
Avoiding Network and Host Detection using Packet Bit-masking

George Stergiopoulos a, Eirini Lygerou, Nikolaos Tsalis, Dimitris Tomaras
and Dimitris Gritzalis

Information Security & Critical Infrastructure Protection Laboratory, Department of Informatics,
Athens University of Economics & Business, 76 Patission Ave., Athens GR-10434, Greece

Keywords: Network Security, Detection, Attack, Evasion, Intrusion Detection, Host, Siem, Malware, TCP, Packet,
Transport, Layer, Payload, Shell, Data Leakage, DLP.

Abstract: Current host and network intrusion detection and prevention systems mainly use deep packet inspection, sig-
nature analysis and behavior analytics on traffic and relevant software to detect and prevent malicious activity.
Solutions are applied on both system and network level. We present an evasion attack to remotely control a
shell and/or exfiltrate sensitive data that manages to avoid most popular host and network intrusion techniques.
The idea is to use legitimate traffic and victim-generated packets that belong to different contexts and reuse it to
communicate malicious content without tampering their payload or other information (except destination IP).
We name the technique “bit-masking”. The attack seems able to exfiltrate any amount of data and execution
time does not seem to affect detection rates. For proof, we develop the “Leaky-Faucet” software that allows us
to (i) remotely control a reverse shell and (ii) transfer data unnoticed. The validation scope for the presented
attack includes evading 5 popular NIDS, 8 of the most popular integrated end-point protection solutions and a
Data Leakage Prevention system (DLP); both on the network and host session level. We present three different
variations of the attack able to transfer (i) shell commands, (ii) large chunks of data, and (iii) malicious code to
a remote command and control (CnC) center. During experiments, we also detected an NPcap library bug that
allows resent packets to avoid logging from network analysis tools for Windows that use the Npcap library.

1 INTRODUCTION

There exists a variety of security measures for de-
tecting and preventing malicious activity, with the
purpose of both adhering to regulatory compliance
and also reducing the risk in case of malicious ac-
tivity. Security officers use Intrusion Detection Sys-
tems (IDS) (J., 1998), both at network level (NIDS)
and host endpoint solutions (HIDS, heuristics, an-
tivirus etc.) as both software applications and/or dis-
crete hardware appliances. These systems monitor
network connections and workstations for violations
and the existence of malicious activity. (Marpaung
et al., 2012).

On the other hand, researchers and technical ex-
perts keep publishing evasion attacks while others re-
spond with more efficient detection techniques, both
thus evolving the current state of the art with new
ways to avoid measures and detect malicious activity.

Any malicious information (data, commands, etc.)
is essentially a sequence of bits. The idea is to break

a https://orcid.org/0000-0002-5336-6765

this sequence into k bit blocks of length n, capture le-
gitimate TCP/IP traffic from the victim’s network and
try to detect k TCP packet payloads (one for each bit
block) where each packet has the same n bits in spe-
cific positions (in binary form) with a corresponding
bit block. Essentially, we replace all k bit blocks of
malicious data into k TCP packets of legitimate traf-
fic, whose payloads contain the aforementioned bit
blocks in some fixed bit positions. Fixed positions
can be chosen arbitrarily by the attacker; similar to a
symmetric encryption key. Lastly, we resend the cap-
tured packet to an attacker’s listening service without
tampering (expect of course changing the destination
IP). Thus, we transfer a part of the overall intended
malicious data that we want to send. We named this
bit referencing technique, “bit-masking”.

The bit-masking algorithm is effectively a muta-
tion of a reverse-shell that connects a victim to its
attacker. The difference is that a bit-masked con-
nection uses existing legitimate traffic from the vic-
tim to transfer commands and data instead of creat-
ing new traffic. Payloads of legitimate TCP packets
from victim-generated traffic are used as is to achieve

52
Stergiopoulos, G., Lygerou, E., Tsalis, N., Tomaras, D. and Gritzalis, D.
Avoiding Network and Host Detection using Packet Bit-masking.
DOI: 10.5220/0009591500520063
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 52-63
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

all three attack scenarios presented in this paper. We
develop a tool named Leaky-faucet as a proof of con-
cept. The validation scope for the presented evasion
attack includes detection mechanisms for malicious
activity on the network and host session connection
level (network and host IDS, endpoint security solu-
tions, antivirus). Security mechanisms failed to de-
tect Leaky-Faucet, both when executing commands
and receiving output and exfiltrating data of any size,
given enough time for the attack to run. We tested this
for various data sizes from 40KB to 230MB files (of
course the bigger the exfiltration, the longer the attack
has to remain active).

Through the use of raw sockets, malicious com-
mands and data are sent using entire legitimate pay-
loads, instead of being inserted on existing sessions.
This way, even if we check plain-text spoofed packets
manually, the malicious content is undetectable.

1.1 Contribution

We present a fully functional reverse shell with the
ability to hide commands and data transmitted over a
victim’s network. Our implementation takes advan-
tage of raw payloads from legitimate TCP packets to
bidirectionally transfer masked commands and data.
Our major contributions are:

1. An evasion attack named bit-masking that man-
ages to create a stable, reverse connection that
none of the tested systems managed to detect. We
send shell commands and receive output, transfer
data and exfiltrate sensitive files in the order of
tens of megabytes undetected.

2. We perform three attack scenarios to validate our
attack performance in different implementations
with numerous security measures. The attack was
tested against 5 popular NIDS, 8 popular inte-
grated endpoint protection solutions and a Data
Leakage Prevention system; both on the network
and host session level. Scenarios use (i) regu-
lar sockets, (ii) raw sockets and (iii) raw sockets
with Npcap (Dean, 2016). If the NPCap library
is installed on the victim’s machine with default
(admin) configuration, the Npcap Spoofed edition
can be executed correctly from userland without
administrator privileges.

