ex-
tensibility. Users should be able to both define new
elements within the policy system and add completely
new elements to the system.

While this applies to the policy system of D◦, it
is also a requirement for the language itself. In this
way, D◦ can easily be adapted for usage in different
domains.

4 POLICY SYSTEM

As mentioned before, one key design decision for any
policy enforcing system is the enforcing algorithm,
which also defines what type of policies the system
can handle. If a policy system will be used within
known scenarios and environments, it is feasible to
find a good matching solution for the system. Since
D◦ aims at fitting as much scenarios and domains as
possible while providing a solid and expressive policy
system, a combination of whitelisting and blacklisting
is used for the policy system of D◦.

4.1 Separation of Concerns

In order to provide the separation of application logic
and policy enforcement, the proposed policy system is
based on building blocks for different language con-
structs which are combined to achieve the desired be-
havior. Each building block provides a definition as
well as an implementation, if needed. There are vari-
ous types of building blocks available, e.g. for activ-
ities, policies, and data types. These building blocks
are the concepts for language elements within D◦ and
cannot be used directly within Data Apps. Activities
are the atomic element of executing application logic
within D◦.

Figure 2 shows how the different types of building
blocks are combined in order to form instances which
are finally used within the control flow of Data Apps.

To make these building blocks usable within ap-
plications, it is necessary to create so-called instances
out of the concepts. The concepts form a meta-model

Figure 2: Composing Building Blocks.

of available elements while the instances are the ac-
tual model of usable elements which can be used
within Data Apps. These instances refer to used con-
cepts, additionally required data (e.g. parameter bind-
ings), and, if available, establish a connection to the
implementation. During the definition of some types
of building blocks (e.g. for activities), it is possible to
reference instances of policy building blocks which
need to be enforced during the execution.

With this approach, it is possible to develop and
maintain policies and other language constructs com-
pletely separate from each other. The policies, which
are attached to other building blocks within instances,
are hidden to the developer who is using D◦. Solely
the base building block (e.g. an activity) is visible to
the user. That way the policy-agnostic programming
paradigm is implemented within the proposed policy
system.

4.1.1 Example

The various steps necessary to create usable instances
from building blocks can be illustrated using the ex-
ample presented in Section 2.

Composition of Building Blocks. Since there is
only a single logical function (backup file) and a sin-
gle policy (comply with quota) within the example,
we only need one activity and a single policy to pro-
vide the required functionality. All elements within
D◦ require a definition which makes them known to
the compiler and usable in applications. In addition,

A Framework for Creating Policy-agnostic Programming Languages

35

1 BackupFile:
2 degree.Activity@BackupFile:
3 name:
4 Identifier: "BackupFile"
5 inputParameters:
6 degree.Parameter:
7 - name:
8 Identifier: "fileName"
9 type:

10 Type: "FileName"
11 - name:
12 Identifier:"fileContent"
13 type:
14 Type: "Base64"
15 outputParameters:
16 degree.Parameter:
17 - name:
18 Identifier: "result"
19 type:
20 Type: "Text"

Figure 3: Definition of the File Backup Activity.

an implementation is required in case the element
should perform any logic.

Activities within the context of D◦ are atomic
building blocks that are responsible of providing ap-
plication logic. The described example requires only
a single activity that stores files on the disk to meet
the requirements. It is necessary to provide a defini-
tion of the activity by using e.g. yaml. Among other
(optional) things, it is required to specify input and
output parameters for activities by name and type as
well as the activity’s name itself. The activity defini-
tion shown here is simplified at some points in order
to reduce the complexity and keep the focus on the
important aspects of this paper.

The activity used in the example has the file name
and file content as input parameters and returns a sin-
gle value which contains information about the result
of the execution. The full definition, that contains all
the stated information, can be found in Figure 3.

While the activity could be instantiated on its own
and used in applications afterwards, we need a policy
to provide the required functionality. The definition of
the required policy uses the same syntax and similar
constructs like input and output parameters. Because
of space restrictions this definition as well as instan-
tiations are not shown here. The same applies to the
implementation of the used policy.

