
Remote Pair Programming

Janet Hughes a, Ann Walshe, Bobby Law b and Brendan Murphy
School of Computing & Communications, The Open University, Walton Hall, Milton Keynes, U.K.

Keywords: Pair Programming, Employability, Distance Learning.

Abstract: Computing students often learn to program individually or in variously-sized groups whilst studying in com-
puting laboratories and face-to-face classes. Previous research indicates that learning via pair programming
can lead to students improving the quality of their programming, enhancing their programming skills and in-
creasing their self-confidence when programming. Pair programming also is well established as a mechanism
that supports peer learning and self-assessment for novice and more experienced students of programming.
Observed benefits include increased self-efficacy, sharing of expertise, improved communication and team-
working – all enhancing employability. A considerable amount of existing work has examined pair program-
ming benefits as they relate to campus-based students pairing face-to-face in a laboratory class – but how can
distance learning students experience such benefits? This paper describes the preliminary results from a pilot
study to investigate the benefits to distance learning students of engaging in Remote Pair Programming in their
learning. Our investigation goes beyond academic learning to explore community, social and employability
benefits, all of which are relevant to national measures of student satisfaction.

1 INTRODUCTION

“With almost 200,000 registered students, the
OU is the largest academic institution in the
UK and, apart from a small number of post-
graduate research students, most OU students
study off-campus. It has a network of more
than 5,000 tutors and uses communications
technology to deliver teaching and assess-
ment.” (THE, 2020)

In October 2019, students registered to study approx-
imately 19,000 modules in the School of Computing
& Communications at The Open University (OU) in
the UK. We are aware that traditional campus-based
universities teach programming in laboratory classes
in which students can learn to program solo, or in
variously-sized groups. Many institutions also teach
pair programming: two programmers work “side-by-
side” at a computer when programming to solve a
problem. The person typing the code – the driver
– and the person watching that coding to spot any
errors or ways to improve the code – the navigator
– switch roles regularly. Both partners in the pair
voice their thinking, sharing their questions and ex-
changing ideas. Previous research from UK, Europe

a https://orcid.org/0000-0002-6813-9020
b https://orcid.org/0000-0002-0269-8284

and USA indicates that pair programming can lead to
improved quality of programming, enhance program-
ming skill and increase self-confidence when pro-
gramming. This work is to investigate if such benefits
also can accrue for distance learners pair program-
ming with a remote partner online. Our motivation
stems from the reality that in our university, the ma-
jority of students studying to learn how to program
do so individually and remotely via distance learning.
Therefore, whilst we acknowledge the work of many
educators in exploring the benefits to students of pair
programming, we are acutely aware that the bulk of
that work is set in the context of face-to-face classes.
The work described here is from a pilot study to inves-
tigate if Remote Pair Programming can bring similar
employability, social and community benefits to stu-
dents and thereby improve their learning experience.
(Colleagues are researching the technical aspects of
Remote Pair Programming and will report their find-
ings in due course.)

Our research is designed to identify recommenda-
tions for educators incorporating pair programming
into distance learning. Those techniques and ap-
proaches found to be feasible, manageable and ben-
eficial will be recommended as guidelines for em-
bedding pair programming in undergraduate and post-
graduate modules that teach programming. It is antic-
ipated that positive outcomes might relate to student

476
Hughes, J., Walshe, A., Law, B. and Murphy, B.
Remote Pair Programming.
DOI: 10.5220/0009582904760483
In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU 2020) - Volume 2, pages 476-483
ISBN: 978-989-758-417-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



satisfaction, student confidence and self-esteem, im-
proved student employability and improved module
feedback ratings for those modules. This paper de-
scribes the results from a pilot study designed to con-
firm the feasibility and efficacy of the research and to
inform its methodology when scaled.

2 RELATED WORK

Computing educators have been researching pair pro-
gramming for 20 years, spurred on by the innovations
of Williams at North Carolina State University.