3. During experiments, we also discovered a traffic
monitoring bypass issue using the Npcap library.
Specific attacks were able to avoid all session
and packet logging from monitoring tools that use
Npcap (e.g. Wireshark).

We should note that the goal of this paper is to evade
detection of information exchange while connecting

to the attacker’s system at both the host and the net-
work level. This paper does not focus on code in-
jection and execution techniques like ROP injections,
polymorphism and other techniques that aim to evade
detection during code execution. We assume that a
script is executed on the victim’s machine using one
of the numerous existing techniques and focus on de-
tection evasion on network and host levels, both from
userland and root.

Section 2 presents related work concerning detec-
tion of malicious activity both in network traffic and
in host machines. We also argue about the differences
with our presented attack. Section 3 describes the
bit-masking evasion technique and its client-server
model. Here we also present the three version of
the attack, namely the TCP version, the spoofed raw
and the spoofed NPcap version of the attack. Section
4 presents the various implementations of the attack
(Leaky-Faucet) for remote command-and-control for
all attack versions and our experiments to determine
the most efficient bit-mask length, while Section 5 de-
scribes experimental results with remote commands
and data leakage. Section 6 concludes and discusses
potential solutions and future work.

2 RELATED WORK

2.1 Evasion Attacks

State-of-the-art evasion techniques include obfusca-
tion, session fragmentation or splicing, application
specific violations, protocol violations, inserting traf-
fic at IDS, denial of service, and code reuse attacks
(J., 1998).

Packet fragmentation is a network level evasion
technique that utilizes the maximum transmission unit
(MTU) of packets to generate malformed TCP pay-
loads (Cheng et al., 2012; Martin, 2019). Splicing de-
livers malicious payloads over multiple network pack-
ets in a session through streams of small packets.

Other evasion techniques include desynchronizing
protocol streams (Serna, 2002) and traffic injection at-
tacks. Packet-based network intrusion detection sys-
tems can be avoided by making the IDS process dif-
ferent data or the same data differently than receiv-
ing systems in sessions (Bukac, 2010). Traffic injec-
tion attacks involves sending packets that will be pro-
cessed by IDS but not by target machines, thus cre-
ating different sessions states between the IDS and
target systems (J., 1998; Serna, 2002). A similar
attack dubbed “duplicate insertion” uses overlapping
segments from packets to confuse the IDS due to the
system’s ignorance on network topology.

Avoiding Network and Host Detection using Packet Bit-masking

53

Slow scans that fool the frequency checks of IDS
by slowing down packets, method matching that uses
alternate HTTP commands for detecting CGI scripts
and premature request ending with malicious data
hidden in headers are also evasion attacks frequently
performed against the IDS (Martin, 2019).

Denial-of-service attacks have also been used for
evading intrusion detection (Cheng et al., 2012) (Mar-
tin, 2019). These attacks try to overflow the net-
work connection or the IDS system’s resources to
slow down rule matching or pattern recognition (Ig-
ure and Williams, 2008).

The evasion attack that is most similar to our ap-
proach is payload mutation. In this technique, at-
tackers transform malicious packets to semantically
equivalent that look different from malicious packet
signatures (e.g. transformation of URI hexadecimal
encoding, self-reference directories etc. in payloads)
(Martin, 2019). Still, the aforementioned evasion at-
tacks only work under certain cases and not in ev-
ery situation (Cheng et al., 2012; Niemi et al., 2012).
Contrary to this, we tested our approach against nu-
merous, diverse types of security systems that imple-
ment different detection mechanisms (IDS, host end-
point security systems). Results show none of the
tested systems could either detect the malicious con-
nection or data and commands transferred over the
network.

2.2 Malicious Activity and Data
Leakage Detection Techniques

Most common host endpoint security mechanisms in-
volve host intrusion detection systems (host IDS), an-
tivirus and security solutions that utilize a range of
techniques. From simple signature analysis and API
call monitoring, sandboxing to more advanced de-
tection mechanisms like packet caching, flow mod-
ification (Handley et al., 2001), active mapping
(Shankar and Paxson, 2003) and policy enforcement
(Marpaung et al., 2012; Cheng et al., 2012). The state
of the art now also considers heuristics with machine
learning.

Modern network security solutions use session
packet heuristic analysis, deep packet inspection and
session trends (like packets per min) along with botnet
architectures to detect malicious activity in networks
(Livadas et al., 2006; Binkley and Singh, 2006). Oth-
ers rely on statistical analysis for classifying vari-
ous types of traffic (Crotti, 2007), session reassembly
(Martin, 2019) to detect splicing and sandboxing.

Some solutions use machine learning to detect
malicious network activity. In (Lakhina et al., 2004)
and (Stergiopoulos et al., 2018), researchers try var-

ious packet features to extract information from the
physical aspects of the network traffic. Authors in
(Prasse, 2017) use malicious HTTPS traffic to train
neural networks and sequence classification to build a
system capable of detecting malware traffic over en-
crypted connections. Other approaches focus on iden-
tifying target malware/botnet servers (Lokoc et al.,
2016) or web servers contacted (Kohout and Pevny,
2015), instead of understanding malicious traffic of
various types. Authors in (Gu et al., 2007) and (Yen
and Reiter, 2008) use signal-processing techniques
like Principal Component Analysis to aggregate traf-
fic and detect anomalous changes flows. Lakhina et
al. (Lakhina et al., 2004) modelled network flows
as combinations of eigenflows to distinguish between
short-lived traffic bursts, trends, noise, or normal traf-
fic. Terrell et al. (Terrell, 2005) grouped network
traces into time-series and selected features, such as
the entropy of the packet and port numbers, to detect
traffic anomalies.