Since data on the available quota for different
users is obtained at runtime from special informations
points provided by D◦, the definition consists basi-
cally only of the policy name.

After the policy and activity have been defined,
it is necessary to create instances from these defini-
tions which can be used within the example applica-

tion. First, the policy has to be instantiated in order to
be usable within the activity. The instance declaration
for the policy uses the same syntax as the definition
and has to refer to the policy definition which is go-
ing to be instantiated.

When policy instances are created, it is possible
to bind input parameters of the policy to static values.
This can be useful in many situations, but is not used
in the example. If the example would have been de-
signed as a single user system, the quota of this single
user could be an input parameter of the policy which
is set at the time the instance is created.

The final step is to create an activity instance
which contains the policy instance. The creation of
activity instances is a critical aspect in D◦ as this is the
point where application logic and policy enforcement
are combined. According to the policy-agnostic pro-
gramming paradigm, these two parts of D◦ are con-
sidered separately.

The activity definition in Figure 3 is used by the
type system of D◦. This system is used during the de-
velopment to define all data types, activities, and poli-
cies (as well as instances for activities and policies).
During runtime the type system is resposible for the
creation and management of element instances.

The type system used for D◦ aims to define ab-
stract and domain-specific types and functionalities
instead of technical types and functions that may have
direct hardware support. In most cases, these repre-
sentations are not space efficient, but this is not the
goal of the used type system. It supports complex sub-
and supertype relations (e.g. multiple supertypes) as
well as the validation of data type instances in writ-
ing operations. Within the used type system, new ele-
ments are defined by providing a textual definition in
e.g. JSON or yaml.

4.2 Greylisting

The proposed policy system allows to either use
whitelisting, blacklisting, or a special combination of
both which we define as greylisting. It is important to
not mix up the D◦-term greylisting with the approach
to detect and prevent spam emails. As can be seen
in Figure 4, there are various layers involved in the
policy enforcement of D◦. The next paragraphs will
give a description for each of the layers, starting at the
bottom layer.

The policy system of D◦ allows to define policies
for APIs (e.g. network or I/O) as well as general at-
tribute based policies (e.g. time constraints & role
requirements). Therefore, the lowest level within the
context of the proposed policy system is formed by
the APIs of the host language to which D◦ is cross-

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

36

Figure 4: Greylisting Enforcement.

compiled. While the prototype-implementation of D◦

is cross-compiled to Java code, any other general pur-
pose programming language can be used as host lan-
guage for D◦. The only requirement to the host lan-
guage is that the APIs to be protected must be inter-
ruptible. The benefit when using Java as host lan-
guage is that various APIs (e.g. network and file I/O)
are already instrumented in order to allow the Java
security manager to check for policies. Before any
method of these instrumented APIs is executed, the
security manager is asked for permission. D◦ uses the
same concept and therefore, the prototypically imple-
mentation makes heavy use of a custom security man-
ager. For other host languages this feature has to be
implemented.

The next layer within the policy system is formed
by the atomic execution unit of D◦: the activity. Each
activity corresponds to an arbitrary complex set of
code in the used host language. The only requirement
to the host language code is that it must comply to
given constraints (e.g. interfaces) to allow correct ex-
ecution within D◦ applications. Therefore, any activ-
ity can cover none, one, or multiple endpoints of the
instrumented host language APIs.

If there are no policies defined, the default behav-
ior of the policy system is used. Every access to the
APIs of the host language is allowed. This complies
to the policy-agnostic programming paradigm since
developers can use the policy system without any kind
of policies at all and do not have to make any special
assumptions.

To support the classic blacklisting, the policy sys-
tem allows the definition of prohibition policies (e.g.
prohibition to write to a certain folder or prohibition
of action for certain users). These policies override
the default behavior and can, if there are no allow-
ing policies, cancel the execution if a forbidden action
should be executed.

Since whitelisting may be more appropriate for
certain use cases, it can be used within the D◦ policy
system. Within the proposed policy system, the poli-
cies that allow actions take precedence over all other
policies. For example, if there is a prohibiting pol-

icy that prohibits writing files at all, and an allowing
policy permits writing to the user’s home folder, the
user can write to his or her home folder despite the
prohibiting policy.