2.1 Benefits of Pair Programming

As early as in 2001, Williams and Kessler found that
pair programming allowed students “to learn new lan-
guages faster and better than with solitary learning”
(Williams and Kessler, 2001). Consistent findings
have included that student pair programming has sev-
eral benefits, not only to the quality of their work
products e.g. (Hanks et al., 2004), (Smith et al.,
2017) but also with respect to student satisfaction, e.g.
(Williams and Upchurch, 2001), (Hanks et al., 2004)
and confidence, e.g. (Zacharis, 2011). Considering
CS1, (Wood et al., 2013) found that pair program-
ming led to a generally increased sense of commu-
nity among the students. However, the title of the
Williams and Kessler work highlights the issue for the
current authors: “Experiments with industry’s “pair-
programming” model in the computer science class-
room” (our emphasis) (Williams and Kessler, 2001).

2.2 Remote Pair Programming

Numerous researchers have published supportive
findings but most often in the context of classrooom-
based teaching and learning in campus based uni-
versities and colleges. Those familiar with the self-
explaining work of Chi from the 1990s, e.g. (Chi
et al., 1994), will appreciate some of the reasons that
students are likely to benefit from pair programming -
but we question why the benefits ascribed to campus-
based circumstances cannot also accrue to students of
distance learning. If students in classrooms who prac-
tise pair programming are more self-sufficient and
demonstrate higher-order thinking skills (Williams
et al., 2002), the question arises if the same bene-
fits of pair programming - which go beyond program-
ming skill - are available to distance learning students
and how can that be managed? Some early work sug-
gests that distributed pairs obtain many of the same
benefits as co-located pairs, including the fostering of

teamwork, communication and confidence e.g. (Ba-
heti et al., 2002), (Stotts et al., 2003), (Nagappan
et al., 2003), (Hanks, 2005). However a 2010 compar-
ison of distributed and co-located pair programming
found that whilst both approaches led to positive ex-
periences for students, the former resulted in slightly
less satisfaction than the latter (Edwards et al., 2010).
More recent work suggests the promise of students
generating their own pair programming events in a
large MOOC (McKinsey et al., 2014).

2.3 Guidelines

In 2008, Williams et al. derived a set of nine
classroom management guidelines “for successfully
implementing pair programming in the classroom”,
adding a further two in the context of an HCI course.
As well as providing insights for educators wishing to
adopt pair programming in face-to-face teaching cir-
cumstances, these authors also recognised the “need
to coordinate schedules when pair programming is re-
quired outside of a classroom or laboratory setting”
(Williams et al., 2008). Here, we describe a pilot that
is part of work to identify guidelines for tutors and
students to support successful pair programming in
an online learning environment. The remainder of the
paper is structured as follows: section 3 describes the
method adopted for the pilot study; section 4 presents
findings from the students’ and tutors’ feedback; sec-
tion 5 summarises the lessons learned; section 6 con-
cludes the paper with a summary of future work.

3 METHOD

Our approach was designed to consider three tech-
niques of experiencing Remote Pair Programming to
identify any perceived benefits. The three methods
were:
1. Passive: watching a video recording of two expert

tutors pair programming “side-by-side”
2. Indirect Participation: watching two tutors pair

programming live online, with the opportunity to
interact with them either during or at the finish

3. Direct Participation: working on a pair program-
ming task with a (remote) student partner online.
Five undergraduate student volunteers partici-

pated in the pilot study and were surveyed, online, for
their perceptions of employability-related skills fol-
lowing their participation at each phase of the pilot.
Ten survey statements related to how students felt:

• I am able to work well with others, communicate
orally and give / receive feedback

Remote Pair Programming

477



• I am able to analyse facts and circumstances and
ask the right questions to diagnose problems.

• I feel connected to others in this course.

• I trust others in this course.

• I am able to communicate orally in a clear and
sensitive manner which is appropriately varied ac-
cording to different audiences.

• I am able to take initiative and action unprompted
to achieve agreed goal.

• I am able to deal confidently with challenges.

• I am able to reflect on my own practice and
strengths and weaknesses.

• I feel that other students help me learn.

• I am able to analyse, reason and problem solve.

