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Abstract: Among other requirements, in the field of Modeling and Simulation there is a need to build and run (co-)
simulation models on-demand. Setting up, orchestrating and executing simulations should be easy, while
additional features such as interaction interfaces open up a variety of applications. Being able to connect
external components seamlessly to a running simulation allows for elaborate experiments. This paper describes
the architecture and design of a simulation platform that is a part of a broader platform enabling evaluations of
future mobility scenarios. Apache’s Kafka platform for big data stream processing is used as a communication
base in order to enable all these requirements, as well as for the coupling of different simulation tools forming a
co-simulation. We give an overview of existing works regarding Modeling and Simulation as a Service, before
explaining our own approach. Therefore, the architecture, the interfaces, and the workflow of a simulation run
is described. The approach is illustrated by a case study, which is used to measure the service’s overhead.

1 INTRODUCTION

The last decade’s trend for cloud services affects also
the field of modeling and simulation (M&S). Reasons
for that are various, one of them is the fact that many
research groups do not need continuous access to an
excessive computing power, but only in certain times
when simulation studies are run, and costs for dedi-
cated machines are too high. Using shared comput-
ing nodes can lower costs and enhance utilization of
the resources. In addition, it can be pleasant for a re-
searcher, when there is no need to bother with main-
taining a tool’s code, fix bugs, or apply updates, but
instead just use Modeling and Simulation as a Service
(MSaaS) components and work straight ahead on the
urging questions. Furthermore, such services can pro-
vide data pools for the model input data and help to
organize existing models. Using MSaaS can there-
fore lower the time spent in preparing and running an
experiment and improve the reproducibility of exper-
iments by (re)using provided data sets, models, stan-
dard interfaces, and predefined workflows.

The cloud thought has never been alien in simula-
tion, for instance, when performance constraints were
fulfilled by using distributed simulations, when co-
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simulations were formed by coupling heterogeneous
tools on different systems, or when digital twins were
calibrated using live data from various sources. The
idea is particularly suited to further improve simula-
tion performance and quality of results. Additionally,
simulation can benefit from the advances and devel-
opments arising from the trend of cloud services.

This paper describes the architecture of a novel
MSaaS approach that uses the Apache Kafka messag-
ing platform for all types of external communication,
namely orchestration, interaction, and data provision-
ing; and all types of internal communication, namely
time synchronization and simulation state related data
exchange between coupled simulators. This leads to a
well performing and clearly structured architecture of
a simulation service that is extendable and capable to
fulfill all simulation related requirements originating
from a project called Virtual Mobility World (ViM).

Information about related work, associated tech-
nology and the ViM project is given in Section 2.
Based on that, the proposed simulation service is then
described in detail in Section 3, taking into account its
architecture, communication, and process workflow.
In Section 4, the provided information is illustrated by
a potential use case and performance measurements,
before conclusions are drawn and future directions are
given in Section 5.
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2 BACKGROUND

In this section, we will develop a common under-
standing of the term MSaaS and give an overview of
related work. We will then explain used technolo-
gies, and finally describe the idea of the ViM plat-
form, which integrates the proposed MSaaS compo-
nent.

The idea of cloud-based simulation services is not
completely new. Shen (1998) proposes the concept
of a networked-service for Discrete Event Simulation
(DES) using Java and CORBA at the end of the last
century. The motivation was already the lack of porta-
bility, interoperability, and scalability of existing sim-
ulation approaches. Strassburger et al. (1998) address
“internet-based simulation” based on the High Level
Architecture (HLA). HLA is a standard for distributed
simulation that is still under active development. Cai
et al. (2002) use HLA in a Grid Computing environ-
ment in order to realize load-balancing in distributed
simulations.

Over the last few years, the interest in this subject
has grown: Sarjoughian et al. (2008) and Mittal et al.
(2009) show up similarities between Discrete Event
System Specification (DEVS) used to formalize mod-
eling and analysis of DES and service-oriented archi-
tectures (SOA). The former combine DEVS and SOA
in a framework to simulate services themselves, while
the latter propose a general-purpose framework to ex-
ecute DEVS models remotely.

