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Abstract: The paper is devoted to intelligent control of road electric vehicles aiming at reducing energy losses caused 
by traffic jams, changing velocity, and frequent start-stop modes of driving. A blended braking system is 
described that integrates both the friction and the electric braking strengths in volatile driving conditions, 
including gradual and emergency antilock braking. The vehicle model reflects multiple factors, such as air 
resistance, road slope, and variable friction factor. A new gradient control method recognizes unstable tire 
properties on changing road surfaces at different velocities. In the motor and battery model, the state of charge 
and electric current/voltage restrictions of the hybrid energy storage are taken into account. The braking torque, 
actuated by the Mamdani’s fuzzy logic controller established in the Simulink® environment, is allocated 
between the front and rear friction and electric brakes. Comparison of simulation and experimental results 
confirms that the outcomes of this research can be considered in the design of braking systems for electric 
vehicles with superior energy recovery. 

1 INTRODUCTION 

In development of control systems for road electric 
vehicles, many novel energy saving trends are 
discovered nowadays. In view of the fact that up to  
50 – 70% of vehicle energy is lost during deceleration 
(Shang et al., 2010; Savaresi et al., 2010), the braking 
energy recovery might reclaim this loss and extend 
driving range and time. Thereby, the introduction of 
modern blended braking systems has become a top 
priority and moves forward intensively in recent 
years. Such systems combine traditional friction 
braking (FB) with regenerative electric braking (EB) 
associated with hybrid energy storage machinery that 
unites both high energy density modules (batteries) 
and high power density blocks (ultracapacitors or/and 
flywheels) (Naseri et al., 2017). Blended braking has 
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attracted attention in science and industry because of 
reduced car maintenance costs and lowered tire 
particles emission, among others. 

Most electric vehicle designers, such as (Chen et 
al., 2017; Xie and Wang 2018), prefers EB for vehicle 
gradual slowing down and FB for intensive 
deceleration. EB is commonly out of use in the 
antilock braking system (ABS) and is not applied as 
an urgent braking tool because the force generated by 
an electric motor is often quite small to produce the 
total braking torque needed to ensure a quick and 
steerable stop. Primarily, the EB fails due to battery 
overheating and the state-of-charge (SOC) 
restrictions of the energy storage.  

When discussing the distribution of braking 
torque in blended braking systems, three approaches 
fall to the focus of attention: force assignment 
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between right and left wheels, power sharing among 
front and rear wheels, and torque allocation between 
EB and FB systems (Xu et al., 2016). The last issue is 
aimed at acquiring maximal braking energy from both 
EB and FB ensuring highest regeneration capacity 
and involving the EB to energy exchange in the best 
possible way (Xie and Wang, 2018). At that, the ABS 
occupies a special place and usually represents a 
separate part of the vehicle, since its primary target is 
to reduce the braking distance and time.  

Usually, ABS performs poorly in volatile and 
unknown road conditions because of its focus on 
high-speed driving on straight dry roads. As a result, 
when rain, snow, or loose gravel appears, ABS can 
lengthen the braking distance and braking time 
instead of shortening them due to improper control 
organisation. To resolve the problem, intelligent 
ABSs with slip adjustment were proposed (Naseri et 
al., 2017; Chen et al., 2017).  

For the systems that have non-linear and time 
variant plants with significant dead time, multiple 
fuzzy control approaches were published recently. 
Thanks to such universal approximator as a fuzzy 
logic controller (FLC), the most progressive of them, 
for instance (Givigi, 2010; Haidegger, 2011), 
successfully evaluate a priori unknown changes in the 
environment over time in order to understand the 
process and to find a solution of the dynamic 
differential or difference equations. In (Radgolchin, 
2018), a fuzzy controller is designed to stabilize a 
moving plant at unknown deflections. The efficiency 
of this FLC is enhanced using a second level 
supervisory controller. The fuzzy algorithm proposed 
in (Precup, 2014) computes the control signal vector 
applied to the chaotic continuous-time dynamical 
system to ensure its stabilization. 