Following each statement were three possible re-
sponses: more than before, no change, and less than
before. The survey statements were derived from
two questionnaires (Rovai, 2002) and (Jackson and
Chapman, 2012) and our institution’s Employabil-
ity Framework. Drawing on each of these sources,
the set of ten statements was framed to draw com-
ments about self-efficacy, team working, communi-
cation skills, collaboration, self-awareness, connect-
edness and problem-solving ability. An answer style
was developed to allow for speedy online responses
(select a radio button per question). Survey responses
were anonymous. The students were asked to mark
which of the responses best reflected their feelings
about the statement, and to provide any further com-
ments via a text box after each statement. They were
asked to complete the survey after experiencing each
of the three methods described above.

Ethical permission was obtained from the uni-
versity’s Student Research Project Panel and from
the Module Team Chair of the module being stud-
ied (a CS1 Introduction to computing and information
technology module that includes programming using
Python as well as patterns and algorithms). Two ex-
perienced tutors (authors 3 and 4 of this paper) in the
research team performed the first phases.

3.1 Phase 1

A programming task of appropriate academic level
was set by one of the tutors in the research team.
It was designed to take approximately 30 minutes to
complete, using patterns and algorithms already in-
troduced to the students as part of their module stud-
ies. Pair programming guidelines (Zarb and Hughes,
2015) were issued to both the tutors in advance. Video
recordings were made of the two module tutors pair

programming at the same computer in a laboratory,
for participants to watch (repeatedly if desired) to gain
insights into how to pair program. Two recordings
were made (front view to show the tutors’ faces as
they programmed and rear view to show the screen
as well as who was driving and who was navigating
at any point in time). Tutors used an adjacent white-
board whilst planning and/or designing their solution.
Screen capture was also made to allow details of the
coding to be viewed clearly. Video editing software
was used to display three views, such as tutors, code,
and whiteboard or programming task (Figure 1).

Figure 1: Video of tutors, code and programming task.

3.2 Phase 2

Four participants watched live streaming of the two
module tutors pair programming online using Adobe
Connect for the connection and Python with the pro-
gramming environment IDLE. (One of the original
participants had to leave the study prematurely be-
cause of personal work commitments.) Whilst other
more sophisticated pair programming tools exist, such
as USE Together (https://www.use-together.com/),
the choice of Adobe Connect was a pragmatic one:
the university has licensed this software for use with
all students and staff, and so both groups had experi-
ence of the software. Furthermore, given that a single
module may have over 2,000 students, the licensing
costs of other solutions were judged to be worthy of
investigation only if/when the benefits of Remote Pair
Programming had been established.

A second programming task, set by the same tutor,
was used and again designed to be completed within
approximately 30 minutes. Both during and after ob-
serving the pair programming in real time, the stu-
dents were able to comment or ask questions of the
tutor pair, either directly using their microphones or
via the software’s chatbox (Figure 2). Each tutor’s
webcam was switched off after some minutes to min-
imise any issues relating to bandwidth.

CSEDU 2020 - 12th International Conference on Computer Supported Education

478



Figure 2: Live streaming of pair programming.

3.3 Phase 3

Four participants conducted Remote Pair Program-
ming themselves using Adobe Connect and Python,
with IDLE, in the same way that they had observed
the tutors pair programming. These four participants
were paired by the research team to ensure an appro-
priate match of perceived confidence and experience,
according to their self-assessment. Each event was
scheduled to suit the participants’ circumstances, e.g.
day of the week and time of the day. Pair program-
ming guidelines (Zarb and Hughes, 2015) were is-
sued to both pairs in advance. A third task, set by the
same tutor, was designed to be completed in no more
than an hour. A member of the research team advised
the participants during the initial few minutes of their
partnering and pairing online, to ensure that they were
able to use both Adobe Connect and Python, switch-
ing between driving and navigating. Once they had
established successful communication and program-
ming, they were left to complete the task themselves
without further monitoring.

4 INITIAL FINDINGS

Our initial findings are based upon the participants’
survey responses, comments from tutors, the Module
Team Chair, colleagues who also participate in and
teach about pair programming, and the observations
of the research team themselves.