Concerning data leakage, authors in (Tahboub and
Saleh, 2014) surveyed DLP systems and described ex-
isting technologies for data protection, such as ID-
S/IPS, Firewalls, etc. that are using Deep Packet
Inspection (DPI) architecture. They compared them
to the DLP systems that use Deep Content Inspec-
tion (DCI) and showed how the latter are more ef-
ficient on detecting potential data breaches. Authors
in (W”uchner and Pretschner,) presented a DLP solu-
tion based on Windows API function calls using func-
tion call interposition. In (Borders and Prakash,), re-
searchers introduced an approach for quantifying in-
formation leaks in web traffic using measurement al-
gorithms for the HTTP (Hypertext Transfer Protocol)
protocol to isolate not legitimate outgoing activity.

While all aforementioned network detection and
data leakage prevention approaches are based on
models of malware behavior (not unlike signature-
based intrusion detection), our approach uses com-
pletely different packets. This way, we can avoid de-
tection by (a) not having to hide malicious informa-
tion and (b) by introducing all types of payloads from
different legitimate sessions in our malicious stream,
thus data transferred cannot be assigned to a partic-
ular distribution nor can be analyzed based on static
features.

2.3 Covert Channels and
Steganography

The bit-mask is like a symmetrical encryption key. Its
values are bit position pointers that need to be shared
between the code running at the victim’s and at-
tacker’s system prior to execution. If a mask is agreed

SECRYPT 2020 - 17th International Conference on Security and Cryptography

54

on both sides (victim software and attacker’s listener),
each side can either pick-and-send or receive-and-
decode TCP packets. Bit-masking attacks do not
modify any bits on the victim packets nor do they in-
ject bits into legitimate streams like in steganography.

The presented attack can be classified as a internet
covert channel attack. Similar to Handel and Sand-
for’s data hiding analysis inside an OSI layer (Han-
del and Sandford, 1996), our technique also uses the
structure of an existing layer (i.e. the TCP protocol
and transport layer) to transfer information in an il-
licit manner, disguised as a legitimate stream. Con-
trary to most current implementation though, infor-
mation is not hidden in TCP flags (ica,), but actually
creates discrete connections or sends packets like any
other network connection, while still avoiding being
flagged as malicious by security measures or logged
in network activity.

3 THE BIT-MASKING ATTACK
METHODOLOGY

3.1 Bit-mask Definition

Essentially, a bit-mask is a one-dimensional vector of
length µ that indicates some bit positions inside legit-
imate payloads, where µ is the amount of bit positions
referenced by the bit-mask (i.e. mask length). For ex-
ample, the bit-mask {5, 6, 16, 1, 19, 24} with length
µ = 6, points to the 5th bit, 6th bit, 16th bit, . . . , 24th
bit of a TCP payload in binary form.

A bit-mask is shared between the attacker’s server
and client code to be used as a bit reference manual
for bit extraction. The attack model and algorithmic
steps are presented below.

3.2 Attack Model

Here we present the high-level attack model for all
following attack implementations. The model con-
sists of a single attacker that has a client-side network
program waiting for input. The server code is exe-
cuted on a victim’s workstation. Fig. 1 visualizes the
high-level attack model.

The algorithm converts malicious data to binary
form and breaks them down into k chunks of µ bits
(the size of the bit mask). Then, it sniffs legitimate
network traffic and detects k TCP packets from the
ongoing legitimate traffic with payloads that have the
same bits (in binary form) with the k malicious bit
chunks, at the bit positions indicated by the bit mask.
The algorithm then re-sends the legitimate packets to

the attacker as is, by changing only the packet’s des-
tination IP. Packets are sent in sequential order. Bits
indicated by the bit-mask are then extracted by the
receiver and are concatenated with previous bits re-
ceived from similar packets. The client code receives
packets and appends the extracted bit contents indi-
cated by the bit-mask to form the malicious data sent
from the victim’s system.

For the attack to be successful, the server code
needs to achieve three things.

1. First, the victim needs to run the server code in
the first place. Server code is less than 2KB and
can exfiltrate any data or execute any command
as if it was a shell. Execution needs either admin
priviledges, or an existing install of the NPcap li-
brary with similar uses (e.g. a PC with Wireshark
installed has this working library) If NPCap is
present, the third attack requires no administrator
priviledges. Various techniques such as droppers,
malicious links to JavaScript or simple scripts can
be used to achieve this; most of them are widely
used. Since the aim of this paper is to present net-
work detection avoidance attacks, we consider the
way that the initial code is executed out of scope
of this paper.

2. The second requirement is that the executed code
must sniff enough packets from the victim’s ev-
eryday traffic, to find payloads suitable to use with
bit masking. As presented above, the attack does
not modify victim packets.

3. The third requirement is for the client code to
manage to send the selected packets to the attacker
undetected by both client and network based de-
tection systems (SIEMs, IDS, antivirus etc.).

The two latter requirements are presented below in
subsections 3.2 and 3.3. If all requirements are met,
the attacker has a shell and an upload/download ter-
minal.

3.3 Sending Function - Victim Sniffing
and Pattern Matching

The detailed steps of the code running on the victim’s
system are described below:

1. Convert malicious data D into binary and break
them down to k blocks of bits of length µ, D =
k ∗µ.

2. Capture legitimate TCP/IP traffic, convert packet
payloads to binary, and iterate them to detect
packets that have the same bits with the bits from
a block ki, at positions indicated by the bit-mask.

Avoiding Network and Host Detection using Packet Bit-masking

55

Figure 1: Activity flow of a full Leaky Faucet shell control.

3. If a suitable payload is found, replace the corre-
sponding block of malicious data with the TCP
packet.

4. Repeat until all malicious bit blocks are replaced
with captured legitimate packets.

5. Resend captured legitimate packets sequentially
to the attacker’s IP.

A graphical representation is given below in Fig.
2 and Python code respectively below.