We define this controlled combination of white-
and blacklisting as greylisting. The set of all policies
for a given situation is called greylist. The system is
flexible enough to also use normal whitelisting and
blacklisting. If there are only prohibitive policies, the
system operates like a normal blacklisting system. If
there are policies that prohibit all actions in combina-
tion with allowed policies, the resulting enforcement
is a classic whitelisting approach. The policy system
provides special policies that prohibit all actions and
thus easily switch to whitelisting.

Besides branching control flow elements, every
application developed with D◦ consists of an arbi-
trary amount of activities that are executed sequen-
tially. Each of these activities may have attached poli-
cies and may or may not use functions from protected
APIs. The type and scope of policy enforcement is
therefore different for each activity within the appli-
cation.

During the execution of such Data Apps, there
are various situations where policy enforcement is re-
quired. On the one hand, policies can be attached to
activities in order to enforce pre- and postconditions.
On the other hand, each activity can access the pro-
tected APIs of the host language. When this happens,
execution is interrupted and the policies attached to
the activity are evaluated to decide whether the action
is allowed or not, using the greylist enforcement de-
scribed above.

4.2.1 Example

The different enforcement types become clearer when
we apply them to the example from Section 2.

Different Enforcement Types within the Example.
The example uses a single policy which can either be
defined as whitelisting or blacklisting policy. In gen-
eral, it is possible to translate whitelisting policies into
blacklisting ones and vice versa. When it comes to the
choice between white- and blacklisting, the decision
is not based on expressiveness. Rather, the choice is
based on whether the definition of white- or black-
listing is simpler for the given scenario and if false
positives (allow actions that should be forbidden) or
false negatives (deny actions that should be allowed)
is worse in the given scenario.

If whitelisting is to be used for the example, two
policies are required. The first one has to prohibit
all file writing actions. The special prohibit-all pol-

A Framework for Creating Policy-agnostic Programming Languages

37

icy provided by D◦ can be used for this. The second
one has to check the available quota for the request-
ing user and allow the file storage if there is no policy
violation (exceeding the quota).

In case blacklisting is used, a single policy is suf-
ficient to fulfill the requirements. The policy would
check the available quota on requests, similar to the
one for whitelisting. However, instead of allowing re-
quests that do not exceed the quota, all requests which
exceed the quota are rejected.

4.3 Language Extensions

D◦ is already a domain-specific language, but its do-
main is the general task of data processing. Therefore,
D◦ is not equally well-suited for different specific do-
mains (e.g. health care or logistics). The problem is
that each domain has its own requirements for data
types, activities, and perhaps even policies.

In order to address this problem, D◦ allows easy
extensions of all relevant subsystems (e.g. data types
& activities). This way, it is possible for users of
D◦ to add missing language elements to the language
and ensure that D◦ can be used for their specific sce-
nario. To create a custom extension which can be used
within D◦, it is necessary to create definitions and/or
instances for the new language elements. Depending
on the added elements, implementations must also be
provided. The way definitions and instances are cre-
ated is very similar for all subsystems. In addition,
the set of rules to be observed when providing im-
plementations for language elements is similar for the
different types of language elements.

4.3.1 Example

There is an example on how to define new elements in
Section 4.1.1. In the following, we take a look on how
to provide the implementation for the activity used in
the example.

Implementing Activities. In addition to its defini-
tion, each activity has to provide an implementation
that is executed within the applications. The exam-
ple activity is implemented in Java. To ensure correct
functionality, the implementation must use a special
annotation and implement the activity interface. In
this way, it is possible to dynamically find, load, and
execute the activity implementation. The rules which
have to be fulfilled may differ for different host lan-
guages and therefore only apply to the Java prototype.

Figure 5 shows the implementation of the backup
service activity. Besides the handling of input and
output variables, there is only one single method call

that persists the given file and returns a message in-
dicating the result. This message can indicate both
success and failure, for example, if the file name is
already in use.

There is another important detail relevant to policy
enforcement: file writing is not done by using a stan-
dard Java API like java.io.FileWriter. Instead,
a special API provided by D◦ is used. The methods
thus provided can collect additional metadata. For
example, it is possible to determine how much data
should be written to a file before the actual write oper-
ation or how much data should be sent over an HTTP-
connection before sending.

