Tool Support for Green Android Development: A Systematic Mapping

Study

Iffat Fatima'!, Hina Anwar?, Dietmar Pfah]?> and Usman Qamar!

L College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan

Keywords:

Abstract:

2 Institute of Computer Science, University of Tartu, Tartu, Estonia

Android Development, Code Refactoring, Energy Efficient, Green Software Engineering, Mapping Study.

In order to make mobile apps energy efficient, we must find ways to support energy efficient app development.
While there is a lack of support tools that aid practitioners in moving towards green Android development. Our
goal is to establish the state of the art with respect to support tools that aid green Android development and to
identify opportunities for further research. To achieve this goal, we conduct a systematic mapping study. After
applying inclusion, exclusion and quality criteria we selected 21 studies for further analysis. Current support
tools to aid green Android development were classified into three categories: Profiler, Detector and Optimizer.
Most Profiler tools provide a graphical representation of energy consumed over time at various levels. Most
Detector tools provide a list of energy bugs/code smells to be manually corrected by a developer for the
improvement of energy. Most Optimizer tools automatically generate refactored version(s) of APK/SC. The
most typical technique used by Detector and Optimizer tools is static source code analysis using a predefined
set of rules. Profiler tools use a wide range of techniques to measure energy consumption. However, these
tools have limitations in terms of code smell/energy bug coverage, accuracy, and usability.

1 INTRODUCTION

With the growing awareness of global warming and
its causes related to human activities (Powell, 2019),
the information and communication technology (ICT)
as well as software engineering (SE) research com-
munities show growing interest in green software de-
velopment. Software systems have such a significant
impact on our everyday lives that changes towards en-
vironmental sustainability can ripple to other systems
with which they interact and positively affect the in-
dustries in which they are used (Anwar and Pfahl,
2017). It was reported that the use of ICT can elimi-
nate 12.1 billion tons of CO? emissions per sector per
year till 2030 (GeSI, 2015). While these estimates
are promising, the current ICT and software develop-
ment practices are causing harm to the environment.
There is ample research on making the hardware en-
ergy efficient but research on making energy efficient
software is still emerging. With emerging technolog-
ical trends such as internet of things (IoT), the impor-
tance of portable devices like smartphones is imper-
ative. There were over 1.9 billion smartphones sold
in 2018 alone (Gartner, Inc., 2018b) and the numbers
are increasing every year. According to an online sur-

Fatima, I., Anwar, H., Pfahl, D. and Qamar, U.
Tool Support for Green Android Development: A Systematic Mapping Study.
DOI: 10.5220/0009770304090417

vey users spend most of their digital media time on
smartphones using mobile apps(Mindsea, 2019). In
the smartphone market, Android has the biggest mar-
ket share globally, i.e., 87.8% (Gartner, Inc., 2018a).
Portable devices like smartphones have limited hard-
ware resources such as battery and memory. There-
fore, Android apps need to be developed with energy
efficiency in mind. In this paper, we use the term
green Android development for research that is in-
tended to help developers design and implement en-
ergy efficient Android apps. Recent studies focus on
novel energy profiling/enhancement tools and meth-
ods in mobile apps (Ardito et al., 2013; Banerjee
and Roychoudhury, 2016; Chung et al., 2011; Fer-
nandes et al., 2014; Kansal and Zhao, 2008; Pathak
et al., 2012). However, there is still a lack of informa-
tion, support infrastructure and tools for developers to
make energy efficient applications (Anwar and Pfahl,
2017; Manotas et al., 2016). To better understand
what is available and what is lacking with regards
to support tools, we conducted a systematic mapping
study. Our results indicate that there are many differ-
ent support tools developed to help aid developers at
various levels, however, they are not open source and
require advance knowledge related to energy related

409

In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 409-417

ISBN: 978-989-758-443-5

Copyright (© 2020 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICSOFT 2020 - 15th International Conference on Software Technologies

issues in Android apps. There is a need to develop
a consolidated support tool that covers all the energy
related issues and is simpler to integrate with current
integrated development environments (IDEs).

2 RELATED WORK

Secondary studies related to tool support for improv-
ing energy efficiency in Android development are
scarce. Some secondary studies (Fontana et al., 2011;
Kaur and Dhiman, 2019; Singh and Kaur, 2018) re-
viewed tools and techniques for improving the quality
of Java projects in the object-oriented paradigm (with
regards to performance or maintainability). Most An-
droid projects use Java as the programing language,
however, the support tools and techniques used for
Java projects reviewed by previous secondary studies
(Fontana et al., 2011; Kaur and Dhiman, 2019; Singh
and Kaur, 2018) cannot be effectively applied to An-
droid projects. Therefore, many specialized support
tools have been developed to improve the quality of
Android apps with regard to maintainability, perfor-
mance, security or energy. Li et al. (Li et al., 2017)
performed a systematic literature review to analyze
static source code analysis techniques and tools pro-
posed for Android to assess issues related to security,
performance or energy. The authors reviewed work
published between 2011 and 2015 consisting of 124
studies. The review concluded that the majority of
static analysis techniques only uncover security flaws
in Android apps. Degu (Degu, 2019) performed a sys-
tematic literature review to classify primary studies
with a focus on resource usage, energy consumption,
and performance in Android apps. The author has re-
viewed work published between 2012 and 2017. The
results did not provide an in depth review of support
tools in green Android development. None of the pre-
vious secondary studies has reviewed the literature
from the point of view of support tools developed
to aid green Android development. Most secondary
studies discussed above have covered published work
until 2015 and many of the reviewed tools in those
studies are now outdated/obsolete. Therefore, in this
paper, we provide a different view of literature by an-
alyzing recently developed support tools for energy
profiling, code optimization and refactoring in An-
droid development to improve energy efficiency.