3.4 Receiving Function – Attacker

In the receiving function, we have the sniffing,
pattern-matching and reassemble data operation. In
this stage the attacker software:

1. Wait until all packets from the victim’s system are
received. Last packet is indicated by a bit-masked
payload with a specific bit sequence that is used
as an end mark.

2. When finished, code applies the mask at the first
packet received and extracts the first chunk of bits
from its binary payload, from the positions refer-
enced by the mask.

Repeat on all received packets in sequence.

3. When bit extraction finishes, concatenate k ex-
tracted bits blocks of length µ in the same byte
array and

4. convert bits back to the original data’s format (e.g.
PDF, string for commands and output, hexadeci-
mal for code etc.).

4 IMPLEMENTATIONS

4.1 Problem Definition

Each experiment has a client and a server. The server
side is executed at the victim’s system and the client
side executes the attacker’s software. We developed

Figure 2: Using bitmask to detect a packet with bits identi-
cal to the bits from the file to be leaked.

three variations of the attack, each one with different
socket and packet implementations to test detection
by various security measures. All versions are essen-
tially a reverse shell modified with the use of the bit-
masking logic.

The code checks each packet as it is being col-
lected and only keeps those packets that pass the
check for being useful for the next chunk of data. Es-
timations show that we need on average 3.500 packets
to detect one useful payload using an 8-bit mask, see
Section 4.2 below for more details.

The reason we don’t just keep outgoing packets
is due to performance. We do not have any issues
security wise, since we have been able to craft the
source and the destination address (on the second and
third edition), so keeping both incoming and outgo-
ing packets increases our chances to find suitable pay-
loads. Connection is made in reverse, from the victim
to the attacker system since most security measures
allow outgoing but block incoming new TCP connec-
tions.

To cope with packet loss, we opted to extend the
bit-mask by 2 bits and use the latter two as a packet se-
quence number. When bits are to be matched, the last
two bits are introduced as an incremental sequence
number that resets and continues. If the receiving
function detects erroneous sequence, it can notify the

SECRYPT 2020 - 17th International Conference on Security and Cryptography

56

server code for the same packet again (again using he
same bit-masking algorithm to communicate informa-
tion back).

In the unlikely scenario where both server and
client packets are lost (packet loss occurred both for
a packet sent and the request to resend it), the attack
will obviously fail, although this never happened dur-
ing experiments.

4.2 Legitimate Traffic Generation

Traffic used to successfully execute bit-masking was
random packets from everyday traffic from two work-
stations located inside the team’s research lab. All
users were aware of the ongoing sniffing for experi-
mental purposes.

Workstation primary use was for coding and surf-
ing. Traffic comprised of normal Windows and Linux
everyday traffic (e.g. software updates and OS con-
nections), together with user traffic (web browsing,
streaming, YouTube music and Git push and pulls),
on a 10/1Mbps download/upload connection.

During the sniffing part of the attack, worksta-
tions were used for surfing on web pages, coding on
platforms (which introduced no extra traffic) and oc-
casional streaming of music (which augmented the
available traffic up to 11MB per minute). Also, de-
fault windows OS connections would occasionally
run in the background, although no major updates
were installed so the added network traffic is consid-
ered trivial (90MB per day). We did not notice any
differences between encrypted and unencrypted con-
nections.

Table 1: Traffic generation per user activity.

Traffic source Average load
(MB/min)

Web browsing 0.35
Youtube 9.34

Spotify (160kbps) 1.2
Git 0.75

4.3 Optimal Bit-mask Selection Tests

Masks can be arbitrary and attackers can may as well
choose any mask they want. Preliminary tests on
masks show that bits inside the mask play no impor-
tant role; although the mask length greatly affects the
time needed to deploy a successful attack.

Since the attack needs to find legitimate TCP pay-
loads that have specific bits at the specific points refer-
enced by our chosen mask, three variables affect how
long the attack will take: (i) the size of the mask, (ii)

the amount of legitimate traffic present and (iii) the
amount of malicious information we want to trans-
mit. For example, if we have an 8-bit mask and 8-bit
length malicious data to send, then we need only one
TCP packet that matches our mask. For every 8-bits
or less that exceed the length of the mask we need a
new packet. Smaller masks produce more collisions
but utilize less data, so there is a trade off.

We ran tests to determine mask size and achieve
the best results in the least amount of time, depending
on the data size or/and the size of the mask. We tested
all mask lengths up to 15. Figures 3, 4 and 5 depict ex-
amples for lengths 4,8 and 10. Anything above mask
length of 10 takes too long to execute. We sampled
mask sizes of 4, 8 and 10 bits on a 10/1Mbps down-
load/upload private connection inside the team’s re-
search lab. Fig. 3 shows the time needed to execute a
full attack that included utilizing a remote shell, creat-
ing a folder and downloading a sample NTLM sample
file. Thwe x axis depicts different data sizes that we
tried to exchange or exfiltrate (40KB, 400KB, 800KB,
8MB and 230MB files). Each size has a column that
depicts that time (in seconds) needed to complete the
attack for the aforementioned malicious data size.

Figure 3: Total Execution Times of the executable for dif-
ferent sizes of mask and data.

Mask length tests show that, if an attacker wants to
use bit-masking for scripting stuff and to establish the
foothold, this attack is useful and fast. Still, for ex-
filtrating larger files (230MB), the bit-masking attack
needed 8 minutes on a PC that was generating traffic
equal to 15MB/min on average (all connections in-
cluded).