In (Lin and Song, 2011), changes in the properties 
of tires, road surfaces, and vehicle deceleration can be 
estimated taking into account the displacement and 
rate of the brake pedal pressing, vehicle velocity, and 
wheel slip as the FLC input signals. Nevertheless, this 
specifity eliminates the use of EB in the ABS and 
separates the ABS from the general braking system. 
As a rule, while the braking intensity demand is small, 
EB is elected, but as the ABS is requested, FB is 
applied (Jing et al., 2011).  

Just like in the initial part of this research 
published in (Aksjonov et al., 2018; Aksjonov et al., 
2019), the current study is devoted to creating a 
hybrid energy-storage-oriented blended braking 
system suitable for different braking modes on 
various road surfaces and velocities. However, new 
factors are taken into account here aiming at 
improving the efficiency of energy recovery and the 

versality of the system. First, thanks to the torque 
gradient control, the available range of volatile 
driving conditions is expanded without losing the 
quality of braking. Second, in addition to ABS, the 
offered braking system can operate in both gradual 
and emergency braking modes. Third, in contrast to 
many known ABS, the quality of braking in this study 
does not depend on the initial vehicle velocity, air 
resistance, or road incline. 

The problem of braking management is 
formulated as a search among three actions: urgent 
braking with fuzzy ABS control upon maximally 
possible EB involvement; gradual braking with 
greatest energy recovery; or non-electric braking. The 
research objective is to achieve the best energy 
recovery in the first two scenarios with minimal 
participation of the third one. The following five 
sections present the new braking system with gradient 
control, the vehicle friction model, the motor-battery 
model, and their operation. Then, the versatile 
braking FLC is designed. Next, the simulation is 
performed, the experimental diagrams are compared 
to the simulation outcomes, and the results obtained 
are summarized. 

2 MODEL OF BRAKING SYSTEM 

In compliance with (Reif, 2014; Kiyakli and Solmaz, 
2018), dynamics of the braking single-wheel quarter-
vehicle are determined as follows: 

BFma  ,                                    (1) 

FB = Fair+Fg+Fx,                          (2) 

   windvwindvairair vvvvQCF  sgnρ5.0 2 ,    (3) 

 βsinmgFg  ,                            (4) 

 β cos μ mgFx  ,                            (5) 

dt

d
JrFT w

BB

ω
 ,                         (6) 

where 

m – quarter-vehicle mass;  
a – longitudinal deceleration of vehicle; 
FB – braking force; 
Fair – air resistance (aerodynamic drag); 
ρ – air density;  
Cair – aerodynamic drag coefficient; 
Q – vehicle front area;  
vv = – vehicle velocity;  
vwind – wind velocity;  
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Fg – climbing force;  
g – acceleration due to gravity; 
β – climbing slope (road incline); 
Fx – longitudinal force; 
μ – dimensionless friction factor;  
TB – braking torque; 
r – effective radius of the wheel; 
ωw – angular speed of the wheel; 
J – moment of inertia of the wheel. 

Two variants of the explored Simulink® model of 
blended braking with fuzzy gradient control are 
shown in Fig. 1: the friction-slip system (a) and the 
torque-slip system (b). They are made up of the 
following groups of blocks: 

• Vehicle friction group including Tire-road, Slip, 
and Vehicle blocks; 

• Drive group, including electric drive (eDrive), 
friction drive (fDrive), Wheel, and Energy blocks; 

• Control group, including the fuzzy logic 
controller (FLC) and torque allocation (TA) 
blocks. The FLC derives an actuating braking 
torque T* for vehicle deceleration using the 
velocity and tire-road (a) or application torque (b) 
gradient signals.  

 
(a) 

 
(b) 

Figure 1: Simulink® models of the blended braking system 
with friction-slip (a) and torque-slip (b) gradient control. 

3 WHEEL SLIP AND TIRE-ROAD 
FRICTION ESTIMATES 

To slow down the vehicle moving at certain initial 
velocity v0, the required braking force FB has to be 
developed. To this aim, the control system needs the 
data used in Eqs. (1) – (6). Most of them are available 
from the vehicle passport characteristics (m, Q, r, J) 
or can be acquired with on-board sensors (a, vv, 
vwind, ωw).  