One of the first publications that introduce the
term cloud in the context of simulation was done by
Buyya et al. (2009). However, the work is not about
M&S in the cloud, but about M&S of cloud comput-
ing environments in consideration of Quality of Ser-
vice (QoS) requirements. The National Institute of
Standards and Technology (NIST) defines cloud com-
puting as:

“A model for enabling ubiquitous, conve-
nient, on-demand network access to a shared
pool of configurable computing resources
(e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned
and released with minimal management ef-
fort or service provider interaction.”(Mell and
Grance, 2011)

In addition, some essential characteristics are given:
On-demand self-service, broad network access, re-
source pooling, rapid elasticity, measured service.
While the first four are self-explanatory, the last char-
acteristic means that cloud systems should automati-
cally control and optimize their resource use. There-
fore, virtualization and containerization is closely re-
lated to cloud computing (Dua et al., 2014). Fujimoto

et al. (2010) connect the cloud and parallel and dis-
tributed simulation. Due to the typical cloud archi-
tecture, effects of simulation parallelization can usu-
ally be better exploited than on traditional architec-
tures and lead to even higher performance gains. On
the downside, security and reliability are named as
issues. In addition, a concept for parallel and dis-
tributed simulation in the cloud is proposed based on
a master/worker paradigm.

In 2013, a survey paper comes up with an early
definition of MSaaS:

“MSaaS is a model for provisioning mod-
elling and simulation (M&S) services on de-
mand from a cloud service provider (CSP),
which keeps the underlying infrastructure,
platform and software requirements/details
hidden from the users. CSP is responsible
for licenses, software upgrades, scaling the
infrastructure according to evolving require-
ments, and accountable to the users for pro-
viding grade of service (GoS) and quality of
service (QoS) specified in the service level
agreements (SLA).” (Cayirci, 2013)

Besides MSaaS, the different “... as a Service” lay-
ers (i.e., Infrastructure, Platform, Software) that stand
between the physical hardware and a user are clari-
fied. Based on an overview of possible architectures
potential threats and risks are discussed with the con-
clusion that MSaaS comes with potential advantages
and open challenges.

Since military often drives innovation, one big
player that is enrolled in MSaaS activities is NATO.
The Work of NATO Modeling and Simulation Group
MSG-131 (“Modelling and Simulation as a Service:
New concepts and Service Oriented Architectures”)
sets the foundation for a twelve-year plan to imple-
ment MSaaS in their context (Siegfried et al., 2014).
Based on the ITIL definition for services, they define
MSaaS as follows:

“M&S as a Service (MSaaS) is a means of de-
livering value to customers to enable or sup-
port modelling and simulation (M&S) user ap-
plications and capabilities as well as to pro-
vide associated data on demand without the
ownership of specific costs and risks.”

An extended definition of MSaaS is given later in a
publication about the use of MSaaS by the NATO
Modelling & Simulation Group MSG-136 (“Mod-
elling and Simulation as a Service – Rapid deploy-
ment of interoperable and credible simulation envi-
ronments”):

“MSaaS is a new concept that combines ser-
vice orientation and the provision of M&S ap-
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plications via the as-a-service model of cloud
computing to enable more composable simu-
lation environments that can be deployed and
executed on-demand. The MSaaS paradigm
supports stand-alone use as well as integration
of multiple simulated and real systems into
a unified cloud-based simulation environment
whenever the need arises.” (Siegfried et al.,
2018)

All of the given MSaaS definitions have the “on-
demand” thought in common. While the first two
explicitly mention that responsibility is outsourced
to the service provider, the latter adds that it should
be possible to integrate multiple (real) systems when
needed.