4.1 Filming of Tutors

Survey responses provided insights into the relative
value of watching the pair programming video. There
were some positive comments relating to awareness-
raising: it was “a valuable exercise” and that “watch-
ing the tutors interact was educational”. However,
whilst none of the survey responses was negative,
two-thirds of the survey responses indicated that

watching the video had made no difference to partic-
ipants’ feelings about participating in pair program-
ming, which is unsurprising. In summary, the pilot
study established that the video method absorbed the
greatest time in preparation and post-filming effort but
attracted the smallest set of positive comments. For
instance, the inclusion of three different video aspect
views was judged by tutors to be important so that
participants could focus upon their preferred aspect
at any stage without the need to keep replaying the
video. However this necessitated the use of a com-
bination of cameras and screen capture facility, and
considerable subsequent editing.

4.2 Tutors Pair Programming Live

Feedback about the live streaming event was more
positive, not least in terms of developing a peer com-
munity. Two-thirds of the survey responses indicated
that watching the tutors perform pair programming
live led to increases in nine of the ten question areas.
The exception was “I feel I can take initiative and ac-
tion unprompted to achieve agreed goals.”, which at-
tracted a negative response around having to explain
actions and keep synchronised with the partner.

No students voiced any questions during the event.
For greater interaction during this approach, it seems
that additional preparation is needed to increase stu-
dents’ confidence to interrupt and question the tutor
pair whilst they are programming. As one student
noted: “As it was the first time participants were hes-
itant to speak I think, I’m sure this will be different
going forward.” The chatbox was mostly used for (ap-
parently) inconsequential comments. In reality, those
social interactions were evidently important as intro-
ductions and ice-breakers, student-to-student.

4.3 Students Pair Programming Live

Feedback from the two sets of pair programmers pro-
vided valuable information relating to the benefits and
the difficulties of live pair-programming with a peer
that they did not know. As with watching tutors pair
programming live, two-thirds of the survey responses
led to increases in nine of the ten question areas, the
exception again being the statement about taking ini-
tiative and action unprompted, which was negative
for the same reason. Positively, the experience led
to increased confidence with reflection on personal
strengths and weaknesses, e.g. “it was good to see
the strengths and weaknesses I have, mainly in how
I communicate, not so much with the programming
itself.” Other positives related to reduction in isola-
tion: “It was good to meet others studying, with the

Remote Pair Programming

479



OU you can forget there are others out there doing
this with you” and confidence with communication:
“Despite differing backgrounds and no previous com-
munication, the partnering went well”.

Turn-taking was one area of concern, however.
Evidently students needed more guidance about this
aspect of working with a remote partner:

“I felt initiative and unprompted action were
more difficult when programming with an-
other student as we had to keep our ideas in
sync with each other which meant I felt every
thought process had to be explained fully and
“confirmed” by the other person before it was
tried.”

Also evident was the need to pair students according
to an appropriate level of confidence or experience:

“I once again found that I sometimes have dif-
ficulty keeping up with the thought process of
someone else who may have already figured
out the next step in the problem before I have”

Using Adobe Connect without video (for bandwidth
reasons) led to some frustrations around the absence
of visual cues:

“I found the programming with another stu-
dent a bit challenging. This was partly down
to how, as I couldn’t see the other person, I
didn’t know when they were going to speak,
so it led to times where we would accidentally
talk over each other.”

4.4 Student Experience

The survey responses demonstrated that all of the
methods used led to some feelings of increase in
team working, problem solving confidence, sensitive
communication manner, taking initiative, and self-
assessment. Examples of explanatory free text com-
ments included:

“I think this is good experience for commu-
nicating with different audiences and seeing
where my strengths and weaknesses are with
how I communicate.”

“I definitely feel that this improved my feel-
ing of participation within my distance learn-
ing course. Sometimes it’s easy to feel as if
tutors and other students are very remote.”

Although there was very limited interaction with the
tutors during the live streaming event, the students
made positive observations, such as:

“The chat between the two tutors was very
courteous. Even when one of them made an

obvious mistake or just got lost in the partic-
ular language the error was pointed out in a
gentle way.”

Even watching the video of tutors pair programming
was judged by some to be of benefit:

“I picked up some tips from watching the
video, such as how the problem statement was
approached (one person read and the other lis-
tened) and how the problem was tackled.”

