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Abstract: The paper reports development of a new version of the McEliece cryptosystem using non-linear convolutional 
codes. Cascaded convolutional codes are used to be part of the public key with each stage of the cascade 
separated by a product cipher to increase the security level. Cryptanalysis of the new version of the McEliece 
cryptosystem is performed using existing attacks of the classical cryptosystem to demonstrate the difficulties 
in breaking the new cryptosystem. It is shown that, security levels comparable to the original McEliece 
cryptosystem could be obtained by using smaller public key sizes of the new version if multiple stages of the 
generator matrix are employed. This aspect makes the new version of the McEliece cryptosystem attractive 
in mobile wireless networks since it could be ported onto a single Field Programmable Gate Array (FPGA). 

1 INTRODUCTION 

The McEliece public key cryptography (PKC) has 
received a lot of attention since it is one of the most 
attractive options for post-quantum PKC and due to 
fewer encryption/ decryption operations compared to 
other PKC schemes such as RSA, ECC and ElGamal. 
However, low encryption rate and large key size due 
to Goppa block codes have motivated major research 
efforts targeting the implementation of the McEliece 
cryptosystem using alternative codes. Of recent, 
convolutional codes have been used as an alternative 
in the implementation of the McEliece cryptosystem 
(Almeida et al, 2013, 2016 ; Almeida & Napp, 2018; 
Moufek & Guenda, 2018; Rosenthal & Smarandache, 
1999) . Convolutional codes consider the information 
as a whole sequence and better resist decoding attacks 
compared to block codes due to the dynamic nature 
of the cryptosystem. The output sequence depends on 
the current state of the generator matrix, the transition 
functions as well as the previous and present input 
bits. The major challenge with convolutional coding 
remains an efficient decoding method especially with 
higher order codes. Decoding methods such as the list 
decoding (Zigangirov & Osthoff, 1993), threshold 
decoding algorithm (Massey, 1963) and Information 
set decoding (Peters, 2010) have been developed. The 
most prominent decoding method is the Viterbi 
algorithm. The algorithm has the drawback of an 

exponential increase in complexity for higher order 
codes. Hence, an efficient convolutional 
cryptosystem implementation should involve lower 
order codes. In (Kumari & Saini, 2016), the authors 
presented an efficient method of generating 
polynomials for lower order codes using MATLAB 
suitable for the Viterbi decoding algorithm. 

Existing McEliece cryptosystem implementation 
using convolutional codes laid emphasis on basic 
ideas and right parameters of convolutional codes 
which could be efficient in curbing the attacks of a 
classical McEliece cryptosystem (Almeida & Napp, 
2018). Aspects such as key size and encryption/ 
decryption complexity were not addressed.  

In this paper, we present the implementation of a 
new variant of the McEliece cryptosystem using non-
linear convolutional codes. The number of operations 
required to effectively carry out a structural attack or 
an information set decoding attack on the new variant 
of the McEliece cryptosystem will be used to 
establish bounds for the key size. The generator 
matrix, G is like the existing convolutional codes used 
in the McEliece cryptosystem, the difference in this 
new method is that, the generator matrices are 
implemented in stages interspaced with product 
ciphers. The complexity to decode the ciphertext 
increases with the number of stages. Cryptanalysis of 
the new version of the McEliece cryptosystem is 
performed using existing attacks of the classical 
cryptosystem to demonstrate the difficulties in 
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breaking the new cryptosystem. In addition, it is 
shown that, security levels comparable to the original 
McEliece cryptosystem could be obtained by using 
smaller public key sizes of the new version if multiple 
stages of the same generator matrix are employed. 
The aspect of small key sizes makes the new version 
of the McEliece cryptosystem attractive in mobile 
wireless networks since it could be ported into a 
single FPGA. Future research will involve the 
application of this novel version of the McEliece 
cryptosystem to wireless cooperative networks. 

The complete outline of the paper is as follows. In 
the next section, a review of non-linear convolutional 
cryptosystem is presented (Sone, 2015). The non-
linear convolutional coding is implemented by 
inserting product ciphers between conventional 
convolutional coding blocks. The classical McEliece 
PKC and the new variant of the McEliece PKC based 
on the non-linear convolutional codes are presented 
in section 3. Section 4 presents the cryptanalysis of 
the novel McEliece cryptosystem. The cryptanalysis 
is based on assessing the security attacks and the key 
size required to curb the attacks. Results and discussion 
are presented in section 5. The section presents a 
comparative study of the traditional and new variant of 
the McEliece cryptosystems with respect to the key 
size. Section 6 presents the FPGA implementation of 
the new variant of the McEliece cryptosystem. An 
overview of wireless networks security attacks is 
presented in section 7. Finally, the conclusion and 
future work are presented in section 8.  