However, estimating the total tire-road friction is 
a complex challenge since this parameter varies with 
such factors as velocity, load, torque, surface 
roughness, tire diameter, inflation, wear, etc., and 
these variations are very difficult to detect. Moreover, 
the friction depends on the wheel slip. 

Unlike the graduate braking, in intensive braking 
a longitudinal wheel slip λ takes place (Reif, 2014; 
Spichartz et al., 2017) i.e. the relative difference 
between vehicle (vv) and wheel (vw) velocities: 

v

wv

v

wv

v

rv

v

vv ω
λ





 .                   (7) 

This means that in addition to minor rolling 
friction, slipping friction heavily affects the braking 
rate. It involves both the kinetic interaction of moving 
surfaces, called sliding or dynamic friction, and the 
static coupling (“stiction”) of fixed surfaces. The 
latter one significantly exceeds its kinetic counterpart 
at the beginning of starting and at the end of braking. 
The force that prevents a tire from slipping as it rolls 
on the ground is an example of static friction. Even 
though the wheel is in motion, the patch of the tire 
that contacts the ground is stationary relative to the 
ground, so it is a static rather than a kinetic fraction 
(Pratap and Ruina, 2002).  

To derive the wheel slip in real time, both 
velocities in Eq. (7) can be directly measured with on-
board vv and ωw sensors. However, since the friction 
cannot be acquired by sensors, one or the other 
computational method is required for its estimation. 

The knowledge of the friction-slip characteristics 
 vv,λμ  is needed not only to ensure the anti-spin 

regulation and antilock braking, but also, for adaptive 
cruise control and energy recovery. As direct friction 
sensing is impossible, many studies devoted to its 
indirect estimation have been produced aiming to 
arrange the braking procedure. In all cases, some 
forms of the model-based approach are used for 
 vv,λμ  searching. In (Zhang and Lin 2018), friction 

is derived based on velocity sensor signals and 
vehicle geometry. In (Kadowaki et al., 2007), a 
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perturbed sliding mode observer is used. Several 
models of the friction-slip relations may be found in 
literature, such as Pacejka’s “Magic Formula”, 
Burckhardt model, Rill model, and others (Cecotti, 
2012).  

Although the factors in these models are different, 
the trends of curves look very similar. Commonly, the 
tire-road friction factor grows steeply from zero to its 
maximum appeared somewhere between 2 and 12% 
slip for different road surfaces. At 0% slip, both the 
wheel and the vehicle have exactly the same 
velocities in Eq. (7). Gradual braking operations 
presume low levels of slip and take place within a 
zone where an increase in the slip simultaneously 
produces an increase in the usable friction. These 
growing slopes of the friction-slip characteristics 
match the stable zone where, due to the positive 
friction-slip gradient, the vehicle is suitable for 
control and for steerability maintenance. On the 
contrary, the falling slopes emphasise an unstable 
zone, in which the wheels may lock up, inducing 
skidding and causing the spinning of the tires. When 
the slip is 100%, the wheel is locked although the 
vehicle is still moving.  

In this research, a programmable road estimator 
was implemented in the Tire-road block shown in 
Fig. 1, where a preliminary stored set of friction-slip 
lookup tables is used. Its input is associated with the 
Slip block and vehicle deceleration a is derived from 
the ratio of the longitudinal (Fx) and normal (Fz) 
forces acting on the wheel: 

   β cos
,λμ

mg

FFma

F

F
v gair

z

x
v


 .                  (8) 

Further, vehicle velocity is counted by integrating 
a as shown in Fig. 2, where it is assumed that Fair = β 
= 0 with a view to simplicity.  

 

Figure 2: The Vehicle block. 

Naturally, given the very large uncertainty 
associated with the above estimates due to incomplete 
data, this approach does not claim to be highly 
accurate. As the velocity decreases, the curves tend to 
move down and right, meaning that the dynamics of 
the wheel slip is inversely proportional to the vehicle 
velocity (Habibi and Yazdizadeh, 2010; Cerdeira-

Corujo et al., 2016; Li et al., 2018). Additionally, such 
tire properties as their type, inflating pressure, etc. 
also change during braking, affecting their peak 
locations. An important challenge is to identify the 
changing road surface in order to select the proper 
 vv,λμ  characteristic. 