“I think that from watching the 2 tutors com-
municate and coordinate the work, it’s given
me something on which to base how I work
with someone else”

5 EXPERIENCE GAINED

There were a number of limitations in the pilot study
reported here: in particular, the sample size was very
small and the students were all volunteers and pos-
sibly predisposed to view pair programming experi-
ences positively. Nonetheless the experience of this
pilot study corresponds to various publications related
to co-located pair programming research, particularly
with respect to the challenges, e.g. as summarised
by (Hanks et al., 2011) with respect to pairing and
guiding students. We offer here some of the lessons
learned from this work that will be applied in our
forthcoming scaled-up project, in the belief that these
will be of value to educators considering embedding
pair programming into distance learning courses.

5.1 Technologies

One simple lesson learned for video capture related
to the differing frame rates of different cameras and
screen capture facility: having omitted to synchronise
these before filming, considerable effort was needed
to stitch together the various components seamlessly.

More importantly, it appears that is not essential to
use expensive commercial professional pair program-
ming tools to benefit the student experience. Adobe
Connect was adequate for students to interact, to de-
velop a sense of community, to reflect upon their own
communication skills and to develop their team work-
ing experiences. This is similar to one of the find-
ings of (Stotts et al., 2003) that effective software de-
velopment is feasible with a few simple and widely-
available tools. Nonetheless, (Edwards et al., 2010)
speculated that whilst generic collaboration software
available to universities provided a viable method
of distributed pair programming, it could cause to
frustrations for user-based and technological reasons.

CSEDU 2020 - 12th International Conference on Computer Supported Education

480



Various researchers continue in their work to develop
or investigate feature-rich collaborative tools to sup-
port pair programming at a distance, e.g. (McKinsey,
2015). (Urai et al., 2015) concluded that distributed
pair-programming systems should have functions to
enable easy communication and partner change. The
advent of MOOCs has further stimulated this area of
work, e.g. (Ghorashi and Jensen, 2016), (Ghorashi
and Jensen, 2017) and (Staubitz and Meinel, 2018).

5.2 Arranging Pairs

A number of factors are important when pairing stu-
dents to work together. Areas listed here were those
most noticeably important to our student participants.

Some students reported self-consciousness about
being sufficiently capable (“I am a very slow learner
...”; “sometimes you do get stumped”). Some asked,
unprompted, about being paired with a person at the
same level as themselves. This corresponds to early
findings of the analysis of pair programming in a
classroom environment (Williams et al., 2006), that
students are compatible with partners whom they per-
ceive of similar technical competence, and later work
e.g. (Bowman et al., 2019) describing the negative
effects of being paired with a more experienced pro-
grammer. An obvious difficulty in distance learning is
for students to identify others with similar skill levels.
Recent initiatives e.g. (Deeb et al., 2018), (Berland
et al., 2015) are investigating the use of analytics to
shape the formation of partnerships and groups.

Other obvious areas relate to the nature of dis-
tance learning itself: students may be in different time
zones, or working full-time and not able to partner
during the day, or working in the evenings or week-
ends and prefer to schedule their study at unusual
hours of the day. Unlike in a campus-based situa-
tion, there are no fixed class times to enforce pair-
ings. When arranging pairs, a further factor to con-
sider is the stated motivation of the individuals. In
the work reported here, these ranged from improv-
ing communication skills to improving programming
skills and reducing isolation. It may be that stu-
dents will particularly benefit from being paired with
similarly-motivated individuals.

A follow-up pilot study is now beginning. We
have enquired of students who have submitted con-
sent forms to participate if they had a preference to
pair with a person of the same gender, different gen-
der or if that did not matter. Interestingly, all 25 who
have responded to date stated that the gender of the
partner did not matter. This presents a challenge for
the researchers, given the findings of (Katira et al.,
2005) that pairs with different gender are less likely

to report compatibility than pairs of the same gen-
der. A related issue was identified in recent system-
atic literature review of distributed pair programming:
(da Silva Estácio and Prikladnicki, 2015) were un-
able to identify any study relating to cultural aspects
in practice or in teaching perspectives.