2 NON-LINEAR 
CONVOLUTIONAL 
CRYPTOSYSTEM 

This section reviews the basics of non-linear 
convolutional code and the implementation of the 
non-linear convolutional encoding/ decoding using 
the basic code and product ciphers. 

2.1 Non-linear Convolutional Code 
Basics 

A convolutional code is generated by passing the 
information sequence to be transmitted through a 
linear finite-state shift register. The shift register 
consists of m (k-bit) stages and n linear algebraic 
function generators. The n linear algebraic function 
generators produce the n output bits for each k-bit 
input sequence. Such an encoder produces an (n, k, 
m) convolutional code. The function generators are 

assembled into a generator matrix (Lathi, 1998). The 
generator matrix is specified functionally by using a 
set of n vectors, with one vector for each of the n 
modulo-2 adders. Each vector has km dimensions and 
contains the connections of the encoder to the 
modulo-2 adder. For illustrative purposes, a (2, 2, 2) 
convolutional code will be used. 
The corresponding (2, 2, 2) convolutional encoder is 
represented graphically in figure 1. 

 
Figure 1: (2, 2, 2) convolutional encoder. 

The elements of the generator matrices of the (2, 2, 2) 
convolutional code are given as           
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The generator matrix, gm can be obtained from the 
matrices in (1) and the different states as   
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Coupling of the linear structure in figure 1 onto itself 
leads to a cascaded non-linear structure. Meta S-
boxes (or meta substitution) and permutation set are 
used to link one linear transducer stage to the next in 
the cascade (Sone, 2015). Let the S-box and 
permutation set be chosen as shown in table 1. 

Table 1: (a) S-box  and (b) Permutation set. 

 
(a)                                            (b)            

Assuming the initial state for each of the linear 
transducer stage to be the first state as shown in figure 
1, the initial structure of the cascade using the S-box 
and permutation set is as shown in figure 2. 

 
Figure 2: Initial structure of the cascade. 
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In figure 2, ‘1’ and ‘2’ at the outputs of the S-box, 
indicates the interconnections due to the permutation 
set. It is seen in table 1 that, the ‘1’ output from the S-
box is connected to the ‘2’ input of the next stage. The 
same applies to the ‘2’ output which is connected to 
the ‘1’ input of the next stage. 

2.2 Encoding/Decoding using  
Non-linear Convolutional Code 

The constraint length, L for a (n,k,m) convolutional 
code is given as L = k(m-1). The constraint length is 
very essential in convolutional encoding since a 
Trellis diagram which gives the best encoding 
representation populates after L bits. Hence to 
encode blocks of n bits, each block must be 
terminated by L zeros (0s) before encoding. 

For illustrative purposes, a non-linear (4,2,3) 
convolutional code will be used to demonstrate 
encoding and Viterbi decoding. A possible non-linear 
(4,2,3) convolutional code showing mod-2 connect-
ions and the product cipher is shown in figure 3. 

 

Figure 3: 2-stage non-linear (4,2,3) convolutional code. 

Example: Encode/ Decode the Message M = 10011 
 Encoding process 

The constraint length, L = k(m-1) = 2(3-1)= 4 
Hence 4 zeros will be appended to message M 

before encoding. The modified message becomes 
M = 10110000  

Transition tables for the (4,2,3) convolutional 
code shown in the appendix are used to encode the 
modified message. 
 Using the transition tables, the transmitted 

sequence from the 1st stage is given as  
          Tin = 10 01 01 11 

 S-box output is given as S = 00 11 11 01 
 P-box output is given as P = 00 11 11 10 
 Transmitted sequence into the 2nd stage is given 

as P = 00 11 11 10 

 Using the transition tables, the final transmitted 
sequence which is the output bits from the 2nd 
stage is given as Tout = 0000 1111 0101 1001 

 
 Viterbi decoding process 

In performing the Viterbi algorithm, a bit in the 
sequence Tout will be altered. Let the received 
sequence be TR = 1000 1111 0101 1001 instead of 
Tout = 0000 1111 0101 1001. The Viterbi algorithm 
applied to the 2nd stage is summarized in table 2. 