The amount of computational power that is often
needed to run simulation is also the motivation for an-
other work about a simulation service middleware by
Shekhar et al. (2016). A user will provide custom pa-
rameters via an interface to start a simulation: Model
name, number of simulation runs, deadline, number
of CPUs, command to execute simulation, and al-
ready existing results. One use case, which is not
described in detail, is about traffic simulation using
the microscopic traffic simulator SUMO. As the ser-
vice should be capable to start various types of sim-
ulations, there is the need to provide additional (use
case specific) parameters. For the SUMO use case,
the authors name the SUMO configuration file and a
list of different traffic volumes for parameter varia-
tion as additional input parameters. They conclude
that using a container-based solution (e.g., Docker)
is better suited than a heavyweight hypervisor-based
approach. More recently, Bocciarelli et al. (2019) fo-
cus on an architecture based on REST microservices
in order to realize DES. Based on an existing mid-
dleware called SOASim (D’Ambrogio et al., 2016),
Docker is used to deploy a simulation with containers
and introduce an abstraction layer between simulation
tool and operating system.

Besides from conceptual works on simulation in
the cloud, there are works that address the use of
MSaaS in specific application domains, e.g., the ed-
ucational sector. Caglar et al. (2015) tackle the prob-
lem of a STEM (science, technology, engineering,
and mathematics) crisis by enabling analysis of real-
world systems in high school education by introduc-
ing simulations of such systems. In order to realize
the use of simulators in the classroom, a cloud-hosted
traffic simulation platform based on SUMO is pro-
posed in the paper. Bitterman et al. (2014) also re-
inforce the use of MSaaS i.a. in the educational sec-
tor due to the low barriers regarding the availability
of tools and data, similar to Krumnow (2013), who
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Figure 1: Kafka architecture and partitioned topic. Based
on LinkedIn Corporation (2014).

introduces a web interface to SUMO as well. There
are many works regarding traffic simulation, e.g., for
ITS applications (Härri et al., 2010), connected ve-
hicles (Kirchhof et al., 2019), or traffic simulation in
a large scale (Hanai et al., 2014; Zehe et al., 2015).
Apart from the traffic sector, MSaaS is used in other
domains such as the energy sector (Preisler et al.,
2015), weather simulation (Molthan et al., 2015), or
for crowd modeling (Wang and Wainer, 2015).

To sum it up, there are various works about MSaaS
concepts in general, as well as works related to very
specific applications. Unfortunately, the implementa-
tion details of the proposed platforms or even access
to them is mostly not available.

In the following, we will shortly address involved
technology, namely Apache Kafka for communica-
tion and Docker for containerization. Apache Kafka
is a publish/subscribe platform that was initially de-
veloped by LinkedIn to handle their massive amount
of information (Apache Software Foundation, 2018).
The software is released under Apache License 2.0.
Thus, it is an open source project. In contrast to other
publish/subscribe systems, such as MQTT, the focus
lies on performance and scalability. In the Kafka
world, a publisher is called a producer and is writ-
ing data to a Kafka cluster (LinkedIn Corporation,
2014). A subscriber is (called a consumer) is con-
suming data from the cluster (Figure 1). As with
other publish/subscribe platforms, data is organized
by topics. The topics themselves are realized as logs
in Kafka, which can be further split up into partitions
in order to achieve scalability. Due to replication of
these partitions, fault tolerance is possible.

In terms of using software containers, Docker
(Docker Inc, 2020) is one well-known implementa-
tion. In contrast to a virtual machine, a container is in
general more lightweight and still allows packaging
a piece of software with all needed dependencies in
order to run it on various systems (Merkel, 2014) and
therefore widely used in the cloud context.

The work presented in this paper is one com-
ponent of the Virtual Mobility World (ViM Project,
2020). In this context, a platform is developed
that supports companies, researchers, and additional
stakeholders to create tomorrow’s mobility services.
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Therefore, the platform consists of a core and three
main layers: storage, data analytics, and simulation
(see Figure 2). These layers are encapsulated from
each other and can be extended by more layers when
new requirements arise. Potential users have to inter-
act with an abstraction layer to pose questions or re-
quest datasets. The platform will respond on requests
by using historical data, live data, performing analyt-
ical tasks, running simulations, or a combination or
cascade of multiple options. The work happens hid-
den from the user, who simply receives the response.
The logic behind these decisions is out of this pa-
per’s scope. Since this work focuses particularly on
the simulation layer, its architecture and internal parts
will be described in detail in the following section.