4 GRADIENT CONTROL 
METHOD 

In contrast to (Aksjonov et al., 2018), where the 
acceleration signal is sent directly to the controller, in 
the new model presented in Fig. 1 this signal is only 
needed to estimate the vehicle velocity in the Vehicle 
block. 

To reduce the uncertainty of the friction 
characteristics, the steerable braking condition can be 
confidently expressed as 

0
λ

μ


d

d .                                 (9) 

In accordance with Eq. (9), the fastest braking 
process is expected at the maximal braking force FB 

corresponding to 0
λ

μ


d

d . 

In the model of Fig. 1-(a), the desired friction 
factor and the measured slip ratio are used in the same 
Tire-road block to determine how great force can be 
created in response to an increase of wheel slip.  

Estimation of Eq. (9) in real time is based on the 
tire model Eq. (8). Two approaches are proposed to 
overcome differentiation noise. In the first case, a 
filtering technique (Cecotti et al., 2012) is adopted. 
As the second method, pre-calculated friction 
derivatives are collected in the lookup tables to be 
used instead of real-time differentiation. The gradient 
obtained by any of these approaches is further 
directed to the control system.  

Both techniques are illustrated in Fig. 3, where 
two lookup tables keep data on the friction-slip (mu-
L) relations on wet (mu_wet) and dry (mu_dry) roads, 
and two other lookup tables (dmudL_wet and 
dmudL_dry) keep data on the pre-calculated 
gradients. The signals about the change of the road 
surface connect the appropriate tables to the outputs 
of the block. At that, the derivatives are restricted 
according to the universe of discourse (UOD) of the 
connected controller.  

Management of braking using Eq. (9) is called 
further a friction-slip gradient control. Since friction 
cannot be sensed directly and this control approach 
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remains fairly rough, the estimated tire-road friction 
factor is to be taken with a margin relative to its 
maximum. As a result, this system does not claim any 
significant advantages over (Aksjonov et al., 2018). 

 

Figure 3: The Tire-road block. 

However, as a development of this approach, a 
more advanced method is further proposed. 

Assuming that 
dt

d
J wω remains rather constant in 

the controller computational interval, Eq. (6) can be 
converted as 

λ

μ

λλ d

d
k

d

dF
r

d

dT xB  ,                      (10) 

where  βcosmgrk  .  

In turn, since at the steerable braking the torque TB 
follows the application torque T of the drive, Eq. (9) 
is re-written as follows: 

0
λ

1

λ

μ


d

dT

kd

d .                        (11) 

Now, the derivative of application torque with 
respect to slip may be used as a control feedback. It is 
called further a torque-slip gradient control. 

Whereas the application torque is easily measured 
with sensors and accurately adjusted (Xu et al., 2016), 
the torque-gradient control represents a kind of the 
close loop control. In this way, vehicle velocity, 
particularly at statics, as well as other road, 
aerodynamics, and incline features are successfully 
considered into the tire model as was recommended 
in (Habibi and Yazdizadeh, 2010; Cecotti et al., 
2012).  

The torque-slip gradient control is illustrated in 
Fig. 1-(b) and Fig. 4, where the Gradient block 
implements differentiation of measured application 
torque T, whereas the Tire-road block is only needed 
for estimating the friction using data from the Slip 
block fed by the on-board v and ωw sensors.  

 

Figure 4: The Gradient block. 

5 DRIVE MODEL 

In the Drive group, the friction drive fDrive block, 
integrated with FB, and the adjustable electric drive 
eDrive block, implemented the battery-regenerative 
EB, handle separately their portions of the actuating 
braking torque T* generated by the Control group. 

The FB unit is modelled as a first order system 
with dead time. 

In turn, the Drive-U sub-block in eDrive (Fig. 5) 
is responsible for direct torque control, electrical 
power supply, and energy recovery. Together with the 
Drive-I sub-block, it arranges a torque stabilisation 
loop with PI current controller.  