Table 2: Viterbi algorithm applied to 2nd stage of (4,2,3) 
code. 

 

The bits above the arrows will constitute the 
retrieved sequence from the 2nd stage. Hence, the 
retrieved sequence is given as, R1 = 00 11 11 10. 
This sequence is fed to the P-box. 
 P-box output is given as P1 = 00 11 11 01. 

Sequence, P1 is fed to the S-box 
 S-box output is given as S1 = 10 01 01 11 

Sequence, S1 is fed into the 1st stage to retrieve 
the final correct message. The Viterbi algorithm 
applied to the 1st stage is summarized in table 3. 

Table 3: Viterbi algorithm applied to 1st stage of (4,2,3) 
code. 

 

For a good trellis, the final state is the ‘all zero’ state 
as seen in the winning path in table 3. The final 
received sequence is identical to the original 
transmitted message of M = Rfinal = 10110000 
despite the first bit error. Hence, using the non-
linear convolutional code, the error bit was 
identified and corrected. 
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3 A NEW VARIANT OF THE 
MCELIECE CRYPTOSYSTEM 

This section explains the implementation of the new 
variant of the McEliece cryptosystem using the non-
linear convolutional code in combination with a 
scrambled invertible matrix and a permutation matrix. 

3.1 The Classical McEliece 
Cryptosystem 

 Key generation 
 Pick a random [n, k, 2t + 1] linear code, 

C where n is the number of bits for 
codeword; k is the number of message 
bits an t is the number of errors the code 
can correct 

 Compute a k x n generator matrix, G 
for C 

 Generate a random k x k binary non-
singular (invertible) matrix S 

 Generate a random n x n permutation 
matrix P 

 Compute k x n matrix G = SGP 
 Public key is (G, t) 
 Private key is (S, G, P, D) where D is the 

efficient decoding algorithm 

 Encryption 
 Message, m  {0, 1}k 
 Random vector, e Є {0, 1}n 
 Ciphertext, c = mG + e 

 Decryption 
 Ciphertext, c  {0, 1}n       
 Compute CP-1 = (mS)G + eP-1 

Since (mS)G is a valid codeword for the  
chosen linear code and eP-1 has weight t, 
 the decoding algorithm, D can be  
applied to CP-1 to obtain c = mS 

 Compute m = cS-1. 

The difficulty of decoding a random encoder, known 
to be an NP hard problem underscores the security of 
McEliece cryptosystem. This is possible for high 
order block codes such as 1024-bit code. 

3.2 The New Variant of the McEliece 
Cryptosystem 

In the new variant of the McEliece cryptosystem 
proposed in this research, the key parameters are 
follows: 
 Public key: (G, t); 

 Private key: (S, G, sbox, pbox, P, D) where sbox 
and pbox are the additional keys from the 
product cipher. 

G corresponds to a k x n non-linear convolutional 
code that is permutation-equivalent to the chosen  
secret key such that P permutes the columns of the 
non-linear convolutional code, G and S switches to a 
different basis of the same code. 

In section 2, aspects of the private key such as the 
encoding/ decoding, D; states and transition functions 
of generator matrix, G; keys for the product cipher 
sbox, pbox were presented.  

The permutation matrix, P used in this research is 
matrix P(D,D−1) ∈  𝔽௡௫௡  developed in (Almeida & 
Napp, 2018).  

Meanwhile, in classical McEliece cryptosystem, 
c = mS is synonymous to scrambling data m to obtain 
c where m = cS-1 is equivalent to descrambling. The 
scrambling method will be used for the 
implementation of the invertible matrix, S in this 
research since it involves shift registers that is easy to 
implement in an FPGA. 

A simple scrambler and descrambler in figure 4 
will be used to explain the proposed invertible matrix, 
S (Lathi, 1998). 

 

Figure 4: (a) scrambler and (b) descrambler. 

The scrambler consists of a feedback shift register 
and the matching descrambler has a feedforward shift 
register. If m is the input sequence to the scrambler, 
then 

m   D3 c    D5 c  =  c 

where D represents the delay operator, that is Dn c is 
the sequence c delayed by n units. Adding (D3    D5) 
c to both sides of the equation gives 

m = c    (D3    D5) c  = [1    (D3    D5)] c  = 
(1   F) c  

where F = D3    D5 

To design the descrambler at the receiver, we start 
with c and perform the equation 

m  =  c   F c  =  c    (D3    D5) c 
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Let message, m = 1010101 be fed into the 
scrambler. 