To the best of our knowledge, this is the first ap-
proach to use Kafka for simulation orchestration, in-
teraction, and provisioning of live simulation data, as
well as using it for coupling different tools involved
in a requested co-simulation. In this way, additional
protocols for distributed (co-)simulation such as HLA
are not needed and the architecture remains simple but
powerful. Due to the open interfaces between the plat-
form and other components, such as data analytics,
our MSaaS approach is more than a pure simulation
service.

3 SIMULATION SERVICE

In this section, we will describe the addressed simu-
lation service by naming requirements, showing the
architecture, and giving information about the work-
flow of an instantiated simulation run.

3.1 Requirements

As the name implies, the main domain of ViM is traf-
fic. Naturally, the main focus of the simulation layer
is therefore also traffic simulation, but the concept can
be applied to any other domain. Based on predefined
use cases the following requirements have been iden-
tified for the simulation layer:

1. The simulation platform shall be able to run a
traffic simulation on-demand, based on given at-
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Figure 2: Architecture of ViM.
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Figure 3: Three dedicated communication channels.

tributes, such as road map, time frame, traffic pat-
tern, random seed, or execution priority. Involved
tools have to be specified with i.a. their step
length, precision, responsible area in road map,
and outputs. Optionally, it should be possible to
add additional simulators from different domains
such as wireless network simulation.

2. It should provide an interface to allow third-party
components, as well as the other layers, to interact
with a running simulation.

3. The component is required to push live and read-
only data from running simulations on accessible
channels for further processing, e.g., periodic sta-
tus updates of vehicles.

3.2 Communication

3.2.1 External Communication

To address these three main requirements, the usage
of a publish/subscribe platform in conjunction with a
channel communication model is proposed (see Fig-
ure 3). There are three dedicated communication
channels, one for each requirement:

orchestration (requirement #1) (1)

interaction (requirement #2) (2)

provision (requirement #3) (3)

The use of a publish/subscribe messaging system al-
lows for loose couplings and extensible interfaces.
The communication will be realized by using the
well-known Apache Kafka platform for big data
streaming applications. Therefore, interaction with
running simulations and information exchange can be
done reliably and at high throughput rates.

Data (de)serialization is realized by using Apache
Avro (Apache Software Foundation, 2020). Based
on JSON schemas, data structures are defined be-
forehand. With a common knowledge of the defined
schemas the serialization, transmission, and deseri-
alization of data can be done efficiently and without
much overhead.

orchestration.simID (4)

interaction.simID (5)
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interaction.simID.traffic.addVehicle (6)

provision.simID (7)

provision.simID.traffic.roadFoo.NOx (8)

From the given examples, the channel design can
be inferred. A request for a new simulation with the
identifier simID is pushed to Topic 1 by the platform
core, which is processed by the simulation layer and
results in new base topics that are carrying the simu-
lation id: Topic 4, Topic 5, and Topic 7. Depending
on the requested simulation, topics corresponding to
available API calls (e.g., Topic 6) or demanded peri-
odic information (e.g., Topic 8) are created, watched,
and populated by the simulation layer.

In general, the interaction channel is readable and
writable by components and allows for (blocking) re-
quests and responses. In this manner, the handling of
sporadic events is achieved (e.g., a client can request
and await the insertion of a new vehicle).

The provision channel in contrast, is used by some
party to write information depending on scenario-
wide defined presets (and without the knowledge of
what is going to happen with the data) and used by
other parties to consume and process the available
data. An example application for this could be a traf-
fic simulation tool that periodically writes positions
of all vehicles to a corresponding topic in the provi-
sioning channel and a visualization component that
consumes and renders the locations onto a road map.

provision.simID.traffic.veh42.speed (9)

provision.simID.traffic.veh42.avgSpeed (10)

Additionally, the three channels are used to im-
plement an access management, e.g., the visualiza-
tion layer will not be allowed to write on topics of
the orchestration channel. More elaborated strategies
can also be applied by further limiting inherited topic
properties, e.g., to implement privacy or license re-
lated policies for specific clients. One exemplary ap-
plication for this would be giving the owner of the in-
put data access to all topics in the provisioning chan-
nel (e.g., Topic 9), while another client is only al-
lowed to read contents from aggregated topics that do
not allow drawing conclusions about the input data
(e.g., Topic 10).