The Drive-T sub-block and the Wheel block 
belong to the speed loop activated in gradual 
deceleration and shorted in emergency braking.  

 

Figure 5: The eDrive block. 

Gear and vehicle inertia are represented by the 
Wheel block also (Fig. 6). The static fraction of torque 
is taken into account in this model when the velocity 
drops to a low (vhome) level.  

 

Figure 6: The Wheel block. 

The Energy block (Fig. 7) derives an electrical 
fraction of the braking power 

wEE TP ω                               (12) 
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and braking energy regenerated back to the supply 
grid with efficiency η in a given time interval t: 

 dtPW EE η                          (13) 

 

Figure 7: The Energy block. 

6 TORQUE ALLOCATION 

The main mission of the blended braking system is to 
slow down a vehicle under the action of the 
application torque T, which should be as close as 
possible to the driver’s setpoint TB

* (the block 
TB_driver in Fig. 1), without exceeding peak 
optimality for the road surface under the tires.  

The Control group generates actuating braking 
torque T* dependently of the pedal displacement TB

* 
and friction gradient dμ/dλ (Fig. 1-(a)) or application 
torque gradient dT/dλ (Fig. 1-(b)). Its output torque 
allocation block (TA) algorithmically distributes the 
actuating braking torque T* between the front and rear 
wheels in a fixed ratio (Tao et al., 2017) and allocates 
it between FB and EB based on real-time SOC, 
voltage, and permissible EB current. Electric current 
IE recharges the energy storage device from the EB 
while the pressure signal pF adjusts the FB. Braking 
will complete when the driver releases the pedal or 
the vehicle stops. 

In order to forward to EB a maximal fraction of 
the actuating torque T*, the electric drive has to 
develop sufficient power, voltage, and current to 
charge all energy storage devices: 

 
 
 max max max 

max max max 

max max max 

,max

,max

,max

BATUCE

BATUCE

BATUCE

III

UUU

PPP





,         (14) 

where PUC max, UUC max, IUC max, PBAT max, UBAT max, and 
IBAT max are permissible power, voltage, and current of 
the ultracapacitor (UC) and the battery (BAT), 
respectively; PE max, UE max, and IE max – maximal 
power, voltage, and current of the electric drive. 

Meanwhile, in order to keep the battery and 
ultracapacitor within their safe operating areas, 
electric current IE and motor torque TE

* have to meet 
the real-time storage restrictions, namely, SOCUC and 
SOCBAT (Cerdeira-Corujo, 2016; Naseri et al., 2017): 

    ψ ψ,  max

ψ*

BATBATUCUC

EE

SOCISOCI

IT    (15) 

where IUC and IBAT are estimated charging currents of 
the ultracapacitor and battery and ψ is flux linkage of 
the electric motor. 

Once the actuating braking torque exceeds these 
boundaries, the remaining part of it must be created 
by the FB:  

***
EF TTT  .                           (16) 

In (Aksjonov et al., 2019), an appropriate torque 
allocation algorithm is proposed. There, when the 
control system recognises the actuating torque 
request T*, the EB is activated and either EBUC or 
EBBAT runs. The FB torque does not appear until 
either any of the SOC levels exceeds the allowed 
overcharging barriers or the electric motor produces 
maximal power. As soon as the motor torque becomes 
insufficient, the system runs FB and EB together. 
Only in the case when both SOC levels exceed their 
boundaries, the solo FB is used due to the inability to 
regenerate. 

Therefore, the common trait of this strategy is to 
include regeneration into all braking scenarios, even 
during heavy braking with ABS, and to use the solo 
FB only when the battery SOC and voltage levels are 
saturated. The fewer such conditions appear, the less 
braking energy is wasted and the longer the service 
life of the FB. 

7 DESIGN OF A FUZZY LOGIC 
CONTROLLER 

Depending on the solution chosen, the fuzzy (Tao et 
al., 2017), PID (Cerdeira-Corujo et al., 2016; Kiyakli 
and Solmaz, 2018), sliding (Kadowaki et al., 2007; 
Habibi and Yazdizadeh, 2010), and some other 
braking controllers compete in the market. Given the 
complexity of the system and its nonlinearity, this 
study is devoted to the FLC relying on the knowledge 
and skills of professional experts.  