3 RESEARCH METHODOLOGY

In order to be able to develop better support tools we
need to understand what is already available, what is

410

still needed, and how the problems in existing tools
could be overcome. Following the method described
in (Petersen et al., 2008) we formulated research
questions, then based on those research questions we
formulated a general search query and conducted the
search in the following online repositories for primary
studies: IEEE Xplore, ACM digital library, Science
Direct, and Springer. In this paper, we cover stud-
ies from 2014 to June 2019, as from 2014 onwards
the focus of many studies has been Android and en-
ergy efficient app development, indicating a shift in
research focus.

3.1 Research Questions

We formulated the following research question with
three sub-questions.

RQ1: What state of the art support tools have been
developed to aid software practitioners in developing
energy efficient Android apps?

RQ1.1: How do existing support tools compare to one
another in terms of the support they offer to practi-
tioners for improving energy efficiency?

RQ1.2: How do existing support tools compare to one
another in terms of techniques they use for offering
the support?

RQ1.3: What are the limitations of existing support
tools developed to help aid software practitioners in
developing energy efficient Android apps?

3.2 Search Query

We derived search terms from the research goals and
research questions. We looked for alternatives and
synonyms of the search terms in studies we already
knew and refined our search terms to return the most
relevant studies. We used the * operator to cover pos-
sible variations of the selected search terms in the
search query. Keyword OR was used to improve
search coverage. The AND NOT keyword was used
to eliminate papers that do not fall into the scope of
this study e.g. environmental, education and hard-
ware related papers that discuss energy efficiency so-
lutions. We did not use the search terms 'mobile
development’, ’apps’, ’sustainability’, ’green’, ’op-
timization’, ‘recommendation’, and ’energy’ as they
were too high level and produced a larger corpus con-
sisting of higher number of irrelevant studies. The
search terms ’resource leak’, *tool’, *framework’, and
"technique’ were eliminated to avoid being too spe-
cific. The search query was applied to popular online
repositories (IEEE Xplore, ACM digital library, Sci-
ence Direct, and Springer). In each repository, based
on available advanced search options, filters were ap-

Tool Support for Green Android Development: A Systematic Mapping Study

Table 1: Search query filter.

Table 2: Inclusion/Exclusion criteria.

Inclusion

Exclusion

Sr. Filter Value

1 Publication year >2014

2 Content Format PDF

3 Content Type Journal Article, Conference Paper
4 Publication Area Software Engineering

plied to refine the query results. Applied filters are
shown in Table 1. The search query was applied to
the titles, abstracts, and keywords of the papers.
Android develop* AND (energy effici* OR energy
bugs OR code optimization OR code refactoring)
AND NOT (testing OR environment* OR edu* OR
hardware).

3.3 Screening of Papers

We removed duplicate papers and then defined in-
clusion, exclusion, and quality criteria for further
screening of search results. The search results from
online repositories were first loaded in Zotero! (an
open source reference management system) to cre-
ate a dataset of relevant studies. Using the feature
in Zotero duplicates studies were removed from the
dataset. Next, we manually applied inclusion, exclu-
sion (see Table 2) and quality criteria (see Table 3)
on the remaining papers. Abstracts of the papers and
structure of the paper were assessed for further qual-
ity assessment. A maximum quality score of 3 could
be assigned to a paper. If a paper was below a quality
score of 1.5 it was removed from the results.

3.4 C(lassification and Data Extraction

To answer RQ1 and its sub-questions, we identified
the main keywords of the selected studies along with
the commonly used terms in the abstract to define
categories of support tools. Research methodology
and results of selected studies were additionally stud-
ied when needed. We kept extracted data in excel
spread sheets for further processing. During data ex-
traction, if there was a conflict of opinion it was dis-
cussed among authors of this paper until a consensus
was reached. To answer RQI1, a bottom-up merging
technique was adopted to build our own classification
scheme (see Table 4). Once a classification scheme
was established, we extracted data from each selected
study to identify its main contribution and assigned
the tool mentioned in the study to a category based on
the classification scheme.