Initially c = m, and the sequence m enters the 
register and is returned as (D3    D5)m = Fm through 
the feedback path. This new sequence Fm enters the 
register and is returned as F2m, and so on. Hence 

c = m   Fm   F2m   F3m  . . . 

Recognizing that 

F = D3    D5 

we have  

F2 = (D3    D5) (D3    D5) = D6    D10     D8     
D8  =  D6    D10 

Since  D8     D8  =  0 

Similarly, 

F3 = (D6    D10) (D3    D5) = D9    D11     D13     
D15 

and so on.  

Hence 

c = (1   D3     D5     D6   D9     D10     D11   
D13     D15     . . .)m 

Because Dnm is simply the sequence m delayed by n 
bits, various terms in the preceding equation 
correspond to the following sequences: 

m =  1 0 1 0 1 0 1  
    D3m =  0 0 0 1 0 1 0 1 0 1  
    D5m =  0 0 0 0 0 1 0 1 0 1 0 1  
    D6m =  0 0 0 0 0 0 1 0 1 0 1 0 1  
    D9m =  0 0 0 0 0 0 0 0 0 1 0 1 0 1  

 c =  1 0 1 1 1 0 0 

It is worth noting that, the string c is calculated 
vertically using mod-2 arithmetic and input sequence, 
m has 7 digits hence only 7 digits of the scrambler 
output are retained. 

When sequence c is applied to the input of the 
descrambler, the output is the original sequence, m 

m  = (1    D3    D5) c 
c  = 1 0 1 1 1 0 0 
D3c = 0 0 0 1 0 1 1 1 0 0 
D5c = 0 0 0 0 0 1 0 1 1 1 0 0 

mod-2 arithmetic gives the 7-bit sequence 1010101 
which is identical to the input sequence m = 1010101 

Based on the afore-mentioned analysis, a k x k 
invertible matrix, S and the scrambled message c 
could be deduced from a k-bit message fed into the 
scrambler as follows: 

 Each row of the k x k matrix, S contains 
elements of the shifted message, m deduced 
from the scrambler 

 Each bit of the scrambled message, c is 
computed from the sum of each column of 
the k x k matrix. 

Hence the k x k matrix, S of the scrambler in figure 4 
is given as 

 
                                                                                                    (3) 

Similarly, for the descrambler, the matrix S-1  and the 
original message, m are obtained as follows: 

 Each row of the matrix, S-1 contains 
elements of the shifted scrambled message, 
c deduced from the descrambler 

 Each bit of the message, m is computed from 
the sum of each column of the matrix, S-1 

Hence the matrix, S-1 of the descrambler in figure 4 is 
given as 

 
                                                                             (4) 

4 CRYPTANALYSIS 

The security of the cryptosystem is based on two 
computationally hard problems namely, exhaustive 
search of the key space and maximum-likelihood 
decoding (syndrome decoding). Therefore, the two 
types of attacks, which are principally structural and 
decoding, will be the basis of the cryptanalysis of the 
new variant of the McEliece cryptosystem. In this 
section, cryptanalysis will explore the additional 
security due to the non-linear convolutional 
cryptosystem and not the entire new variant which 
involves also the invertible matrix, S and the 
permutation matrix, P. Hence, the cryptanalysis will 
establish baseline values for the key sizes for the new 
variant of the McEliece cryptosystem. 

4.1 Structural Attack 

Structural attacks against the McEliece cryptosystem 
involve recovering of the secret key from the public 
key, G in order to determine an equivalent code from 
c generated by G. It is worth noting that, in classical 
convolutional codes, G is a generator matrix 
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characterised by the states of the mod-2 adders and 
the transition functions, whereas in the new variant of 
the McEliece cryptosystem, G is a generator matrix 
that is coupled to the product cipher. Hence, in 
addition to the states and transition functions of the 
generator matrix, the combinations in the S-boxes and 
P-boxes must be considered. 

Therefore, a successful structural attack on the 
new variant of the McEliece cryptosystem should 
require a minimum number of plaintext – ciphertext 
pairs in order to reveal the following parameters: 

 States and transition functions of the 
generator matrix; 

 Bit shuffling and permutation combinations 
of the S-box and P-box.  