Graph functions below depict execution times
(Fig. 4 and 5). Experiments suggest that using more
than 10 bits for the bit-mask length, packet detection
was getting significantly delayed. In Fig. 5, it is clear
that going from a 4-bit to an 8-bit mask essentially
halves the time needed to execute the attack for larger
files. Still, the difference between an 8-bit and a 10-
bit mask is almost non-existent. The possibility de-

Avoiding Network and Host Detection using Packet Bit-masking

57

Figure 4: Execution time for sniffing, for different sizes of
mask and data.

creases exponentially. Tests show that using anything
above a 10-bit mask slows down execution comple-
tion rather than speeding it up.

Figure 5: Execution time for sending completion procedure
for different sizes of mask and data.

As we notice from charts above, the pattern matching
and packet crafting procedures affect total execution
time the most. Experiments show that 8-bit masks
probably provide the best overall efficiency, except in
the case of TCP packets with TLS Application Layer
encryption. In TLS, the payload often starts with
leading zeros (Group, 2018), and thus the mask must
either contain bigger numbers or we omit the lead-
ing zeros. We chose to implement the bit-masking
evasion attack on the TCP protocol since it is easy
to implement connection that transfer raw packets;
something we need for our second and third experi-
ments. The average time for a packet to be matched
and crafted to be ready for sending is depicted in Ta-
ble 1.

Table 2: Average time for packet matching and crafting.

4-bit mask 8-bit
mask

10-bit
mask

Time
(sec) 0.0075 0.0624 0.2414

Speed
(patterns/sec) 170.9 15.9 4.1

4.4 Implementation 1: TCP Version

In this simplest form of the attack, we utilize raw
sockets for sniffing packets to match and TCP sockets
to send information to the attacker. New TCP pack-
ets are created for every send and receive and we only
use the captured payload from the previously captured
packets. Readers should note that, of course, since
a handshake is occurring with the attacker, we could
simply encrypt the communicated bit strings. Still,
we present this simple implementation as a stepping
stone for the next attack variations, building up to the
third implementation which is the most sophisticated
one and eventually compare results from all three im-
plementations.

This is the first PoC implementation and, in this
stage, admin rights are needed for sniffing (the third
implementation will remove this constraint). No addi-
tional restrictions exist. An active, connected socket
is bound to an attacker’s client with a particular IP
address and port number (Rhodes and Goerzen,). We
use a known TCP port to draw less attention. Network
card is set in promiscuous mode. Every socket sends
a single packet (a condition required to send data in
order).

On the attacker’s machine, sniffing starts from
Ethernet frames (Data link Layer 2) (Standardization,
1996). On the victim’s machine, sniffing starts from
the Data link Layer 3 due to raw sockets limitations
for Windows systems (Heuschkel et al., 2017) and
also since most firewalls limit their restrictions for
outgoing packets. We had to manually filter the pack-
ets with the proto label in the IP header, because the
sniffing for IPPROTO TCP is not permitted.

It is important that packets arrive in order. For this
reason, we created new connections for every packet
sent by the victim to the attacker’s machine. We ex-
ploited a socket feature that blocks the socket until a
packet is received. This way, the victim software did
not send an END signal and timeout was triggered af-
ter the last packet.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

58

4.5 Implementation 2: Spoofed Raw
Version

In this version, we opted to test the use of raw sockets
and see what will happen. The difference with im-
plementation 1 is that, instead of crafting new packets
and inserting selected payloads, we keep the original
legitimate packet by the victim (same TCP header)
and simply change its IP address at the network layer
to match the attacker’s IP. In this implementation, ad-
ministrator privileges are required. In addition, most
commercial firewall settings only allow outgoing traf-
fic to be captured in sniffing mode which might cause
delays.

Sniffing was performed similarly to the first im-
plementation. Matched packets collected from the
sniffing function are sent as is, except for the spoofed
IP destination address. The Ethernet and IP head-
ers are added automatically when we send the packet.
The socket.IPPROTO RAW option allows direct in-
teraction with layer 3 (IP) to craft our custom packet
with the default IPV4 IP protocol.

Without the TCP protocol, transmission of the
packets is not reliable, although we did not get any
misses. On the server side, no external library is used.
This implementation gave us full control of a Win-
dows or Linux shell with privileges identical to the
ones owned by our victim’s python scripts.

4.6 Implementation 3: Spoofed Npcap
Version

In this version, we made use of the Npcap library
(Dean, 2016) on the victim’s side to be able to sniff
the traffic behind the firewall. The library binded di-
rectly to the device interface and thus, we overcame
limitations of the previous raw sockets in Windows.
This version is similar to the spoofed raw version, but
with the added advantage of not needing raw sock-
ets server side (Dean, 2016). To access the library
we directly used the Winpcap python wrapper. This
way, the attack now required no privilege escalation
for all executions and communication and everything
ran smoothly from userland. If NPCap is installed on
the victim’s machine with default (admin) configura-
tion, this attack requires no elenated priviledges and
can be executed from userland.

5 EXPERIMENTS

The proposed system was tested on a Dell Inspiron
15-3537 (Intel Core i7-4500U, 16GB RAM). Leaky

Faucet’s code was written in Python version 3.7.2.
The first two editions have no external dependencies
and use default python libraries. The third variations
of Leaky Faucet uses the NPcap library.

We set up an intranet lab using Oracle’s Virtual-
Box 5.2.26 and Cisco routers as depicted in Fig. 6.
Virtual machines formed a network were one Kali
Linux machine represented the attacker and multiple
MS Windows machines that represented the victims
with Windows 7 64-bit and Windows 10 64-bit sys-
tems running different host endpoint security suites,
antivirus, IDS etc.

We used the Security onion (Onion, 2019) distri-
bution for implementing and configuring numerous
NIDS (see Section 5.1, Table 3). We also tested 8 of
the most popular integrated endpoint protection solu-
tions (see Section 5.2, Table 4 below) and two Data
Leakage Prevention systems (DLPs). We ran multi-
ple shell commands to test functionality, such as “net
user” commands, deleting and creating new folders,
files, altering users, registry entries etc.