Performing a thematic analysis of CS1 students’
reflections on pair programming, (Celepkolu and
Boyer, 2018) found pair programming to be moti-
vating and that it contributed to social growth – but
high-achieving students were less positive and recog-
nised fewer benefits than other students. Muller and
Padberg investigated empirically what they called the
feelgood factor in pair programming: their primary
guideline was “First of all, make your pairs feel
good!” (Muller and Padberg, 2004). Our work sug-
gests that their recommendation is as important for
distance learning as it is in the classroom.

5.3 Guiding Students

Distance learning tutors are experienced users of sys-
tems such as Adobe Connect for giving online tu-
torials and individual support sessions for students.
Tutors know the difficulties of communications time-
lags, of the need to “give space” for others to speak, of
the awkwardness that results from interrupting, and of
the need to encourage interaction. This work demon-
strated that students do not have that experience –
they need to be provided with guidelines about turn-
taking and verbalising, and more practical rehearsal
time if they are to overcome the difficulty of inter-
acting with a remote partner without visual cues that
indicate when the other person is about to speak. Na-
gappan et al. recognised this early on:

“Distributed pair programmers absolutely
must be willing to speak while they work.
They must explain what they are doing as
they are doing it or the navigator quickly gets
lost. This is so essential that programmers
who are not willing to speak almost contin-
uously should probably not try to work this
way.” (Nagappan et al., 2003)

Initially, it was believed that a ten-minute re-
hearsal with the communication between partners was
sufficient for each of the students to take ownership
of the pair working without further tutor intervention.
However the feedback from students subsequently
made clear that further guidance was required. The
guidelines used in this study (Zarb and Hughes, 2015)
do not address the absence of cues in remote work-
ing; we plan to update these guidelines to accommo-
date distance learners. The first guideline identified
by (Williams et al., 2008) holds even more true for

Remote Pair Programming

481



Remote Pair Programming students: “Students need
training in pair programming in a supervised setting
to experience the mechanics of successful pairing”. It
appears that such guidelines may also be needed for
the implementation of distributed pair programming
in industry (da Silva Estácio and Prikladnicki, 2015).

5.4 Setting Appropriate Tasks

Setting an appropriate level of difficulty is important:
if the task is too easy, the tutors’ progress appears un-
naturally slow and artificial; if too challenging, stu-
dents cannot discern how decisions are taken unless
the tutors are particularly good at verbalising. One
reported benefit of the video and the live streaming
was when students witnessed the tutors hesitating and
making mistakes. Both the video and the live event
were engaging precisely because the tutors were nat-
ural and their dialogue was unscripted: the students
witnessed mistakes occurring and the recovery pro-
cess. Onlookers to those aspects of programming cer-
tainly recognised that the experience was authentic.

5.5 Additional Needs

It is essential that students with special needs are con-
sidered: pair programming should be possible for
all our students. Students might not disclose all the
factors (e.g. autism, visual impairment) that tutors
should understand when pairing people or selecting
technologies.

6 CONCLUSIONS

Pair programming means two people programming
software together. In classroom circumstances, it
brings benefits to students including greater sharing
of expertise and fewer errors. Whilst routinely used
in industry and taught in face-to-face university pro-
gramming lab classes, its use in distance learning is
less well understood. The value of successful pair
programming in a distance learning context goes be-
yond the development of programming expertise: it
may reduce any feelings of isolation resulting from
having fewer networking opportunities than campus-
based students. In this pilot study, Remote Pair
Programming was associated positively with feelings
about communication skills and team-working, which
may enhance employability. For a successful dis-
tance learning pair programming experience, educa-
tors need awareness of the standard issues that re-
searchers have published for face-to-face pair pro-
gramming (e.g. the importance of perception of abil-

ity with respect to allocation of partners) AND addi-
tional issues such as turn-taking advice, scheduling
constraints, and ensuring that relevant facilities are in
place for any additional special needs. Put simply,
planning for the human and social interaction aspects
may be more important than planning to use the most
contemporary technology. As noted in the Human-
computer interaction paper ’Distance Matters’:

“Collaborative work at a distance will be diffi-
cult to do for a long time, if not forever.” (Ol-
son and Olson, 2000)

Clearly this preliminary work needs to be repeated
at scale. Our future work includes that extended re-
search, and further investigation of the challenges of
pairing distance learning students who do not know
any other students in their class. Some participants
also will be invited to a focus group and others inter-
viewed to further probe the employability and com-
munity benefits identified and the student satisfaction.
We plan to review the original guidelines of (Williams
et al., 2008) to give recommendations and produce a
revised version appropriate to 2020 distance learning.