3.2.2 Internal Communication

Having a concept for external communication be-
tween platform/components and the simulation layer,
one question remains open: do we additionally need
to address internal communication inside the simula-
tion layer? More precisely: what to do, when there

is more than one tool/instance involved in a simula-
tion run? If more than one tool is involved in a sim-
ulation run (see Subsection 3.3.1), it is highly likely
that these tools are supposed to communicate while
the simulation is running. This means that a coupling
of these tools needs to be achieved. Therefore, two
different types of communication can be seen from a
conceptual view. First, simulation related information
is exchanged between the different tools that inter-
act within a simulation (e.g., a vehicle’s position that
is transferred from the traffic simulator to the com-
munication simulator). Second, simulation metadata
(most importantly time synchronization related infor-
mation) is shared. The two types of internal commu-
nication will be also realized by using Kafka. The
first kind of information transfer will be implemented
by using the data domain and data layer model (see
Section 3.3.1) and corresponding API calls. All API
calls that are available during a simulation run are pro-
vided under Topic 5. Multi-level simulations are re-
alized via detached translation units that are capable
of translating data tuples between different layers as
proposed by Gütlein and Djanatliev (2019).

orchestration.simID.time (11)

For the synchronization of logical clocks, a conser-
vative synchronization algorithm following the HLA
Fujimoto (1998) time management mechanism is im-
plemented in the simulation layer. Similar to HLA’s
time regulating and time constrained concepts, sim-
ulation tool instances will or will not participate in
the time management mechanism based on the sce-
nario’s description file. Therefore, the actions join,
request, grant, and leave are accessible under
Topic 11. For each instantiated simulation run, a
timing master takes care of the participants. The
master calculates and publishes the common logical
time during the simulation execution. Thus, a time-
based synchronization is provided for coupling dif-
ferent tools and components.

3.3 Simulations on-Demand

In order to fulfill the first requirement, simulations
should be started on-demand by the service. There-
fore, the initial question for this requirement is: how
to define a simulation?

3.3.1 Scenario Description

In this context, a simulation is defined as the sin-
gle execution of a scenario: one or more connected
tools with given inputs (e.g., road map, traffic de-
mand, random seed) until a given simulation end time
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is reached. The set of all needed parameters is called
scenario description. A scenario description is writ-
ten in JSON format and sent to the simulation layer in
order to trigger the execution of the scenario simula-
tion. To allow future extensions, the scenario descrip-
tion has mandatory and optional fields, which will be
described in the following (Figure 4).

While the first three fields are self-explanatory, the
following require some additional information. In the
next field, traffic input can be specified, before param-
eters related to the scenario execution are set. As the
ViM platform is dealing with mobility issues, every
simulation on the platform is based on a traffic simu-
lation. That means, at least one traffic simulator needs
to be given in the description by a scenario-unique
identifier and a simulator type, which is needed to run
the right software container. Additionally, a simula-
tor is described using the layer concept as proposed
by Gütlein and Djanatliev (2019). A layer is an in-
terface definition that corresponds to the conceptual
simulation model and belongs to a single domain. As
this is about traffic simulation, the domain for traffic
simulator entries is fixed to traffic, but the layer of the
tool’s native data model (e.g., micro) needs to be set
in order to scope with different paradigms and model
types (e.g., to provide matching API topics). The third
thing defined by the layer is a set of parameters specif-
ically related to the layer’s corresponding simulation
tools (e.g., the choice of a car-following model for mi-
croscopic traffic simulation). A set of possible layer
interfaces and API calls is predefined (an example is
given in Figure 5) and ready to be addressed. Refer-
ences to required resources can be given in the next
field. Related to the layer, various definitions for dif-
ferent sets of resulting data are provided for each layer
(e.g., trajectories for micro). These data sets can be
requested by populating the results field and are re-
turned when the simulation is finished.