Internally, the D◦ APIs utilize the standard Java
APIs. The decision which APIs are provided by D◦

to collect additional metadata is based the APIs D◦

wants to cover with policies. The Java Security Man-
ager is a feature since version 1 of the Java Develop-
ment Kit (JDK) and allows to restrict access to various
APIs (e.g. file and network) by using special policies
which are passed to the executing Java Virtual Ma-
chine. The prototype implementation of D◦ utilizes
this Java feature since it simplifies the implementa-
tion significantly. Since the policy language used for
the Java policies is too limited for the intended scope
of D◦, only the interface of the original security man-
ager is used in order to utilize the instrumentation of
various Java APIs. The prototype provides a custom
implementation of the security manager and is there-
fore capable of enforcing D◦ policies in these situa-
tions. In addition, it is possible to restrict the amount
of the used security manager’s intervention points.

APIs that are instrumented with the security man-
ager are called protected APIs in the context of D◦.
Each time a protected API method is called, the exe-
cution is interrupted and the security manager can al-
low or deny execution. In combination with the meta-
data collected within the D◦ versions of the protected
APIs, many policies can be checked and enforced.

Using the D◦ APIs is not optional and direct ac-
cess to the protected APIs is blocked by performing
stack trace analysis at runtime. The same stack trace
analysis ensures that the security manager ignores the
boilerplate code generated for each Data App.

4.4 Enforcement

As a result of the policy-agnostic programming
paradigm, the users of D◦ can not evaluate where the
policies may be enforced or whether they will be en-
forced at all. Nevertheless, a well-defined process of
where and when policies are enforced is essential in
order to ensure the functionality of the policy system.
One part of this process is implicitly defined by the

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

38

1 @ActivityAnnotation("BackupFile")
2 public class BackupFile extends

BaseActivity {
3 @Override
4 public OutputScope run(InputScope

input) {
5 String fileName = input.

getValues["fileName"].read()
;

6 String fileContent = input.
getValues.get("fileContent")
.read();

7

8 Instance result =
DegreeFileOperations.
writeStringToFile(fileName ,
fileContent);

9

10 OutputScope output = new
OutputScope();

11 output.getValues.put("result",
result);

12

13 return output;
14 }
15 }

Figure 5: Implementation of the Backup Service Activity.

different parts of the policies.
Each policy consists of three different parts. The

precondition, the security manager intervention, and
the postcondition. While it is not visible from the
D◦-code, each activity call in the generated code is
performed by a so-called sandbox. Within the sand-
box, each activity call is encapsulated with code for
enforcing pre- and postconditions of all policies at-
tached to the activity. These policies are accessible
because they are attached to the activity instance. If
the validation of any precondition fails due to policy
validations, the execution is canceled.

After the preconditions have been validated with-
out errors, the activity logic is executed. There is no
policy enforcing code within the activity logic, but,
based on the actual code of the activity, the execu-
tion can be interrupted by the security manager. This
happens every time a method of the protected APIs
is called. The security manager retrieves all policies
from the currently executed activity and executes their
evaluateSecurityManagerIntervention methods. Af-
terwards, the collected permissions and prohibitions
are evaluated in order to decide whether the execu-
tion must be canceled or not. This interruption by the
security manager can occur as many times as desired
during the execution of the activity logic and depends
only on the activity code.

After the execution of the activity logic is finished,
the postconditions of all policies attached to the activ-
ity are evaluated. It is important to note that the post-

Figure 6: Code Generation for Activity Calls.

conditions are evaluated after the execution of the ac-
tivity logic. Depending on the scenario, this may be
problematic since the activity has already been exe-
cuted and D◦ does not provide any kind of rollback
functionality. For example, on the one hand, if an ac-
tivity sends data to another machine, this can be crit-
ical. On the other hand, if an activity collects data
from a database and the policy defines that only a cer-
tain format is allowed as return type, the postcondi-
tion is the earliest point where this can be checked
and violations of this policy do not have such drastic
consequences.