To answer RQ1.1, we extracted data form each se-
lected study to gather information about the kind of
support the identified tool offers based on the inputs
of the tool, outputs of the tool, recommendation(s)

Uhttps://www.zotero.org/

Primary studies should be related to
software engineering with a focus on
energy efficiency in Android apps.

A tool/automated technique for code
optimization and refactoring or en-
ergy profiling was presented for green
Android development.

We considered only conference and
journal articles for which full text was
available.

Studies focused on energy efficiency
with respect to hardware or environ-
mental issues or present secondary
data were excluded. The work pre-
sented in a thesis or book chapter is
usually published in relevant journals
or conferences as well. Therefore,
theses, magazine articles, book chap-
ters, work-in-progress papers, and pa-
pers that were not in English were

also excluded.

Table 3: Quality assessment criteria.

ID Description Rating
1 Does the paper clearly state contribution(s) that is di- 1
rectly related to improving energy efficiency in Android
apps?
2 Is the research method adequately explained? 1
3 Are threats to validity and future research directions 1
separately discussed?
TOTAL 3

Table 4: Categories of support tools.

ID Category
CP Profiler

Description

A software program that measures the energy consump-
tion of an Android app or parts of apps.

A software program that only identifies and detects en-
ergy bugs/code smells in an Android app.

CO Optimizer A software program that identifies energy bugs/code
smells as well as refactor source code of an Android
app to improve energy consumption.

CD Detector

made by authors based on the output of the tool, code
smells/energy bugs and measurement covered by the
tool. In general, a code smell is defined as a sur-
face indication that usually corresponds to a deeper
problem in the system (Fowler, 2002) and an energy
bug is defined as error in the system (application, OS,
hardware, firmware, external conditions or combina-
tion) that causes an unexpected amount of high energy
consumption by the system as a whole (Pathak et al.,
2011). In the light of these definitions, we looked for
Android specific code smells and energy bugs in the
studies.

To answer RQ1.2, a classification scheme was
needed to classify techniques used in support tools
for improving the energy efficiency of apps. We
used the bottom-up approach to build this classifi-
cation scheme by combining the specialized analy-
sis methods/techniques into more generic higher-level
techniques. The identified generic techniques along
with their definitions are described in Table 5. Once
we had established the classification scheme, we ex-
tracted data from the abstract and research methodol-
ogy of each selected study and assigned it to a cate-
gory defined in the classification scheme. To answer
RQ1.3, we studied the results, threats to validity and
conclusion of selected studies and summarized the

411

ICSOFT 2020 - 15th International Conference on Software Technologies

limitation of support tools in each category.

4 RESULTS

4.1 Screening

As a result of running the search query and apply-
ing filters (see Table 1) on search results, 1462 stud-
ies were found from the selected online repositories.
These studies were loaded into the Zotero software
for the screening and removal of duplicates, the total
number of papers were reduced to 1377 after dupli-
cate removal. Inclusion and exclusion criteria were
applied to the remaining studies and the number was
reduced to 566. We read abstracts of these studies and
looked at the paper structure to assign them a qual-
ity score based on quality criteria. After applying the
quality criteria, the number of selected studies® was
reduced to 21. (See Tables 6, 7, and 8)

4.2 Classification and Analysis

In this section, we present the result” for RQ1 and its
sub-questions RQ1.1 to RQ1.3.

RQ1: What state of the art support tools have been
developed to aid software practitioners in developing
energy efficient Android apps?

To answer RQ1, the classification scheme defined in
Section 3.4 was adopted and the selected studies were
divided into categories: 1) Profiler, 2) Detector, 3)
Optimizer, based on the support tool they offer to
aid green Android development. Table 9 gives an
overview of the distribution of selected studies in each
category along with the total number of tools in each
category. Figure 1 shows the number of publications
each year. The color in bars indicates the number of
tools in each category each year. From 2014 to 2017
we can see a decrease in the number of Profiler tools
while an increase in the number of Optimizer tools.
At least one Detector tool has been published every
year from 2014 to 2018. In 2019 (till June), no new
support tool has been published.

RQ1I.1: How do existing support tools compare to one
another in terms of the support they offer to practi-
tioners for improving energy efficiency?

To answer RQ1.1, we provide a list of all the tools
identified in each category. In Table 10? the column
input provides information about what is the input for
each tool. The column output provides information
about the support the tool offers based on the input.

2For additional information, e.g., list of selected studies, additional tables
and figures, see URL: https://figshare.com/s/7e78{2469727¢31d2957

412

Profiler = Detector W Optimizer

Total Papers in Category
s

2014 2015 2016 2017 2018 2019
Year of Publication

Figure 1: Number of publications per year per category.