Participation in the time synchronization process,
as described before, can be set in the next field. Re-
sponsibilities and borders are used to partition a sce-
nario in a spatial dimension to different simulator in-
stances in order to gain performance, combine sev-
eral modeling paradigms, or fulfill further require-
ments. Therefore, responsibilities and (outgoing) par-
tition borders are given as road names of the used road
network. To illustrate the meaning, an excerpt of a
synthetic road network for a distributed traffic simu-
lation is given in Figure 6. There are two responsi-
bility regions for two simulators (A; dashed and B;
dotted) and border links (white), which are connect-
ing the two regimes.

Another important topic is the observer field. Ob-
servers are mainly introduced to populate the provi-

scenario description

id sim42
road map manhattan.xml

time frame 0:00 - 12:00
traffic

processing native

layer micro

file trips.xml

execution
random seed 194852
constraints real-time
priority high

synced participants 3

traffic simulators
id sumo0
type SUMO

step length 100

layer micro

car-following krauss

resources roadMap:withBikeLane.xml

results fcd
time sync regulating,constrained

responsibilities all roads

borders none
observers

task publish

attribute emission
subject road

filter all
period 60000

trigger >100

custom params mode=balistic

translators
id mesoMicroCropper

domain traffic
input layer meso

output layer micro
custom params ...

additional simulators
id ns30
type NS3

domain communication
layer 802.11p PHY

...
...

Figure 4: Scenario description.

data model
string vehicleID

string route

string edge

int lane
double speed

double position
...

interaction methods
void addVehicle(string,...)

void removeVehicle(string)

double getSpeed(string)

void setSpeed(string,double)

string getRoute(string)

void setRoute(string,string)
...

Figure 5: Definition of micro layer in traffic domain.

sion channel. An observer is a rule, defining how and
when to deal with which kind of information. The
main parts of an observer are a task, an attribute, a
subject, a filter, a period and/or a trigger. The task
answers the question of what to do with a piece of
data. In a first draft, this task will essentially be pub-
lishing data to a provisioning topic for further pro-
cessing. Future tasks incorporate the termination of
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Figure 6: Road network with two traffic simulators’ (A,B)
responsibilities and connecting border links (white).
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Figure 7: Workflow for execution of a scenario.

a scenario run or the extraction of a snapshot (e.g.,
because a requested situation was achieved). Sec-
ond, there is the attribute of interest (e.g., emission
or speed) and its subject (e.g., road or vehicle). The
filter field allows specifying if the attribute is queried
from all subjects of the specified group or only sub-
jects with given identifiers (e.g., road42). Lastly, the
task can be triggered periodically, event-based (e.g.,
when a threshold is exceeded), or both at the same
time. To avoid unnecessary communication and pro-
cessing, the observer handling has to be done inside
the simulation tool container. Since there is the need
for a wrapper for every used simulation tool in or-
der to communicate via the defined interface over the
Kafka messaging platform, this is also a suitable loca-
tion for observing the requested attributes via a tool’s
native API.

Finally, there is the option to give custom param-
eters that will be directly delegated to the simula-
tor. Therefore, these parameters can be tool specific
and do not need to be understood by the simulation
layer. Afterwards, translators (see Subsection 3.2.2)
for a multi-level simulation can be defined. The last
field can be used to add additional simulation tools
from different domains than traffic (e.g., for simulat-
ing wireless communications) to a scenario. Due to
the variety of tools and inputs, there is also a custom
field for handing over application-specific parameters.

3.3.2 Architecture and Scenario Instantiation

Based on the given description, how does the execu-
tion of a simulation scenario works in detail? There
are three phases, which are depicted with clarifying
tasks per step in Figure 7:

S
im

u
la

ti
o

n
 L

a
y
e
r 

  
  
  
  
  
  

  
  
  
  
  
  

  
  

Simulation Scenario #161 Environment

Simulator  
Container

Simulation Scenario #456 EnvironmentSimulation 
Controller

Channel 
Gateway

Simulator B 
Container

Simulation Scenario #312 Environment

Simulator B 
Container

Time Master
Simulator A 
Container

Populator

…

Figure 8: Architecture inside the simulation layer.