4.1.1 States and Transition Functions 

Generally, a (k, k, m) convolutional transducer with q 
states and having p blocks of input vector, u, will have 
the generator matrix given as (Biggs, 2008) 

 
                                                                           (5) 

Gaussian elimination attack could be effectively 
mounted on the generator matrix to reveal all the 
states of the cryptosystem (Biggs, 2008). The attack 
is based on forming simultaneous equations using a 
(k, k, m) convolutional code function, t given by  

                    t(u) = u * gixj                                             (6) 

where u is a row vector of message bits and gixj is a 
generator matrix. To illustrate the principle involved 
in this attack, the (2, 2, 2) cryptosystem in section 2.1 
with three states will be used. This simple 
cryptosystem has a readable generator matrix and the 
analysis will be extended to a general case of a (k, k, 
m) cryptosystem with q states.  

Consider the (2, 2, 2) cryptosystem with three 
states as follows: 
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and a proposed transition function, f given in table 4.  

Table 4: Transition table for (2, 2, 2) cryptosystem. 

 

With respect to the (2, 2, 2) cryptosystem, using p = 
5 blocks of input, the generation matrix becomes 
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The intruder will have to determine 48 unknown 
matrix elements in the matrix (u)g '

10 . The unknown 
generator matrix is given as 

 
                                                                            (8) 

Let (u1, v1)  =       1 0 0 1 1 0 0 0  1 0   , 0 0 1 1 1 1 0 0 1 0    

be  plaintext – ciphertext pair equivalent to 5 blocks 
of 2-bit input. By applying Gaussian elimination 
attack (Sone, 2015) to the unknown matrix in (7) the 
intruder obtains the following matrix 
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(9)

Close examination of (u)g '
10 in (9) shows that 

(u)g '
10 contains two distinct states. One of the states 

is given by columns 5 and 6 (or equivalently by 
columns 9 and 10) and the other state is given by 
columns 7 and 8. The third state could be found by 
using another plaintext-ciphertext pair. Let (u2, v2)  =  

FPGA-based McEliece Cryptosystem using Non-linear Convolutional Codes

69



     1 0 0 1 0 0 1 0  0 1   , 0 0 1 0 1 0 1 0 1 1    be a second 

plaintext-ciphertext pair used by the attacker. 
Applying Gaussian elimination attack, the unknown 
matrix becomes 
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10 in (10) reveals the last state of the 

cryptosystem in columns 9 and 10, namely 
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Thus, by using two plaintext-ciphertext pairs, the 
states of the cryptosystem are found, and the 
cryptosystem is partially broken since the remaining 
private keys, namely the transition functions and keys 
used in product cipher also need to be unveiled. 

Let the state   
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be denoted as i1, the state 
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as i3. 
In a convolutional cryptosystem, the private 

parameter f compares the present state and the input 
in order to output the next state of the cryptosystem. 

In the generator matrix, (u)g '
10  in (9) the transitions 

are i1  i2  i1 and the input vector has u1 [5, 6] = [1 

1]. Using (7), 11
'
101   v  )(ug u  , this implies  

f1 (i1, u1 [5, 6] )  =  f1 (i1, [1 1] )  =  i2        (11)                           

where 8] [7, g    i '
102  . Also    

f2 (i2, u1 [7, 8] )  =  f2 (i2, [1 1] )  =  i1        (12)  

where    10] [9, g    i '
101             

Similarly, the transition of  (u)g '
10  in (8) are i1  i2 

 i3 and 22
'
102   v  )(ug u  . 

Using u2 [5, 6] = [0 1], this will generate columns 7 
and 8 from columns 5 and 6 in the generator matrix

(u)g '
10 , that is  

f3 (i1, [0 1] )  =  i2                    (13)   
and   

f4 (i2, [0 1] )  =  i3                    (14)   

Hence using ten plaintext – ciphertext pairs, all the 
states of the cryptosystem are revealed and four 
functions f1, f2, f3, f4 out of the twelve values of the 
private parameter f are revealed. However, by using 
additional twenty plaintext-ciphertext pairs, the 
remaining eight values of the private parameter f are 
revealed. Hence at least thirty plaintext-ciphertext 
pairs are required for all values of parameter f and 
states to be revealed. 