Studies in the category Profiler offer support to the
practitioners by providing tools that can measure the
energy consumed by whole/parts of an app or device
sensors used in the apps. The measured information is
usually presented to practitioners as graphs for energy
consumption over time. Studies in the Profiler cate-
gory do not recommend when, where and how prac-
titioners can use the information from these graphs
during development to improve the energy consump-
tion of their apps. Studies in the category Detec-
tor offer support to practitioners by developing tools
that present as output lists of energy bugs/code smells
causing a change in energy consumption of apps. In
some studies, authors further discuss how the output
produced from their tool could be used to improve the
energy consumption of apps. We present this infor-
mation in Table 11 as a list of recommendations pro-
vided by those studies in the Detector category along
with a reference to the selected study. We define rec-
ommendation as; a fix for an energy bug/code smell
that can be applied in a finite number of steps/actions
in a specific context.

Studies in the category Optimizer offer support to
practitioners by developing tools that present as out-
put refactored source code of apps optimized for en-
ergy. The studies in this category do not explicitly
give the recommendation to the developers about how
to optimize the source code for energy efficiency as
the tools automatically refactor the code.

RQ1.2: How do existing support tools compare to one
another in terms of techniques they use for offering
the support?

To answer RQ1.2 we discuss in detail techniques used
in each tool for improving the energy efficiency of
apps. Table 12 gives an overview of tools and tech-
niques along with the reference to selected studies.
We observed that no tool in any category used a com-
bination of techniques. Each tool could be easily clas-
sified into exactly one category of techniques (defined
in Section 3.4).

Profiler. Profiling tools measure the energy con-
sumption of the software and the used hardware re-

Tool Support for Green Android Development: A Systematic Mapping Study

Table 5: Categories of techniques used for providing support to aid green Android development.

Technique

Definition

T1

T2

T3

T4

TS5

T6

Byte code manipu-
lation

Code Instrumenta-
tion

Logcat Analysis

Static Source code
Analysis
Search-based algo-
rithms

Dynamic Analysis

A technique that injects code in the Smali files of the app under test. The injected code is either a log statement or an energy evaluation function.
These statements help find out the part of the source code that consumes a specific amount of energy at runtime.

A technique that instruments the app, using instrumented test cases that are capable of running specific parts of the app, in such a way that it is
run in a specific environment while calling known methods/classes of the app under test. It uses finite state machines and device specific power
consumption details to measure energy consumption.

A technique that uses system level log files to obtain energy consumption information provided by OS for the app under test. These logs are
compared with application level logs to give graphical information about the energy consumption of the app.

A technique that uses the source code of the app and analyses it using one or combination of the following methods: control flow graphs
analysis, point-to-analysis, inter-procedural, intra-procedural, component call analysis, abstract syntax tree traversal or taint analysis.

A technique that uses a multi-objective search algorithm to find multiple refactoring solutions and the most optimal solution is selected as final
refactoring output by iteratively comparing the quality of design and energy usage.

A technique based on the identification of information flow between objects at run time for the detection of vulnerabilities in the app under test.

It monitors the spread of sensory data during different app states.

Table 6: Number of studies extracted per online repository.

Table 10: List of support tools and their inputs and outputs.

Sr. Repo. #of papers Conference Journal
Papers Articles

1 IEEE Xplore 832 621 211

2 ACM Digital library 478 454 24

3 Springer 130 95 35

4 Science Direct 22 4 18

Table 7: Number of articles per screening step.

Sr. Step in the screening of papers # of papers
1 Search string results after applying filters 1462

2 Remove duplicates 1377

3 Apply inclusion and exclusion criteria 566

4 Apply quality criteria 21

Table 8: Quality score assigned to each selected study.

Study ID Quality Score
S3, S6, S15, S18, S13 25
S1, S2, 84, S5, S8, S9, S10, S16, S19 2
Sl11, S12, S14, S17, S20, S21, S7 1.5

Table 9: Distribution of studies in each category.

ID Selected Studies # Tools
CP S6,S14, S16, S12, S13, S20, S19 7
CD S1, S3, 54,55, S8, 89,87, S17 8
CO S10,S11, S15, S18 S2, S21 6

sources. Profilers [S6, S16, and S14] were designed
to inject logging statements into the Smali files to
gather relevant log data. This data was then trans-
formed as needed and matched against pre-defined
API names or method names to identify energy in-
tensive APIs and methods in the program. In these
profilers, Dumpsys or System level logs or ADB data
plotted on a graph was used to measure energy us-
age. Another group of profilers analyzed the paths in
source codes using finite state models (FSM) or inter
procedural control-flow paths. The authors of [S19]
created a dynamic model that instrumented the app
to measure its power consumption. Methods were in-
voked using tests and were classified into three differ-
ent levels (classes, packages, and projects) based on
their energy consumption. The classification was then
presented graphically. The authors of [S12] modeled
energy consumption as an FSM model by collecting

Ct. Tool Input Output ID
Orka APK ECG S6
SEPIA AE ECG S12
Mantis PBC Program CRC predic- S13

tors

CP AEP SL, PID ECG S14

via ADB
E-Spector SL, AL ECG S16
via ADB
SEMA PID, Log of Energy con- S20
MVC sumption
Keong et. al SC ECG S19
Wau et al. SC List of energy bugs S1
Kim et al. PBC List of energy bugs S3
Statedroid APK List of energy bugs S5
CD PatBugs SC List of detected warn- S8
ings
SAAD APK List of energy bugs S9
aDoctor SC List of code smells S4
GreenDroid PBC,CF List of energy bugs + S17
severity level
Paprika APK, List of code smells S7
PM
DelayDroid APK Refactored APK S2
HOT-PEPPER APK Most energy efficient S10