The generated code for pre- and postconditions
can be compared with an aspect from aspect-oriented
programming. An around advice would be used with
a join point on the activity’s logic method. That way
the same behavior can be achieved.

In case the policies need to access parameters of
the activity, they have to be mapped when the activity
instance is created. In this way, the required param-
eters are available as normal inputs within the policy
methods. If at any time the execution has to be can-
celed due to policy validations, an error is returned
and presented to the user.

Figure 6 shows a block diagram which illustrates
what code is generated for a single activity call. The
whole diagram uses pseudocode which is shortened in
order to illustrate the code generation. It can be seen
that, in addition to the actual activity call, all four re-
maining (red) nodes are policy code that is generated
to enforce policies.

4.4.1 Example

Since the different methods of policies and their pur-
pose can be confusing at first, we demonstrate the cor-
rect application using the example from Section 2.

A Framework for Creating Policy-agnostic Programming Languages

39

Figure 7: Composing Building Blocks.

Policy Execution Points. As mentioned above,
there are three different methods that can provide en-
forcement logic within policies: the precondition, the
postcondition, and the security manager intervention.
All three methods have to be implemented when the
implementation for a policy is created.

The precondition and postcondition are similar re-
garding their interpretation. They are evaluated be-
fore or after the execution of activities. They return
a boolean value that indicates whether the policy is
fulfilled. The return value false would stop the exe-
cution immediately.

The third method of the policy API is the inter-
vention of the security manager. Each time a method
of the protected APIs is called, the execution is inter-
rupted and the security manager has to decide if the
execution should continue. In these situations, all ap-
plicable policies have the ability to create permissions
and prohibitions that are taken into account when the
security manager decides whether the requested ac-
tion is allowed to be executed.

Thus, in contrast to the pre- and postconditions,
the execution is not discretely canceled due to policy
validations. The execution would be canceled later
during the evaluation of all prohibitions and permis-
sions by the security manager. In case the execution
should nevertheless be terminated immediately, a spe-
cial exception can be used. This behavior is necessary
to implement the greylisting enforcement.

A block diagram showing the control flow for the
execution of an activity with attached policy can be
found in Figure 7.

We will now take a look at the different parts of the
policy used in the example. The precondition checks
whether the quota of the requesting user is exceeded.
If this is the case, the execution is terminated. Infor-

mation about the requesting user is obtained from the
so-called context modules.

Within the context of D◦, these modules are
named hierarchical data containers, which support
different types of data (e.g. read-only, counters, . . .)
and are placed in the global scope of the Data App. It
is possible to read and write data from/to these con-
text modules at any time. They are used to provide
data that is required in different places from a central
component. Simple queries are used in order to ac-
cess the elements. They contain the hierarchy of the
mentioned elements, separated by dots. To maintain a
certain level of traceability of the actions, all writing
actions to these modules are logged and persisted. Al-
ternative architectures for policy systems offer similar
concepts. For example, the corresponding concept for
XACML is the PIP (Policy Information Point).

As an example, we take a look at the user data.
As mentioned in the example’s description, each user
must identify himself using JSON web tokens. As
soon as the request arrives at the application’s HTTP
endpoint, the JWT is processed and the contained user
information is stored in a context module. This makes
it accessible for e.g. activities and policies.

The intervention of the security manager is the
central point in this example. Each time the activ-
ity wants to write a file to the disk, the execution is
interrupted and the intervention of the security man-
ager is evaluated. The file writing process is provided
by D◦. Therefore, additional metadata has been col-
lected before the call of a file write operation of the
JDK caused the interruption.

Thus, the policy knows how much data to write. In
combination with the user data from the context mod-
ules, it is possible to determine whether this writing
operation would exceed the quota and create appro-
priate permissions and prohibitions.

The element that is executed last is the postcondi-
tion. In this scenario, no policy checks are required
within the postcondition. Therefore, only one action
has to be performed, which is updating the already
used quota for the requesting user.

Code Generation. For a better understanding of the
generated code and the integration of code which is
required for usage control, we have a more detailed
look at the actual code generation.