Generally, for a (k, k, m) cryptosystem with q 
states and p blocks of message bits, each matrix gkp(u) 
reveals at most p – k – 1 values of f. Since there will 
be (q . 2k) values of f, where q is the number of states, 
the minimum number of plaintext-ciphertext pairs (u, 
v) required to reveal all values of private parameter f  
and the states is given as 

N1 = 
1 - k - p

k2 . q                            (15)  

Hence, total number of plaintext-ciphertext pairs 
required,  

                NT1 = kpN1                            (16) 

For the (2,2,2) convolutional code 
N1 = 3x22/ (5 – 2- 1) = 3  and NT1 = 2x5x3 = 30 pairs 

Therefore, for a successful structural attack for a 
classical convolutional code, G the total number of 
representation code which the attacker has to compare 
to ciphertext c generated by G has to be NT1 for an 
(n,k,m) code with q states.  

4.1.2 Shuffling Boxes and Permutation Sets 

To analyse all the permutations, the minimum 
number of plaintext – ciphertext pairs required for an 
(n,k,m) code with p blocks of k-bit input is  

                          N2 =   pk!                            (17)  

In addition, to analyse all the different 2-bit 
combinations in the s-boxes, the minimum number of 
plaintext – ciphertext pairs is given as 

                       N3 =  22k                            (18)  
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Hence, for a successful structural attack for either 
 one stage or 
 multiple stages with the same generator 

matrix and product cipher 

of the new non-linear convolutional code, G the 
total number of representation code which the 
attacker must compare to ciphertext c generated by 
G has to be NT for an (n,k,m) code with q states and 
is given as 

𝑁் ൌ 𝑝𝑘! . 2ଶ௞  .  
௤.ଶೖ

௣ି௞ିଵ
                 (19)                                                                         

For µ stages of the new variant of the McEliece 
cryptosystem using stages with different  
configuration, the total number of representation code 
which the attacker has to compare to ciphertext c 
generated by G has to be NTotal for an (n,k,m) code 
with q states and is given as 

𝑁்௢௧௔௟ ൌ  ቂ𝑝𝑘! . 2ଶ௞  .  
௤.ଶೖ

௣ି௞ିଵ
ቃ

ఓ

         (20)                                                                  

4.2 Decoding Attack 

A decoding attack consists of decoding the 
intercepted ciphertext. The cost of the attack depends 
on the parameters of c namely, length, dimension and 
error-correcting capability since the underlying code 
and c are equivalent. 

If a message of length n bits is received, then the 
possible number of codewords are 2n.  

For an (n,k,m) convolutional code, only 2kL 
codewords are valid of the possible 2n. The Viterbi 
algorithm applies the maximum-likelihood principles 
to limit the comparison to 2kL surviving paths instead 
of checking all the paths where L = constraint length 
= k(m-1) . 

For µ stages of the new variant of the McEliece 
cryptosystem using non-linear convolutional codes, 
the total number of operations the attacker must 
perform in order to decode the ciphertext has to be 
NTot for an (n,k,m) code with q states and is given as 

  𝑁்௢௧ ൌ  ሾ𝑝𝑘! . 2ଶ௞ .  2௞௅ሿఓ              (21)                                                                       

Note that, in establishing (21) the product cipher 
was used in conjunction with the Viterbi algorithm.  

5 RESULTS AND DISCUSSION 

There are several ways to attack the McEliece 
cryptosystem. In this section, we shall analyse the 
structural and decoding attacks using appropriate 

convolutional codes and compare the results to the 
baseline parameters of the original McEliece 
cryptosystem. 

Original parameters n=1024, k =524, t=50, 
suggested by McEliece in (McEliece, 1978) are now 
considered insecure, as they only offer approximately 
50-bit security (Bernstein et al, 2011). There is no 
clear consensus on recommended parameters for 
MECS for various typical security levels. There have 
been various theoretical articles suggesting and 
analysing security of MECS parameters (McEliece, 
1978; Bernstein et al, 2011; Biswas & Sendrier, 2008; 
Eisenbarth et al, 2009). 

In this research, we shall consider the baseline 
parameters n=1024, k =524, t=50 as the basis for 
comparison with the new variant of the McEliece 
cryptosystem. It is worth noting that, the expressions 
deduced in section 4 are baseline number of 
operations required for the structural and decoding 
attacks since only the non-linear convolutional code, 
G was considered instead of the entire public key G 
= SGP.  