APK, Refactored SC,
and List of refactoring

CO Asyncdroid SC Refactored SC S11
EARMO APK Refactored APK S15
EnergyPatch APK Refactored APK S18
Nguyen et al. SC Refactored SC S21

Ct=Category , SC=Source Code, APK=Android Package Kit,
PBC=Program Byte Code, SL= System Log files, AL= Application
Log files, PID= Process ID, ADB=Android Debug Bridge, CRC= Computa-
tional Resource Consumption, AE= Application Events, CF= configuration
Files, MVC= Measurements of Voltage and Current, ECG= Energy
consumption graph, PM=PlayStore Metadata.

Table 11: Recommendation given by authors of studies in
’Detector’ category.

Category: Detector

ID Recommendation

S1 Energy bug (related to listener leaks) caused due to control flow issues
in apps could be fixed by adding and removing interface listeners and
correct handling of Android lifecycle callbacks.
Energy bugs (related to texture transfers, image and frame rending) in
graphic intensive apps could be fixed in three ways:

S3 (1) Loop invariant graphic textures should be moved out of the loop.
(2) Group related images together for efficient rendering.
(3) Identify identical frames to prevent redundant frame drawing.

413

ICSOFT 2020 - 15th International Conference on Software Technologies

Table 12: Overview of support tools showing the technique
used for offering support to developers.

Techniques
Ct. Tool T1 T2 T3 T4 T5 T6 D
Orka v S6
SEPIA v S12
Mantis v S13
CP AEP v S14
E-Spector v S16
SEMA v S20
Keong et. al v S19
Wu et al. v S1
Kim et al. v S3
Statedroid v S5
CD PatBugs v S8
SAAD v S9
GreenDroid v S17
Paprika v S7
aDoctor S4
DelayDroid v S2
HOT-PEPPER v S10
CO Asyncdroid v S11
EARMO v S15
EnergyPatch v S18
Nguyen et al. v S21

events from an Android device. By executing the in-
strumented unit tests the line of source code with the
energy consumption issue was identified. The authors
of [S13] sliced the program into executable slices for
generating feature predictors. Predictors were gener-
ated based on some predefined metrics which quanti-
fied energy consumption. The authors of [S20] mea-
sured energy consumption by encapsulating the code
blocks with energy evaluation functions. Sampling
collector extracted energy consumption and a runtime
manager extracted application information from OS.

Detector. The authors of [S17] used JPF to statically
analyze the state space of the app to find the usage
of sensors and wake locks. The utilization of sen-
sory data was defined by a coefficient. The authors of
[S7] converted APK files into byte code using SOOT
which is a static source code analyzer. The converted
code was then used to identify and report various anti-
patterns in code. The authors of [S5] identified re-
source intensive items in an app using control-flow
graphs (CFGs). Using resource protocols as a guide
a taint-like analysis was performed on CFGs. In the
study [S1] valid inter-procedural control-flow paths
were analyzed in each callback method and its tran-
sitive callees, in order to detect energy draining op-
erations related to missing deactivation behaviors. In
the study [S3], a static analysis tool SOOT was used
to find energy bugs in graphics intensive mobile apps
along with point-to analysis tool, SPARK. Energy
bugs were identified based on the frequency at which
GPU was being used to perform certain actions e.g.
texture transformations etc. The authors of [S8] used
flexible bug pattern specification notation (FBPSN)
to specify bug patterns. The source code was trans-
formed to CFGs which were used to detect bugs with
the help of FBPSN specified bug patterns. In the study

414

[S9] the APK files were analyzed using APKTool
and resource leak were analyzed using SAAF. Lint
was used for layout defect analysis. 'SAAF’ inter-
nally uses inter-procedural, intra-procedural and com-
ponent call analysis and resource leak detection. The
output from ’Lint’ was passed through a filter based
on a set of rules defined in a defect table to generate
the report. The results of both these tools are used to
generate the respective reports. In the study [S4] an
abstract syntax tree of classes was traversed to apply
a set of detection rules based on a specific set of code
smells.