Section 5.1 and 5.2 below depict results for net-
work IDS and host endpoint security systems respec-
tively.

5.1 IDS and Network Security Evasion

The network intrusion detection and monitoring sys-
tems tested were the following:

• Suricata. Suricata is capable of real time in-
trusion detection (IDS), inline intrusion preven-
tion (IPS), network security monitoring and of-
fline processing (Foundation, 2019).

• Snort. A Network Intrusion Detection System
and Intrusion Prevention System (Roesch, 1999).
Performs real-time traffic analysis and packet log-
ging, and is able to stop a number of probes and
attacks on a network.

• Bro. Network Security Monitor (Paxson, 1999)
that has the ability to detect events in real time.
These events are by default neutral and signify
that a notable action has taken place, regardless
of that action’s nature.

• Ossec. OSSEC (Bray et al., 2008) is a multi-
platform, open source, host-based Intrusion De-
tection System (HIDS). It has a correlation and
analysis engine, integrating log analysis, file in-
tegrity checking, Windows registry monitoring,
centralized policy enforcement, rootkit detection,
real-time alerting and active response.

• Sguil. (Visscher and Viklund, 2013) a tool that
uses a number of the installed utilities to collect,

Avoiding Network and Host Detection using Packet Bit-masking

59

analyze and escalate indications and warnings to
detect and respond to possible intrusions.

• Pfsense. (Buechler and Pingle, 2009) an open
source suite based on FreeBSD that supports a
number of features present in alternative commer-
cial firewall solutions including filtering based on
IP and Protocol, passive OS/network fingerprint-
ing and packet normalization.

Security Onion is a suite that provides popular IDS
implementations. For the Snort setup we used the
Snort VRT ruleset and for the Bro, its default rules.
The PFsense firewall used manages the internet ac-
cess through the VMs. The virtual machines are in an
internal network and can only see each other which
provides unbiased network traffic. Fig. 6 below visu-
alizes the network topology of our experiment.

Figure 6: Network topology with IDS.

In the following Table 2, we present the comparison
between the three editions with the installed Antivirus
products and the network IDS.

Table 3: Detection results - NIDS.

NIDS
- NIPS

TCP Spoofed
raw

Spoofed
NPCAP

Snort warning pass pass
Zeek
(Bro)

Logged
(no warn-
ing)

Logged
(weird.log)

pass

Suricata Warning
(un-
known)

Warning
(un-
known)

pass

OSSEC pass pass pass

For Zeek, the Spoofed RAW variation of the attack
raised an entry in weird.log (Zeek stores unusual net-
work behavior in this log) with “255 unknown proto-

col entry”. It did not provide any further information,
but we know that IPPROTO RAW socket protocol in
windows has a 255 number. Consequently, the log oc-
curs when we send the packets from the server to the
client using the IPPROTO RAW socket. Suricata pro-
vided similar results. For the Npcap Spoofed Version
no logs or alerts were detected. Using this technique,
malicious packets always appeared legitimate.

Since packets selected by these techniques largely
belong to different contexts (i.e., fragments from dif-
ferent legitimate flows), we opted to see if we can de-
tect them using deep content inspection. Basic func-
tionality tested did not provide any detection results
although this area needs further research to claim that
our attacks remains undetected.

5.2 Host Endpoint Security Evasion

In this experiment, we tested the three variations of
the attack against host endpoint protection, host IDS
and business antivirus suites and compared the re-
sults. We selected them based on various internet
rankings from companies and press alike (Williams,
; Haselhorst, 2019). When there was more than one
version, we installed both the Total Security (host
IDS) and the antivirus versions. Detection results for
the bit-masking attack against host endpoint security
solutions are shown in Table 4 below.

The high rate of blocking in the Spoofed ver-
sion, is due to the raw socket limitations on Win-
dows. Most endpoint systems of most companies im-
plement more flexible firewall rules instead of block-
ing all incoming connections by default, thus our at-
tack can pass without any problems. We have no
detections ratings, since workstation security prod-
ucts don’t provide statistics of behavior analysis. Be-
sides ZoneAlarm PRO, no HIDS or host endpoint se-
curity solution detected or blocked our attack. The
Kaspersky HIDS Application Control system classi-
fied Leaky Faucet at the “Low Restricted” trust cate-
gory. Kaspersky Total Security did not block the ex-
ecution of the application nor the packet sending pro-
cedure, although the total time needed for the attack
to be executed completely increased by 58.971 sec-
onds (+ 3.31%) when leaking megabytes of data. The
Zone Alarm PRO’s firewall blocked our attack since it
has very strict whitelisting firewall policies, disables
promiscuous mode by default and as a result blocks
our attack although does not detect it.

Our first edition passed all installed systems (even
Zone Alarm since it doesn’t need promiscuous mode
and doesn’t use raw packets), even though it created
new TCP packets with the payload of the legitimate
ones and established numerous connections to send

SECRYPT 2020 - 17th International Conference on Security and Cryptography

60

Table 4: Detection results - Host endpoint security.

Host end-
point security
system

TCP Spoofed
Raw

Spoofed
NPCAP

Windows De-
fender

pass blocked pass

McAfee
AntiVirus
Plus

pass blocked pass

McAfee Total
Protection

pass pass pass

Symantec
Norton Secu-
rity Premium

pass pass pass

Kaspersky
Internet
Security

pass pass pass

ESET NOD32
Antivirus

pass blocked pass

Trend Mi-
cro Internet
Security

pass pass pass

ZoneAlarm
PRO An-
tivirus +
Firewall

pass blocked blocked

or receive packets. Still, in a real world scenario,
advanced endpoint solutions and SOCs would proba-
bly raise some warning flags since the attacker’s IP is
not hidden and all those multiple reconnections would
be suspicious. Our third edition is the best choice
for most systems, because it captures the data before
any firewall can block traffic and avoids logging from
NPCap tools.