5.1 Appropriate Polynomials  

There are many choices for polynomials for any m 
order code where m is the number of registers for an 
(n,k,m) code.  The polynomials do not all result in 
output sequences that have good error protection 
properties. Petersen and Weldonís book contain a 
complete list of these polynomials (Peterson & 
Weldon, 1972) and good polynomials are found from 
this list usually by computer simulation/MATLAB 
(Arasteh, 2006). There is no known constructive way 
for selection of generator polynomials, however a 
convolutional code can be analysed to find its 
distance properties. A good convolutional code has 
large free hamming distance (Kumari & Saini, 2016). 

Existing works on McEliece cryptosystem based 
on convolutional codes used high order convolutional 
codes  such as (305,150,4), (570,421,3) and 
(284,71,5) (Moufek & Guenda, 2015). Such high 
order codes are difficult to implement in hardware 
and the decoding process is quite cumbersome. 
Hence, low order codes developed in (Kumari & 
Saini, 2016) will be adopted. 

5.2 Structural Attacks 

In the general case, the structural attack quickly 
becomes infeasible for any reasonable choice of 
parameters for the Goppa code (Loidreau & Sendrier, 
2001). For the original McEliece parameters with 
codeword, n = 1024, message bits, k = 512 and error- 
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Table 5: Total number of corresponding representation code, NTotal. 

(n,k,m) 
convolutional 

code 

Octal value of 
generator matrices 

Error-correcting 
capability, t 

NTotal 

p=10;
µ=15

p=20; 
µ=10 

p=15; 
µ=10 

(3,1,3) 

6,5,7 
10 errors 

2367 2637 2429 
3,4,7 
7,6,5 

20 errors 
5,7,2 

(3,1,4) 
17,15,3 

20 errors 2382 2647 2439 
16,13,15 

Table 6: Total number of corresponding representation code, NTot. 

(n,k,m) 
convolutional 

code 

Octal value of 
generator 
matrices 

Error-
correcting 

capability, t 

NTotal 

p=5;
µ=6

p=10; 
µ=2

p=8; 
µ=4 

(3,1,3) 

6,5,7 
10 errors 

264 251 275 
3,4,7 
7,6,5 

20 errors 
5,7,2 

(3,1,4) 
17,15,3 

20 errors 270 253 280 
16,13,15

 

correcting capability, t = 50, this mounts up to 
roughly 2461 total number of representation code 
which the attacker has to compare to ciphertext c 
generated by G (Loidreau & Sendrier, 2001). Using 
low order codes developed in (Kumari & Saini, 
2016), (20) is used to compute NTotal deduced in 
section 4.1 and results compared to 2461 obtained 
using the original McEliece cryptosystem. The results 
for the best generator polynomials in terms of 
performance for code rate 1/3 are summarized in table 
5 for appropriate number of blocks, p, number of 
states, q = 2m  and number of stages, µ in the non-
linear cascaded encoder. Appropriate values for p, q 
and μ which give  NTotal comparable to 2461 are used. 

Hence, using low order codes there is the 
possibility of attaining high security levels 
comparable to the original 1024-bit McEliece 
cryptosystem if appropriate values of the number of 
states of the non-linear convolutional code and 
number of blocks for k-bit input are chosen as shown 
in table 5. As mentioned earlier, the values displayed 
in table 5 are baseline number of operations required 
for the structural attack since only the non-linear 
convolutional code, G was considered instead of the 
entire public key G = SGP. Hence, higher values of 

NTotal compared to those displayed in table 5 could be 
obtained using G for the same values of p, q and µ.  

5.3 Decoding Attacks 

A decoding attack consists of decoding the 
intercepted ciphertext. Since the underlying code and 
c are equivalent, they have the same error-correcting 
capability. Thus, the cost of the attack depends only 
on the parameters of c– its length, dimension and 
error-correcting capability. When the length is n = 
1024, the dimension is k = 524 and the error-
correcting capability is t = 50, decoding one word 
requires 264 binary operations (Loidreau, 2000). 

Similarly, using low order codes, (21) is used to 
compute NTot deduced in section 4.2 and results 
compared to 264 obtained using the original McEliece 
cryptosystem.  The results are summarized in table 6 
for appropriate number of blocks, p, number of states, 
q = 2m  and number of stages, µ in the non-linear 
cascaded encoder.  