Optimizer. The authors of [S2] introduced the tool
DelayDroid which used static analysis and byte code
refactoring using ASM library to find the parts of
code that performed energy intensive network related
tasks and batched them together to perform those
tasks at a delayed interval to reduce energy consump-
tion. The tool Hot-pepper was presented in [S10]
which detected energy smells using the Paprika tool
and computed the energy consumption of code smells
using the Naga-Viper tool. Corrections were made
using a tool called SPOON that used static analy-
sis for transformation. The authors of [S11] pre-
sented a tool developed on top of the Eclipse refac-
toring engine which converted AsyncTask to Intent-
Service in order to improve the asynchronous opera-
tions. In the study [S15] a novel tool EARMO was
presented which created code abstractions to search
for anti-patterns based on QMOOD metrics. To cor-
rect anti-patterns in the app, the ReCon tool was used.
In [S18] a framework was presented that had three
main components: Design extractor, refactoring com-
ponent and code generation component. Design and
defect expressions were generated from EFG using
deterministic finite automata. Their intersection was

Table 13: Android energy bugs detected by each tool in *De-
tector’ and *Optimizer’ categories.

m 2 2 = a

Tool é z § 2 E E % 5 % Ref
Wu et al. v S1
GreenDroid v v S17
Kim et al. v S3
Statedroid v v oY S5
PatBugs S8
SAAD v v v v v v 89
Paprika v v S7
aDoctor v v S4
DelayDroid v S2
HOT- v v S10
PEPPER

Asyncdroid v S11
EARMO S15
EnergyPatch v vV v S18
Nguyen et al. S21

RL=Resource Leak, WB=Wake-lock Bug, VBS=Vacuous Background Services, IB=
Immortality Bug, TMV=Too Many Views, TDL= Too Deep Layout, NCD=Not Using
Compound Drawables, UL= Useless Leaf, UP=Useless Parent

Tool Support for Green Android Development: A Systematic Mapping Study

Table 14: Android code smells detected by each tool in the *Detector’ and *Optimizer’ categories.

] o 24

z B = = = = ¥ B v & 2
oo 3 Ex5888Y%5E83p2a8vfEEREEEECE
Wu et al. S1 v v
Kim et al. S3 v
Statedroid S5 v v
PatBugs S8 '
SAAD S9
ADoctor S4 v vV Vv v v v v v v v vy vy
Paprika S7 v v v v v v v v v v v v V
GreenDroid S17 v
DelayDroid S2
HOTPEPPER S10 v v v v v v v Vv v v v v Vv
AsyncDroid S11 v
EARMO S15 v v v
EnergyPatch S18 v
Nguyen et al. S21 v v

DTWC=Data Transmission Without Compression, DR=Debuggable Release, DW=Durable Wake-lock, IDFP=Inefficient Data Format and Parser, IDS=Inefficient Data
Structure, ISQLQ=Inefficient SQL Query, IGS=Internal Getter and Setter, LIC=Leaking Inner Class, LT=Leaking Thread, MIM=Member Ignoring Method, NLMR=No
Low Memory Resolver, PD=Public Data, RAM=Rigid Alarm Manager, SL=Slow Loop, UC=Unclosed Closeable, LC=Lifetime Containment, LWS= Long Wait State,
UHA=Unsupported Hardware Acceleration, BFU= Bitmap Format Usage, UIO=UI Overdraw, IWR=Invalidate Without Rect, HAT=Heavy AsyncTask, HSS=Heavy Ser-
vice Start, HBR=Heavy Broadcast Receiver, IOD=Init ONDraw, ERB=Early Resource Binding

used to refactor the code. The authors of [S21] used
PMD and Android Lint to create an Eclipse plugin for
refactoring of source code. PMD created an Abstract
Source Tree (AST) to analyze code and apply the pre-
defined rules. Table 13 lists Android energy bugs?
that are covered by tools in the Detector and Opti-
mizer categories. Android energy bugs> TMV, TDL,
UL, UP are detected by 10% of the tools, whereas RL
is detected by 80% of tools, in the Detector category.
However, none of the tools in the Optimizer category
covers them. RL and VBS energy bugs are detected
by 30% and 50% of the tools in the Optimizer cat-
egory, respectively. Table 14 shows which Android
code smells® are covered by which individual tools
in Detector and Optimizer categories. Android code
smell” ERB is not detected by any tool in the Detector
category but 17% of tools in the Optimizer category
cover them. Android code smells such as LWS, LC,
RAM, PD, ISQLQ, IDFP, DR, and DTWC are de-
tected by 13-25% of the tools in Detectors category
but none of the tools in Optimizer category can iden-
tify these smells.

RQ1.3: What are the limitations of existing support
tools developed to help aid software practitioners in
developing energy efficient Android apps?

Profiler. Tools included in this category had several
limitations. Energy measurements were less accurate
as compared to measurements taken with an external
device. The error rate was high. Limitations on what
could be profiled e.g. energy consumption of only
some parts of the app were profiled or only framework
or only app or only kernel level profiling was pro-
vided. The impact of techniques like code injections

and extensive logging came with an execution over-
head and might have affected the final energy costs.
Resources used by software based profiler might not
be accounted for in the energy costs. Only a limited
number and formats of input were handled by these
profilers. Model based energy profiling approaches
might ignore the run time information about apps.