The FLC target is to derive an actuating braking 
torque T* needed for slowing down the vehicle inside 
an acceptable friction-slip region. In the MISO-type 
controller designed, two input numerical variables 
(crisps) are used: the driver’s setpoint TB

* and either 
the friction (dμ/dλ) or the application torque (dT/dλ) 
derivative with respect to slip λ.  

The Mamdani-style inference mechanism is 
applied to transform every input crisp into a separate 
fuzzy pair consisting of an element in UOD and an 
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appropriate membership function (MF). The 
estimated actuating torque T* is coming from the FLC 
output. Using the weighted average defuzzification 
method, this linguistic signal is then turned back to 
the real-world output crisp.  

The setpoint torque input TB
*, the gradient input 

dT/dλ (or dμ/dλ), and the actuating torque T* output 
have six MFs notated as Z (Zero), VS (Very Small), 
S (Small), M (Middle), B (Big), and VB (Very Big). 

In Fig. 8, the fuzzy sets for the linguistic variables 
are represented. The MFs have a triangle shape 
suitable for braking management and experts training. 

 

 

 

Figure 8: MFs of control variables TB*, Gradient, and T*. 

The inference engine with “If–Then” modus 
ponens converts fuzzy input sets to the fuzzy output 
set using the base of 36 rules shown in Table I. 

Table 1: FLC Rule Base. 

Gradient 
dµ/dλ,  dT/dλ 

Output torque T* at input TB* 

Z VS S M B VB 

Z Z Z Z Z Z Z 

VS Z VS VS VS VS VS 

S Z VS S S S S 

M Z VS S M M M 

B Z VS S M B B 

VB Z VS S M B VB 

The input-output FLC surface is plotted in Fig. 9. 

 

Figure 9: Input-output FLC surface. 

8 EXPERIMENTATION 

To validate the model described in the previous 
sections, the simulations are compared further to 
experimental results published in (Aksjonov et al., 
2019).  

The hardware-in-the-loop electro-hydraulic 
testbed from ZF TRW Automotive (Koblenz, 
Germany) granted for experimentation by TU 
Ilmenau (Germany) and driven by the vehicle-
oriented software IPG CarMaker® (Karlsruhe, 
Germany) was used there. The detailed stand 
specification is given in (Aksjonov et al., 2019). Its 
tire-road model based on “Magic Formula” (Pacejka, 
2012) was parameterized against the real sport utility 
vehicle and represented as a table of friction-slip data 
under the fixed load on the wheels and the most 
common road surfaces (i.e., icy, wet, damp and dry). 
The peaks of the friction curves for each road surface 
are marked with dots in Fig. 10. 

 

Figure 10: Tire-road friction factor plots for different road 
surfaces used in this study. 

The weight of the studied sport utility vehicle is 
2117 kg and wheel radius is 0.2 m. It was assumed 
that the vehicle is moving in a straight-line 
manoeuvre at 100 km/h, fed by the switch-reluctance 
motor with a maximal permissible torque of 200 Nm, 
speed 157 rad/s, and 2.1 kgm2 inertia, connected to 
the wheel imitator through the gear of 10.5 ratio. Due 
to this transmission, the peak torque on the wheel at 
heavy braking can approach 2000 Nm, and the 
angular speed of the wheel – 15 rad/s. Aerodynamic 
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and climbing factors were neglected in that study  
(Fair = β = 0).  

In Fig. 11, the braking diagrams obtained in 
(Aksjonov et al., 2018) and confirmed experimentally 
in (Aksjonov et al., 2019) are shown. They 
demonstrate the velocities of the front left (FL), front 
right (FR), rear left (RL), and rear right (RR) wheels, 
appropriately, that follow the vehicle longitudinal 
velocity in Fig. 11-(a), and EB and FB wheel torque 
curves in Fig. 11-(b). Since the EB torque is not 
sufficient to retain optimal slip, the control system 
requests additional FB torque. At the end of slowing 
down, regeneration turns off, and the FB completes 
braking alone. 