Figure 8 shows the generated class except the
mainBlock-method which is shown in Figure 9. De-
spite minior cuts and element renaming, the code is
unchanged. The generated application is based on
Spring which can be seen on the main-method and
the used annotations in lines 5 to 7 as well as lines 15
to 17 in Figure 8. The constructor (ranging from line

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

40

1 package example;
2 /* imports */
3 public class backupService extends

HttpDataApp {
4

5 public static void main(String[]
args) {

6 SpringApplication.run(
backupService.class,
args);

7 }
8

9 demoProject() {
10 super();
11 CONFIGURATION_MAP.put("

namespace", "example");
12 /* further handling of

configuration */
13 }
14

15 @RequestMapping(path = "/backup"
, method = RequestMethod.
POST)

16 @ResponseBody
17 public String process(

@RequestBody String
inputString) {

18 VariableManager
variableManager = new
VariableManager(null);

19 OutputScope returnScope =
new OutputScope();

20 InputScope input = new
InputScope();

21 input.fromJson(inputString);
22 /* input validation */
23 try { this.mainBlock(

variableManager ,
returnScope); }

24 catch (Exception e) { /*
error handling */ }

25 return returnScope.toJson();
26 }
27 ...
28 }

Figure 8: Part 1 of the generated code for the example.

9 to 13 in Figure 8) handles the configuration given
in the D◦-Code. The whole class is derived from the
HttpDataApp class in order to minimize the gener-
ated code base and increse the maintainability of dif-
ferent Data App types. The process-method (line
17 to 26 in Figure 8) is the entrypoint for the execu-
tion of the Data App’s logic. At first, the execution
is prepared by parsing and validating inputs, prepar-
ing the output, and setting up variable management.
This can be seen in lines 18 to 22 of Figure 8. For
each D◦-block (denoted by the keywords begin and
end) a separate function is generated. The method for

1 private void mainBlock(/* ... */) {
2 VariableManager variableManager

= new VariableManager(
parentVarManager);

3 variableManager.registerVariable
("var_a");

4 Instance var_a = TYPE_TAXONOMY.
create(Identifier.of("core.
Text"));

5 variableManager.
initializeVariable("var_a",
var_a);

6 InputScope in_a = new InputScope
();

7 /* fill input scope with values
*/

8 OutputScope out_a = SANDBOX.
callActivity((
ActivityInstance)
ACTIVITY_INSTANCE_REGISTRY.
read("ProtectedBackupFile"),
in_a));

9 if (out_a == null) {
10 throw new

DegreePolicyValidation
Exception(/* ... */);

11 }
12 variableManager.updateVariable("

var_b", out_a.get("result"))
;

13 returnScope.add("result",
variableManager.readVariable
("var_b"));

14 return;
15 }

Figure 9: Part 2 of the generated code for the example.

the only block of the example is called in line 23 of
Figure 8 and shown in Figure 9.

The mainBlock-method contains the actual logic
of the Data App. Lines 3 to 5 of Figure 9 correspond
to the declaration of the variable in line 9 of Figure 1.
Lines 6 to 12 in Figure 9 are the activity call from
line 10 in Figure 1. At first, the input variables are
prepared. Next, the activity call is delegated to the
Sandbox. The last step is the storing of the return-
value(s) in the variable manager. The return statement
in line 11 of Figure 1 shows the return value of the
Data App which corresponds to line 13 in Figure 9.

The presented generated code does not contain
any policy specific code beside the handling of failed
policy validation in lines 10 and 11 of Figure 9. To
find actual policy relevant code, we have to look at the
implementation of Sandbox.callActivity(...)
which can be found in Figure 10. The code shows that
it is ensured that pre- and postconditions are checked
before and respectevly after each activity execution.
The validation of security manager interventions can-

A Framework for Creating Policy-agnostic Programming Languages

41

1 public OutputScope callActivity(/*
... */) {

2 if (!validatePrecondition(
activity.getPolicies())) {

3 return null;
4 }
5 OutputScope output = activity.

run(input);
6 if (!validatePostcondition(

activity.getPolicies())) {
7 return null;
8 }
9 return output;

10 }

Figure 10: Implementation of Sandbox.callActivity(...).

not be seen in this code because it is a result of the
instrumented APIs of the JDK.