Detector. Tools included in this category had sev-
eral limitations. As most of the tools in this category
were using static source code analysis techniques to
offer support, they might produce some false posi-
tives/negatives. Some of these tools used open source
static source code analyzer, which could affect their
results and accuracy. A limited number of Android
code smells/energy bugs were identified using each
tool and most of the tools did not cover multi-threaded
programs and multiple interacting objects.

Optimizer. Tools in this category had several limita-
tions. Refactored APK/SC generated by the tools did
not offer acceptable trade off in most cases with per-
formance, usability or other non-functional require-
ments. The refactoring done by tools needed manual
verifications. Only a limited number of Android code
smells/ energy bugs were automatically identified and
corrected by these tools. Manually applying the refac-
torings suggested by these tools required expertise in
programming and energy related issues. Many tools
in this category were also dependent on static source
code analysis techniques therefore, they might pro-
duce false positives/ negatives.

415

ICSOFT 2020 - 15th International Conference on Software Technologies

S DISCUSSION

Based on the results of RQI and its sub-question
RQI1.1 we observed that the selected studies focus
on a specific niche of code smells, energy bugs and
software metrics. There is a need for generic support
tools that can cover the functionalities of all three cat-
egories of tools discussed in the results section. From
the results of RQ1.2, the support tools in Profiler cate-
gory used many different techniques. The tools in De-
tector and Optimizer categories frequently used static
source code analysis technique, which might result in
producing false positive and false negatives. In all
categories, none of the tools use a combination of
techniques. Static source code analysis techniques
do not cover dynamic issues e.g. issues related to
Async. Therefore, hybrid techniques need to be used
for the development of new tools using a combina-
tion of static and dynamic analysis. For the devel-
opment of better support tools, the evaluation of the
tools on industrial projects should be increased. Most
of the current support tools were only evaluated us-
ing open source data sets and there are indications
(see related work) that industrial development is dif-
ferent. Therefore, the industry relevance of the sup-
port tools might not be obvious because they are not
evaluated in industrial settings. Software based met-
rics that affect energy consumption need to be clearly
identified and correlated to improve code smell detec-
tion. Results from studies that focus on correlating the
structure of source code to software metrics could be
used for this purpose. In addition, non-intrusive tech-
niques should be used to collect metrics. Based on
the results of RQ1.3, the current state of the art tools
could be extended into complete frameworks by com-
bining them with one another or combining them with
other industrially famous code analyzers like Android
Lint, Check Style, Find Bugs and PMD. The results
from the selected studies could be expanded to in-
clude cross project predictions and corrections for en-
ergy bugs. Analysis and inclusion of multi-threaded
programming approaches in the experiments could be
another direction for future researchers.

From the discussion, we list desired functionalities in
the new breed of support tools to aid green Android
development:

e Must be integratable with the Android Studio.

e Must have full coverage of Android specific en-
ergy bugs.

e Must be able to handle multi-threaded programs.
e Must be able to handle multi interacting objects.

e Must have an interface consistent with the An-
droid studio to increase usability.

416

e Must have elaborated help and documentation
available offline for every function and command.

e Must have complete coverage of object oriented
(such as all 22 Fowler) code smells

e Must have complete coverage of Android specific
code smell.

e Must have the capability of profiling energy con-
sumption of app at all levels such as method level,
class level, package level, and Kernel level.

e The energy level must be represented in graphs.

e Energy graphs must be linked to source code. lL.e.
from graph user could be directed to the codes
causing a change in energy consumption.

e Must be able to handle both static and dynamic
analysis of source code.

e Must offer trade-offs with other non-functional re-
quirements in the form of recommendations.

e Must provide a preview of refactor-
ing/optimization choices on the code before
applying them.

6 THREATS TO VALIDITY

The search query and classification of selected stud-
ies could be biased by the researchers knowledge. We
mitigated this threat by defining the inclusion, exclu-
sion and quality criteria for the selection of the stud-
ies. Conflicting opinions were discussed among au-
thors of this paper until a consensus was reached. In
order to avoid false positive and false negatives in the
search results, we used the wildcard character (*) to
maximize coverage and the keyword AND NOT to
remove irrelevant studies. The results of the search
strings were manually checked and further refined by
the authors. Online repositories continuously update
their databases to include new publication, therefore,
executing the same query might yield some additional
results that were not included in this study. We al-
ready knew about many relevant studies and we re-
captured almost 85% of them when we executed the
search query. On each online repository the search
mechanism is slightly different we tried to keep the
query as consistent as possible, but there might be
slight difference due to the difference in search mech-
anism provided by different online repositories. Some
selected studies use the terms code smells and energy
bugs interchangeably which could affect the classi-
fication. To mitigate this threat we used the selected
definitions (c.f section 3.4) for code smells and energy
bugs to correctly classify the studies in the right cat-
egory. We focused particularly on the support tools

Tool Support for Green Android Development: A Systematic Mapping Study

for energy profiling, code optimization and refactor-
ing of code smells/energy bugs to help aid green An-
droid development. Other types of support tools, such
as tools for interface optimization, third-party library
detection etc., were not in the scope of this study. We
plan to cover such tools in future work.