 

(a) 

 

(b) 

Figure 11: Experimental braking diagrams: (a) vehicle and 
wheel velocities; (b) torque. 

An original method was proposed in (Aksjonov et 
al., 2018) for determining the road surface. Every 
second, starting from ABS activation, the controller 
evaluates the maximal deceleration of the vehicle and 
compares it with the deceleration peaks preliminary 
calculated using Eq. (8) at Fair = β = 0. Such 
momentary friction reset does not affect driving 
comfort, as the process is very rapid, but it indicates 
whether the road surface changes or remains the same 
as before.  

Alongside the set of positive outcomes, the 
neglect of air friction, road slope, and other tire 
features are the drawbacks of the above method. As 
well, an evident chattering phenomenon at low 
velocity is seen in the torque plots. In fact, its 

appearance can be explained by three interrelated 
reasons. First, this is an increase in static friction in 
Eq. (5), when the vehicle is moving slowly and 
several wheels tends to slip. Second, this is due to 
high sensitivity of the slip to the velocity at slow 
motion. Third, since at low velocity the EB ceases and 
the FB finalises braking alone, there is no torque 
stabilisation at that moment.  

Torque oscillations demonstrate that the 
simplified drive model used could not ensure proper 
torque adjustment. Such kind of oscillation, reported 
also by other researchers (Habibi and Yazdizadeh, 
2010; Lin and Song, 2011; Li et al., 2018) is a 
common issue of braking, needed to be considered as 
it affects vehicle steerability and reduces energy 
recovery. 

9 COMPARING SIMULATIONS 
TO EXPERIMENTAL RESULTS 

The torque gradient approach proposed in the current 
research brings sensitive benefits in braking 
performance. Now, thanks to the close loop torque 
control, there is no longer need to collect theoretical 
tire-road friction data and determine the road surface. 
Appropriate simulation diagrams plotted for the same 
braking conditions as in (Aksjonov et al., 2019) 
confirm these advantages. Since the optimal wheel 
slip is approximately the same for both the front and 
the rear left and right wheels, a quarter-vehicle model 
described by Eqs. (1) – (6) is studied further. 

Figure 12 introduces the traces obtained from the 
friction-slip gradient control simulation. Here, the 
total application torque (T, green) needed to ensure 
intensive stopping in response to the driver’s setpoint 
TB

* = 270 Nm is obtained after allocation between the 
electric (TE, purple) and friction (TF, violet) torques, 
wherein the electric torque is restricted to 200 Nm. 
Since the motor response is much faster than that of 
the friction unit, TE can be considered almost the same 
as the demanded TE

* unless it exceeds the limitation 
of the maximal electric power. Torque oscillations are 
not observed here as they are damped by the torque 
loop. At low velocity vhome = 10 km/h, the friction 
increases sharply due to its static fraction. The EB 
turns off, and the torque begins fluctuate intensely.  

Figure 13 confirms the effectiveness of the 
torque-slip gradient control. Despite the fact that the 
braking process lasts here 10% longer due to the 
application torque delay and instability, the traces 
look very similar to Fig. 12. 
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(a) 

 
(b) 

Figure 12: Friction-slip gradient braking diagrams at 
constant tire-road friction: (a) – vehicle and wheel 
velocities, electric, friction, and application torque, and 
regenerative energy; (b) – tire-road friction and wheel slip. 

 
(a) 

 
(b) 

Figure 13: Torque-slip gradient braking diagrams at 
constant tire-road friction: (a) – vehicle and wheel 
velocities, electric, friction and application torque, and 
regenerative energy; (b) – tire-road friction and wheel slip. 

 
(a) 

 
(b) 

Figure 14: Friction-slip gradient braking diagrams at 
changing tire-road friction: (a) – vehicle and wheel 
velocities, electric, friction, and application torque, and 
regenerative energy; (b) – tire-road friction and wheel slip. 