5.3 DLP Evasion

In this experiment, we tested two variations of data
leakage prevention with MyDLP (MyD, 2020). We
set up an Ubuntu Server VM and used it as a proxy
through Squid, a caching and forwarding HTTP web
proxy, to monitor network traffic of the test VM
(Windows 10). For testing, we used a PDF file
with credit card data and we tried to send it through
http://wetransfer.com. MyDLP recognized that sensi-
tive data were being sent and logged the activity as
configured to do in such case.

Using Leaky Faucet, MyDLP did not log any sus-
picious activity on the network, which means that it
did not recognize the patterns used for the leak of the
credit card numbers.

The total time needed for Leaky Faucet to send

the file increased by 782 seconds compared to send-
ing the file through WeTransfer, when MyDLP was
logging the traffic.

5.4 Session and Packet Monitoring
Bypass with NPcap

Wireshark and most popular Windows capturing tools
use the NPcap library (or WinPcap) to capture packets
when firewalls and other host systems are in use.

Without the use of NPcap, firewall blocks packets
either way and cannot be sniffed. However, since we
use the same library, we noticed that when we send
the crafted new packets from the Victim to the At-
tacker, the library cannot simultaneously inject them
and display them on the same machine on other mon-
itoring tools. We tried to change Ethernet source and
IP Source to Wireshark and still, no software dis-
plays them. We also used WindDump (tcpDump) and,
again, capturing did not display any injected packets.
Intuitively, if a monitoring tool utilizes its own imple-
mentation of the NPcap library, monitoring will pos-
sibly work since there will be no conflict.

Most likely, this is a library issue, because in
Linux, when tested with raw sockets, the same mon-
itoring tools can display packets injected by Leaky
Faucet version 3 normally. Still, we found no tool
able to display injected packets in Windows.

5.5 Whitelisting Network Connections

The most effective (and probably the simplest) solu-
tion to the bit-masking attack is whitelisting outgo-
ing connections and checking the validity of software
connecting to external addresses. This is a common
and effective countermeasure against malware and re-
verse shells in general, and bit-masking attacks are
also affected by it. Still, many industrial environ-
ments or organisation workstations use blacklisting
instead of whitelisting connections, due to the inher-
ent nature of company business logic that some em-
ployees need access to the internet in general. To this
end, whitelisting and firewall restrictions on outgoing
connections will stop bit-masking attacks, but it is a
situational security measure that is not always possi-
ble to deploy.

6 CONCLUSIONS

In this paper, we presented an evasion attack able
to bypass network, and host intrusion detection and
data leakage prevention systems using a technique we
named “bit-masking”. The third edition has better

Avoiding Network and Host Detection using Packet Bit-masking

61

performance due to the significant advantage of the
Npcap library and the ability to capture packets be-
fore any firewall policy is applied and thus success-
fully perform packet injection.

Spoofing the IP and using raw sockets is worse
than just creating a new TCP connection and em-
bedding previous, legitimate payloads inside the new
packets. Although the attacker needs to establish mul-
tiple connections, still the connection looks more le-
gitimate than raw, unintended packets being send over
the network; better use full TCP handshakes.

Using the NPCAP library in Windows tests pro-
vided interesting side effects. Monitoring tools can-
not display the injected packets due to some conflict
of the NPcap library being used both by Leaky Faucet
and the monitoring tools like Wireshark. Linux seems
to be unaffected of this issue, which probably is a li-
brary bug.

From a defense point of view, future work should
aim at understanding context relevance in series of
packets. DPI and relevant machine learning algo-
rithms may possibly be able to detect this attack
by understanding the completely different structure
and data type in different packets (since each packet
comes from different types of white traffic).

6.1 Restrictions

Each implementation deals with loss of synchroniza-
tion (e.g. due to packet drops) between client code
and server (victim) code differently. The first imple-
mentation uses full handshakes, so each socket con-
nection transfers one packet; a blunt but effective first
step to test detection with multiple TCP handshakes.
in the second and third implementations, we opt to
embed a two binary digit sequence number, much like
TCP’s initial sequence number (ISN) to check for se-
quencing. This number is concatenated to data sent
with the bit-mask. Results so negligible time differ-
ences and no detection differences when using this
technique.

Also, the attack will have serious delays if a vic-
tim’s network traffic is minimal. Tests show that, in
workstations with less than 20MBs of traffic per hour
(i.e. idle PCs), the attacks take an estimate of five
times more time to execute. For example, the shell at-
tack that needs to transfer about 8MB of traffic to fully
execute all commands and exfiltrate all data, takes
about 5 hours to complete (instead of 86 seconds with
the tested 10MBps traffic).

6.2 Future Work

Concerning the attack, future work must aim to build
a more scalable version of the attack; able to leak
larger files with greater speed, possibly by enhanc-
ing the payload matching algorithm. We also aim to
extend the system to incorporate more features like
encryption and TLS features to further enhance the
evasion mechanisms.

REFERENCES

What is an internet covert channel? https://www.icann.org/
news/blog/what-is-an-internet-covert-channel. Ac-
cessed: 2019-10-30.

(2020). Mydlp and security features. http://www.mydlp.
com/. Accessed: 2019-09-30.

Binkley, J. and Singh, S. (2006). An algorithm for anomaly-
based botnet detection. In Proceedings of the Work-
shop on Steps to Reducing Unwanted Traffic on the
Internet.

Borders, K. and Prakash, A. Quantifying Information Leaks
in Outbound Web Traffic. Web Tap Security Inc., Ann
Arbor, MI.