7 CONCLUSION

To get an overview of the state of the art and to find
research opportunities with respect to support tools
available for green Android development, we con-
ducted a mapping study. Based on our analysis the
current support tools were classified into three cate-
gories 1) Profiler, 2) Detector, 3) Optimizer. The main
findings of the paper are that most Profiler tools pro-
vide a graphical representation of energy consump-
tion over time. Most Detector tools provide a list
of energy bugs/code smells to be manually corrected
by a developer for the improvement of energy. Most
Optimizer automatically convert original APK/SC to
a refactored version(s) of APK/SC. The most typi-
cal technique in Detector and Optimizer category was
static source code analysis using a predefined set of
code smells and rules.

ACKNOWLEDGEMENTS

This work is supported by the Estonian Center of Ex-
cellence in ICT research (EXCITE), the group grant
PRG887 funded by the Estonian Research Council.

REFERENCES

Anwar, H. and Pfahl, D. (2017). Towards greener software
engineering using software analytics: A systematic
mapping. In Proc. of the 43rd Euromicro Conf. on
Soft. Eng. and Advanced Applications. IEEE.

Ardito, L., Procaccianti, G., Torchiano, M., and Migliore,
G. (2013). Profiling power consumption on mobile
devices. In Proc. of the 3rd Int. Conf. on Smart Grids,
Green Communications and IT Energy-aware Tech.,
pages 101-106.

Banerjee, A. and Roychoudhury, A. (2016). Auto-
mated re-factoring of android apps to enhance energy-
efficiency. In Proc. of the Int. Workshop on Mobile
Soft. Eng. and Sys. ACM Press.

Chung, Y.-F, Lin, C.-Y., and King, C.-T. (2011). ANE-
PROF: Energy profiling for android java virtual ma-
chine and applications. In Proc. of the 17th Int. Conf.
on Parallel and Distributed Sys. IEEE.

Degu, A. (2019). Android app memory and energy perfor-
mance: Systematic literature review. IOSR J. of Comp.
Eng., 21.

Fernandes, T. S., Cota, E., and Moreira, A. F. (2014). Per-
formance evaluation of android applications: A case
study. In Proc. of the Brazilian Symp. on Computing
Sys. Eng. IEEE.

Fontana, F. A., Mariani, E., Mornioli, A., Sormani, R.,
and Tonello, A. (2011). An experience report on us-
ing code smells detection tools. In Proc. of the 4th
Int. Conf. on Soft. Testing, Verification and Validation
Workshops. IEEE.

Fowler, M. (2002). Refactoring: Improving the design
of existing code. In Extreme Programming and Ag-
ile Methods — XP/Agile Universe, pages 256-256.
Springer Berlin Heidelberg.

Gartner, Inc. (2018a). Gartner says huawei secured no. 2
worldwide smartphone vendor spot, surpassing apple
in second quarter 2018. Accessed: 2019-08-30.

Gartner, Inc. (2018b). Gartner says worldwide end-user de-
vice spending set to increase 7 percent in 2018; global
device shipments are forecast to return to growth. Ac-
cessed: 2019-08-30.

GeSI (2015). Smarter2030 ict solutions for 21st century
challenges. Technical report.

Kansal, A. and Zhao, F. (2008). Fine-grained energy profil-
ing for power-aware application design. ACM Perfor-
mance Evaluation Review, 36:26-31.

Kaur, A. and Dhiman, G. (2019). A review on search-
based tools and techniques to identify bad code smells
in object-oriented systems. In Harmony Search and
Nature Inspired Optimization Algo., pages 909-921.
Springer Singapore.

Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bar-
tel, A., Octeau, D., Klein, J., and Traon, L. (2017).
Static analysis of android apps: A systematic litera-
ture review. Info. and Soft. Tech., 88:67-95.

Manotas, ., Bird, C., Zhang, R., Shepherd, D., Jaspan, C.,
Sadowski, C., Pollock, L., and Clause, J. (2016). An
empirical study of practitioners’ perspectives on green
software engineering. In Proc. of the 38th Int. Conf.
on Soft. Eng. ACM Press.

Mindsea (2019). 25 Mobile App Usage Statistics To Know
In 2019. Accessed: 2019-08-05.

Pathak, A., Hu, Y. C., and Zhang, M. (2011). Bootstrap-
ping energy debugging on smartphones. In Proc. of
the 10th ACM Workshop on Hot Topics in Networks.
ACM Press.

Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is the
energy spent inside my app? In Proc. of the 7th ACM
european conf. on Computer Sys. ACM Press.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in soft. eng. BCS
Learning & Development.

Powell, J. (2019). Scientists reach 100 Bulletin of Science,
Tech. and Society, 37:183-184.

Singh, S. and Kaur, S. (2018). A systematic literature re-
view: Refactoring for disclosing code smells in ob-
ject oriented software. Ain Shams Eng. J., 9(4):2129—
2151.

417