In order to investigate the effectiveness of the 
proposed method in tracking more sophisticated 
commands, vehicle motion above the changing road 
surface was simulated. Figure 14 demonstrates the 
traces obtained from the simulation of the volatile 
driving using the friction-slip gradient control. Here, 
the system successfully detects a change in road 
conditions based on analysis of the friction-slip 
gradient. At the beginning, the deceleration was 
around 20 m/s2 on a dry surface. At the end of the first 
second, the road surface suddenly changes from dry 
to wet. As the new gradient is recognized, the total 
application torque needed to ensure an intensive stop 
drops to 70 Nm. The FB is no longer requested 
because the electric torque is sufficient to decelerate 
the vehicle within the optimal wheel slip area. 
Therefore, only electric braking is produced further. 
However, when the speed drops below vhome, the EB 
turns off, friction braking resumes and the FB 
operates alone.  

Finally, Fig. 15 confirms the effectiveness of the 
torque-slip gradient control at the volatile driving. It 
represents the similar processes that take about 10% 
longer braking time. 
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(a) 

 
(b) 

Figure 15: Torque-slip gradient braking diagrams at 
changing tire-road friction: (a) – vehicle and wheel 
velocities, electric, friction, and application torque, and 
regenerative energy; (b) – tire-road friction and wheel slip. 

Herewith, there is no more chattering in the torque 
plots at low velocity. First, this is because the Wheel 
block takes into account an increase of friction due to 
its static fraction. Second, because the air friction is 
involved in a close torque loop. Third and finally, 
because the torque loop remains closed even without 
the EB. 

10 ANALYSIS OF ENERGY 
RECOVERY 

Based on the energy curves (kJ, black) and assuming 
a 50% regenerative efficiency in Eq. (13), it turns out 
from Figs. 12-(a) and 13-(a) that nearly 22 kJ of 
energy is recovered during braking on the dry road. 
In Figs. 14-(a) and 15-(a), despite the fact that the 
stopping time is slightly increased, approximately the 
same amount of energy is recovered as before. 

To assess the degree of involvement of 
aerodynamic and climbing resistances in energy 
consumption and saving, simulation were performed 
on the flat and 20º-downhill roads with different 
velocities. An electric car with Q = 3 m2, ρ = 
1.2 kg/m3, and Cair = 0.5 was studied in the modes of 
gradual (μ = 0.18) and intensive (μ = 1) braking. 

 
(a) 

 
(b) 

Figure 16: Power components at gradual braking,  = 0.18: 
(a) β = 0; (b) β = 20. 

At gradual braking without inclination (β = 0 in 
Fig. 16-(a)), the friction power (Px) dominates only at 
low velocity, whereas in rapid cruising a significant 
part of energy is spent on overcoming the air 
resistance (Pair). On the slope (β = 20 in Fig. 16-(b)), 
much recovered energy can be released due to the 
climbing counterforce (Pg). At heavy braking, the 
friction force (Px) always prevails on both the 
longitudinal (Fig. 17-(a)) and inclined (Fig. 17-(b)) 
driveways. However, until the friction factor reaches 
its upper level, it passes all intermediate levels, from 
0.18 to 1, and all velocities, from v0 to 0. This means 
that both the volatile vehicle velocity and variable 
friction must be taken into account in braking control. 

 
(a) 

 
(b) 

Figure 17: Power components at heavy braking,  = 1: 
(a) β = 0; (b) β = 20. 

Fuzzy Gradient Control of Electric Vehicles at Blended Braking with Volatile Driving Conditions

259



11 CONCLUSION 

In the refined vehicle model, multiple factors are 
addressed, such as air resistance, road slope, and 
changeable friction. An improved motor and energy 
source model reflects the state of charge and electric 
current/voltage restrictions of the hybrid energy 
storage under various driving scenarios recognised by 
the tire-road model, such as gradual deceleration and 
emergency antilock braking in volatile driving 
conditions. As a result, a proposed novel control 
arrangement provides fuzzy adjustment and 
stabilisation of the braking torque with a gradient 
torque allocation between electric and friction brakes, 
which allows integrating the advantages of both 
friction and electric braking. Obtained simulation 
diagrams largely coincide with the experimental 
curves. They demonstrate consistently high braking 
quality regardless of changes in the road surface and 
slope, vehicle initial velocity, and air resistance. 
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