1. Initialization Phase
The first phase is triggered by pushing a sce-
nario description onto the orchestration channel.
Based on the execution parameters (e.g., execute
as soon as possible) and current system state fur-
ther actions are immediately taken or scheduled
for later. When action is taken, the requested tool
containers are instantiated by the controller, top-
ics are created and connected via a gateway com-
ponent, and tool related parameters from the sce-
nario description file are forwarded to the con-
tainers. Additionally, a time master is spawned
for time management (see Figure 8). The running
containers process the parameters, run their ini-
tialization methods, possibly start observer tasks,
and may register for the time management mecha-
nism. Due to the messaging and containerization,
additional computing nodes could be integrated
easily, as well as load balancing strategies.

2. Execution Phase
When every component has registered at the time
master, phase two is entered and an initial time
step is granted. While simulation end has not been
reached, the three steps of the execution phase are
executed repeatedly. After a new global logical
time is published, tools proceed their simulations
to this time (if they are time constrained) while
processing and creating interactions. Afterwards,
scheduled observer tasks are run, scheduled state
feedback is published, and finally the proceeding
to the next simulation step is requested from the
time master (if they are time regulating).

3. Cleanup Phase
The third phase is reached, when the simulation
of the scenario is finished. Summaries and results
are published before the tool containers are termi-
nated. Finally, the simulation layer cleans up the
left over topics.

In summary, the proposed MSaaS architecture pro-
vides abilities that allow users and components to
• define and model simulation scenarios,
• (re)simulate custom simulation scenarios deter-

ministically and on-demand,
• interact with a running simulation (e.g., control a

specific EGO-car inside a traffic simulation),
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Figure 9: Task assignment in fleet management.

• gather data layer specific information via for-
warded API calls,

• process simulation state online and trigger actions
(e.g., watch for accidents and export current sim-
ulation state for further analysis),

• feed back the results from data analytic jobs into
the same running simulation (e.g., evaluation of
multistage traffic management strategies).

4 CASE STUDY

In order to demonstrate and illustrate the abilities of
the presented approach, one exemplary use case will
be described in the following. Afterwards, related
performance measurements are given and compared
to a traditional approach.

Fleet management is used to plan and control the
use of a set of vehicles. Depending on the business
case, priorities, tasks, and open questions vary. These
may include monitoring, assigning of maintenance
jobs, relocating vehicles prospectively, or assigning
vehicles to a customer request. Obviously, these deci-
sions are usually not made by hand, but by algorithms.
In this exemplary use case, two fleet management al-
gorithms should be compared. Therefore, a micro-
scopic traffic simulation based on the road map of a
real city is run in conjunction with the different fleet
management algorithms. The microscopic simulation
is demanded, in order to be able to model finely gran-
ular relocation processes in a realistic traffic situation.

A user provides a population model for generat-
ing customer request and the fleet management algo-
rithms, which trigger actions in the traffic simulation.
As presented in Subsection 3.2, the third-party com-
ponents can talk with the simulation via the interac-
tion channel. When the experiment is started, a han-
dle to the corresponding channels is returned and the
components can connect remotely. Due to the design,
the intellectual property of the algorithms are pro-
tected and preserved by hiding the internal logic from
the rest of the platform in a black-box manner. Ob-
viously, a malicious component could try to reverse-
engineer the outsourced logic, but that is out of scope
of this work.

A very simple but striking example is constructed:
there are two different strategies (A and B) for assign-

ing vehicles to user requests. First, there is a greedy
one, where the closest available vehicle is simply as-
signed to a customer. Strategy B tries to maximize to-
tal utilization. There are three customers (circles) and
two vehicles (squares) visualized in Figure 9. Proba-
bly, the greedy version would assign vehicle 1 to cus-
tomer 1 and vehicle 2 to customer 2, which results in
declining customer 3. Contrary, Algorithm B would
assign vehicle 1 to customer 1, but vehicle 2 to cus-
tomer 3, and decline customer 2’s request. The ana-
lytics component monitors user requests and depend-
ing on chosen key performance indicators, the second
strategy might be evaluated as the better algorithm.
Having results for one set of algorithms and a single
scenario is not yet useful, but multiple replications
with varied random seeds are quickly realized with
the presented approach. This leads finally to mean-
ingful results. Different metrics for the customers’
satisfaction (e.g., waiting times, travel times, walking
distance) and system metrics (such as fleet size, fleet
utilization, and driven kilometers) are calculated by
an analytics component based on the information pro-
vided on the provision channel. By this, an affiliated
user can explore the outcome of the various metrics
and rate the quality of the individual fleet manage-
ment algorithms that were under evaluation.