5 CONCLUSION

We have introduced the policy system, which is used
in the domain specific language D◦. We demonstrated
how D◦ implements the paradigm of policy-agnostic
programming and how to ensure that all defined poli-
cies are enforced at the right place at time.

Using an example, we presented how D◦ is used
for application development with a prototype using
Java as host language. Using the same example, we
demonstrated how the different subsystems of the lan-
guage can be extended in order to meet specific re-
quirements (regarding the domain).

ACKNOWLEDGMENTS

This work was developed in Fraunhofer-Cluster of
Excellence “Cognitive Internet Technologies”.

This research was supported by the Excellence
Center for Logistics and IT funded by the Fraunhofer-
Gesellschaft and the Ministry of Culture and Science
of the German State of North Rhine-Westphalia.

REFERENCES

Austin, T. H., Yang, J., Flanagan, C., and Solar-Lezama,
A. (2013). Faceted execution of policy-agnostic pro-
grams. In Proceedings of the Eighth ACM SIGPLAN
workshop on Programming languages and analysis
for security, pages 15–26.

Barthe, G., Naumann, D. A., and Rezk, T. (2006). Deriving
an information flow checker and certifying compiler
for Java. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 229–242.

Eitel, A., Jung, C., Kühnle, C., Bruckner, F., Brost, G., Birn-
still, P., Nagel, R., and Bader, S. (2019). Usage Con-
trol in International Data Spaces: Version 2.0.

Jung, C., Eitel, A., and Schwarz, R. (2014). Enhanc-
ing Cloud Security with Context-aware Usage Control
Policies. In GI-Jahrestagung, pages 211–222.

Katt, B., Zhang, X., and Breu, R. (2008). A general obliga-
tion model and continuity: enhanced policy enforce-
ment engine for usage control. In Proceedings of the
13th ACM symposium on Access control models and
technologies, pages 123–132.

Lazouski, A., Martinelli, F., and Mori, P. (2010). Usage
control in computer security: A survey. Computer
Science Review, 4(2):81–99.

Myers, A. C. (1999). JFlow: Practical mostly-static infor-
mation flow control. In Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 228–241.

Otto, B. and Jarke, M. (2019). Designing a multi-sided data
platform: findings from the International Data Spaces
case. Electronic Markets, 29(4):561–580.

Park, J. (2003). Usage control: A unified framework for
next generation access control. Dissertation, George
Mason University, Virginia.

Park, J. and Sandhu, R. S. (2004). The UCON ABC usage
control model. ACM Transactions on Information and
System Security (TISSEC), 7(1):128–174.

Park, J., Zhang, X., and Sandhu, R. S. (2004). Attribute
mutability in usage control. In Research Directions in
Data and Applications Security XVIII, pages 15–29.

Polikarpova, N., Yang, J., Itzhaky, S., Hance, T., and Solar-
Lezama, A. (2018). Enforcing information flow poli-
cies with type-targeted program synthesis. In Pro-
ceedings of the ACM on Programming Languages,
volume 1.

Sandhu, R. S. and Park, J. (2003). Usage control: A vision
for next generation access control. In International
Workshop on Mathematical Methods, Models, and Ar-
chitectures for Computer Network Security, pages 17–
31.

Schuette, J. and Brost, G. S. (2018). LUCON: data flow
control for message-based IoT systems. In 2018 17th
IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), pages 289–
299.

Yang, J. (2015). Preventing information leaks with policy-
agnostic programming. Dissertation, Massachusetts
Institute of Technology, Massachusett.

Yang, J., Yessenov, K., and Solar-Lezama, A. (2012). A
language for automatically enforcing privacy policies.
ACM SIGPLAN Notices, 47(1):85–96.

Zdancewic, S. (2004). Challenges for information-flow se-
curity. In Proceedings of the 1st International Work-
shop on the Programming Language Interference and
Dependence (PLID’04), pages 6–11.

Zolnowski, A., Christiansen, T., and Gudat, J. (2016). Busi-
ness model transformation patterns of data-driven in-
novations.

DATA 2020 - 9th International Conference on Data Science, Technology and Applications

42