Bray, R., Cid, D., and Hay, A. (2008). OSSEC host-based
intrusion detection guide. Syngress.

Buechler, C. M. and Pingle, J. (2009). pfsense: The defini-
tive guide. Reed Media Services.

Bukac, V. (2010). IDS system evasion techniques. Master.
Masarykova Univerzita.

Cheng, T.-H. et al. (2012). Evasion techniques: Sneak-
ing through your intrusion detection/prevention sys-
tems. IEEE Communications Surveys & Tutorials,
14(4):1011–1020.

Crotti, M. e. a. (2007). Traffic classification through simple
statistical fingerprinting. ACM SIG- COMM Comput.
Commun. Rev, 37(1):5–16.

Dean, P. (2016). Nmap security scanner gets new scripts,
performance boosts.

Foundation, O. I. S. (2019). Suricata.
Group, N. W. (2018). The transport layer security (tls) pro-

tocol version 1.3.
Gu, G., Porras, P., Yegneswaran, V., Fong, M. W., and Lee,

W. (2007). Bothunter: detecting malware infection
through ids-driven dialog correlation. In Proceedings
of the USENIX Security Symposium.

Handel, T. G. and Sandford, M. T. (1996). Hiding data in
the osi network model. In International Workshop on
Information Hiding, pages 23–38. Springer.

Handley, M., Paxson, V., and Kreibich, C. (2001). Net-
work intrusion detection: Evasion, traffic normaliza-
tion, and end-to-end protocol semantics. In Proc.
USENIX Security Symposium.

Haselhorst, D. (2019). Onion-Zeek-RITA: Improving Net-
work Visibility and Detecting C2 Activity. SANS read-
ing room, sti graduate student research edition.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

62

Heuschkel, J. et al. (2017). Introduction to raw-sockets.
Igure, V. M. and Williams, R. D. (2008). Taxonomies of

attacks and vulnerabilities in computer systems. IEEE
Commun. Surveys Tutorials, 10(1):6–19.

J., C. (1998). Proceedings of the 1998 national information
systems security conference (nissc 98). In Artificial
neural networks for misuse detection.

Kohout, J. and Pevny, T. (2015). Automatic discovery of
web servers hosting similar applications. In Proceed-
ings of the IFIP/IEEE International Symposium on
Integrated Network Management, pages 1310–1315.
IEEE.

Lakhina, A., Papagiannaki, K., and Crovella, M. (2004).
Structural analysis of network traffic flows. In Pro-
ceedings of ACM SIGMETRICS/Performance.

Livadas, C., Walsh, B., Lapsley, D., and Strayer, T. (2006).
Using machine learning techniques to identify botnet
traffic. In Proceedings of the IEEE LCN Workshop on
Network Security.

Lokoc, J., Kohout, J., Cech, P., Skopal, T., and Pevy, T.
(2016). k-nn classification of malware in https traffic
using the metric space approach. In M., W. and G. A.,
C. a., editors, Chau, pages 131–145. Springer, Cham,
PAISI 2016. LNCS, vol. 9650.

Marpaung, J. A. P., Sain, M., and Lee, H.-J. (2012). Survey
on malware evasion techniques: State of the art and
challenges. In 2012 14th International Conference
on Advanced Communication Technology (ICACT).
IEEE.

Martin, S. (2019). Anti-IDS tools and tactics. SANS insti-
tute.

Niemi, O.-P., Levom”aki, A., and Manner, J. (2012). Dis-
mantling intrusion prevention systems. In Proceed-
ings of the ACM SIGCOMM 2012 conference on Ap-
plications, architectures, and protocols for computer
communication. ACM. technologies.

Onion, S. (2019).
Paxson, V. (1999). Bro: A system for detecting net-

work intruders in real-time. Computer Networks,
31(23):2435–2463.

Prasse, P. e. a. (2017). Malware Detection by HTTPS Traffic
Analysis.

Rhodes, B. and Goerzen, J. Foundations of python network
programming. Apress, 2014.

Roesch, M. (1999). Snort: Lightweight intrusion detection
for networks. 99(1).

Serna, F. J. (2002). Polymorphic shellcodes vs. application
IDSs. Next Generation Security Technologies.

Shankar, U. and Paxson, V. (2003). Active mapping: Re-
sisting nids evasion without alerting traffic. In Proc.
IEEE Symposium on Security and Privacy.

Standardization, I. (1996). Iso/iec 7498-1: 1994 informa-
tion technology - open systems interconnection - ba-
sic reference model: The basic model. International
Standard ISOIEC, 7498:59.

Stergiopoulos, G. et al. (2018). Automatic detection of var-
ious malicious traffic using side channel features on
tcp packets. In European Symposium on Research in
Computer Security. Springer, Cham.

Tahboub, R. and Saleh, Y. (2014). Data leakage/loss
prevention systems (dlp). In 2014 World Congress
on Computer Applications and Information Systems
(WCCAIS), pages 1–6. IEEE.

Terrell, J. e. a. (2005). Multivariate svd analyses for net-
work anomaly detection. In Proceeding of ACM SIG-
COMM.

Visscher, B. and Viklund, A. (2013). Sguil: The analyst
console for network security monitoring.

Williams, M. The best antivirus software 2019. TechRadar.
W”uchner, T. and Pretschner, A. Data Loss Prevention

based on data-driven Usage Control. Technische Uni-
versit”at M”unchen, Garching bei M”unchen, Ger-
many.

Yen, T.-F. and Reiter, M. K. (2008). Traffic aggregation for
malware detection. In Zamboni, D., editor, DIMVA
2008, vol. 5137, pages 207–227. Springer LNCS,
Springer, Heidelberg.

Avoiding Network and Host Detection using Packet Bit-masking

63