Controversially, the question of which algorithm
performs better is not relevant in this paper. The in-
teresting question is: at which costs do all the offered
possibilities come? As a basis, we estimated the over-
head in this work with a simple case, without exploit-
ing performance gains by distributing the simulation.
With this setup, no performance enhancement is pos-
sible, but an evaluation of the pure overhead is.

Therefore, we conducted two different experi-
ments: First, we let a potential fleet management al-
gorithm make direct API calls to a SUMO simula-
tion (Baseline Run). Leaving out all the presented
abstraction and communication, this is the fastest so-
lution possible and results in a good baseline to com-
pare with. The second experiment will be a running
SUMO container and a dedicated fleet management
algorithm, both synchronized to a time master, and
loosely coupled via Kafka as previously presented
(SaaS Run). In both of the experiments, the algo-
rithm queries a list of every active vehicle once every
minute to have some communication load beside the
time synchronization.

The experiments were executed on an i7-7600U
machine with SUMO 1.2 and Kafka 2.3.0. The well-
known LuST scenario (Codeca et al., 2017) was sim-
ulated from 5 am to 6 am with a step length of 100
ms. Ten repetitions were captured for both trials. The
time synchronization between the fleet management
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Figure 10: Performance comparison.

algorithm and SUMO was done with a step length of
one second. Since the list of vehicles is queried once
a minute, we measured the computational time for ev-
ery 60 seconds of simulation time (Figure 10). While
some outliers can be observed in the individual runs
(dotted lines), the solid lines show the averaged effort
over the ten repetitions.

Shortly before 5 am, when no vehicles are in the
simulation yet, the pure synchronization overhead can
be identified and is about one second per minute of
simulation time and thus ∼17 ms per synchronization
step. With increasing traffic load, the computational
effort in both experiments grows. Naturally, the base-
line run will always be faster as this also the base for
the SaaS run, where additional layers are added. The
difference between the two trials increases slightly to
∼1.9 s at 6 am and can be explained with the grown
volume of exchanged data due to the number of run-
ning vehicles. The overhead can clearly be measured,
but it does not exceed the simulation effort once some
vehicles are inserted. With increasing computational
costs the measurable effects become minor. Thus, en-
abling MSaaS opportunities, the additional effort is
considered reasonable.

5 CONCLUSIONS

In this paper, we described an MSaaS component that
is based on Apache Kafka. With the presented archi-
tecture, it is possible to fulfill the simulation related
requirements that result out of the ViM platform re-
lated to new mobility services. Furthermore, the de-
sign allows future extensions, the integration of new
use cases, and its use in different environments. All
communication types - whether for orchestration, tool
coupling, or external interfaces - have been mapped to
the three-channel approach on top of the Kafka pub-
lish/subscribe messaging platform. After the architec-
ture, the scenario description, and the workflow was
explained, we gave an exemplary application and esti-

mated the resulting overhead on a standard computer.
Once some traffic load was injected, the SaaS over-
head became secondary - even though only a single
SUMO instance was used. By using the proposed ser-
vice, the distribution over several nodes can be real-
ized and thereby performance gains can be achieved.

Future work includes the measurement of simu-
lation performance compared to classical distributed
simulation approaches, such as HLA. Kafka’s scal-
ability raises curiosity regarding the performance of
large-scale scenarios in a dedicated cloud environ-
ment. Due to Kafka’s popularity, various extensions
can be added. One of these provides, for instance,
the ability to run live queries on Kafka topics in an
SQL manner. This allows for an easy event process-
ing within a running simulation, e.g., to detect colli-
sions or traffic jams and trigger further actions. As the
concept of data dimensions and layers is not limited
to the traffic simulation domain, the extension of the
service to other areas seems promising.
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