Hence, using low order codes there is the 
possibility of attaining high security levels with NTot 
≥ 264 for the new variant of the McEliece 
cryptosystem based on the non-linear convolutional 
code as shown in table 6. 
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6 FPGA IMPLEMENTATION 

A good overview of the existing hardware 
implementations of the McEliece cryptosystem can 
be found in (Repka & Cayrel, 2014). Most of the 
implementations require external memory for both 
the public and private key structures. In (Shoufan et 
al, 2009), the authors implemented a MECS with n = 
2048, t = 50 in a Virtex 5 FPGA using  84% of slices 
and 50% of BRAMs (2700 Kb).  

The implementation of the new variant of the 
McEliece cryptosystem is ported onto a Virtex 4 
FPGA and the architecture has the following features: 

 An instantiated encryption package; 

 An instantiated decryption package; 

 A finite state machine; 

 An instantiated look-up table used in the 
Viterbi decoding process. 

An important aspect in FPGA-based MECS is to 
obtain synthesizable architectures from the multi-
dimensional arrays, that is, arrays with more than one 
index such as matrices. Multi–dimensional arrays are 
not allowed for hardware synthesis. One way around 
this, is to declare two one–dimensional array types. 
This approach is easier to use and more representative 
of actual hardware. The VHDL code used in this 
research to declare the two one–dimensional array 
types for 256x256 matrix is shown in figure 5. 

 

Figure 5: VHDL code for synthesizable 256 x 256 matrix. 

The device utilization summary for a  (3,1,3) non-
linear convolutional code MECS for number of 
blocks, p = 15 and number of stages, µ = 10 is as 
follows: 

- Number of slices: 66816 out of 89088                  75% 

- Number of slice Flip flops: 124720 out of 178176     
70%                                

7 WIRELESS NETWORKS 
SECURITY ATTACKS 

Threats that violate the security criteria of wireless 
networks are generally called security attacks. The 

main attacks are impersonation, eavesdropping, 
Denial of Service and Sensing (DoSS), sybil, node 
capture, selective forwarding, and various routing 
attacks. Some of these attacks which are related to the 
confidentiality property of secure communication 
could be circumvented using the new variant of the 
McEliece cryptosystem. McEliece based digital 
signature scheme when implemented using the new 
variant, could be used to curb other security attacks 
which are related to authentication of the wireless 
network nodes. It is widely believed that, code-based 
cryptosystem do not allow practical digital signatures. 
However, McEliece based digital signature scheme 
has been proposed in (Courtois et al, 2001). Future 
research work will implement a McEliece based 
digital signature scheme using the new variant in 
order to curb the above-mentioned attacks in wireless 
cooperative networks.  

8 CONCLUSION 

In this paper, a new variant of the McEliece 
cryptosystem using non-linear convolutional codes is 
proposed. The rationale in designing the new variant 
is to establish key sizes which could enable 
implementation of the McEliece cryptosystem in a 
single FPGA device with ultimate application in 
mobile wireless communication. The new variant of 
the McEliece cryptosystem is implemented using 
non-linear convolutional codes, a scrambled matrix 
and a permutation matrix. The non-linear 
convolutional code is a combination of the 
conventional convolutional code and product ciphers. 
The baseline key sizes used in the implementation 
depends on the number of blocks of the k-bit input, 
the number of stages in the n-cascaded non-linear 
convolutional cryptosystem and the number of states 
in the generator matrices. The results of this research 
show that, small key sizes used to establish the 
matrices in the McEliece cryptosystem could be 
attained for 15 blocks of k-bit input and 10 stages of 
cascaded convolutional codes to prevent structural 
attacks and 5 blocks of k-bit input and 6 stages of 
convolutional codes to prevent decoding attacks. The 
entire scheme was implemented in a Virtex-4 FPGA 
to circumvent the key management drawback 
associated with the additional keys due to the product 
ciphers.  

Future research will focus on two fundamental 
problem areas that must be addressed if wireless 
networks such as cooperative networks are to have 
security comparable to traditional networks. These 
areas are: 
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 Trust establishment, key management and 
membership; 

 Network availability and routing security 

The new variant of the McEliece cryptosystem will 
be used to explore these problem areas by 
implementing efficient encryption and authentication 
schemes. The implementation will consider the 
specificities of wireless cooperative networks such as, 
limited energy; limited memory; transient 
connectivity and availability; shared physical 
medium amongst others. 
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APPENDIX 

Transition Tables 
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