ACKNOWLEDGEMENTS

Our thanks are due to students and colleagues in The
OU, to Quality Enhancement Themes (Scotland) for
support of the pilot, and to The OU eSTEeM team for
supporting the follow-up project. Thanks are also due
to the anonymous reviewers who provided valuable
comments upon an earlier version of this paper.

REFERENCES

Baheti, P., Williams, L., Gehringer, E., and Stotts, D.
(2002). Exploring pair programming in distributed
object-oriented team projects. In Educator’s Work-
shop, OOPSLA, pages 4–8.

Berland, M., Davis, D., and Smith, C. P. (2015). Amoeba:
Designing for collaboration in computer science class-
rooms through live learning analytics. International
Journal of Computer-Supported Collaborative Learn-
ing, 10(4):425–447.

Bowman, N. A., Jarratt, L., Culver, K., and Segre, A. M.
(2019). How prior programming experience af-
fects students’ pair programming experiences and out-
comes. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science
Education, pages 170–175.

Celepkolu, M. and Boyer, K. E. (2018). Thematic analysis
of students’ reflections on pair programming in cs1.
In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, pages 771–776.

CSEDU 2020 - 12th International Conference on Computer Supported Education

482



Chi, M. T., De Leeuw, N., Chiu, M.-H., and LaVancher, C.
(1994). Eliciting self-explanations improves under-
standing. Cognitive science, 18(3):439–477.

da Silva Estácio, B. J. and Prikladnicki, R. (2015). Dis-
tributed pair programming: A systematic literature re-
view. Information and Software Technology, 63:1–10.

Deeb, F. A., DiLillo, A., and Hickey, T. J. (2018). Using
fine grained programming error data to enhance cs1
pedagogy. In CSEDU (1), pages 28–37.

Edwards, R. L., Stewart, J. K., and Ferati, M. (2010). As-
sessing the effectiveness of distributed pair program-
ming for an online informatics curriculum. ACM in-
roads, 1(1):48–54.

Ghorashi, S. and Jensen, C. (2016). Supporting learners
in online courses through pair programming and live
coding. In 2016 IEEE 40th Annual Computer Soft-
ware and Applications Conference (COMPSAC), vol-
ume 1, pages 738–747. IEEE.

Ghorashi, S. and Jensen, C. (2017). Integrating collabora-
tive and live coding for distance education. Computer,
50(5):27–35.

Hanks, B. (2005). Student performance in cs1 with
distributed pair programming. SIGCSE Bull.,
37(3):316–320.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., and
Zander, C. (2011). Pair programming in education:
A literature review. Computer Science Education,
21(2):135–173.

Hanks, B., McDowell, C., Draper, D., and Krnjajic, M.
(2004). Program quality with pair programming in
cs1. In Proceedings of the 9th Annual SIGCSE Con-
ference on Innovation and Technology in Computer
Science Education, ITiCSE ’04, page 176–180, New
York, NY, USA. ACM.

Jackson, D. and Chapman, E. (2012). Non-technical com-
petencies in undergraduate business degree programs:
Australian and uk perspectives. Studies in Higher Ed-
ucation, 37(5):541–567.

Katira, N., Williams, L., and Osborne, J. (2005). Towards
increasing the compatibility of student pair program-
mers. In Proceedings. 27th International Conference
on Software Engineering, 2005. ICSE 2005., pages
625–626. IEEE.

McKinsey, J. (2015). Remote pair programming in a vi-
sual programming language. Technical Report No.
UCB/EECS-2015-139.

McKinsey, J., Joseph, S., Fox, A., and Garcia, D. D. (2014).
Remote pair programming (rpp) in massively open on-
line courses (moocs). In Proceedings of the 2014 con-
ference on Innovation & technology in computer sci-
ence education, pages 340–340.

Muller, M. M. and Padberg, F. (2004). An empirical study
about the feelgood factor in pair programming. In 10th
International Symposium on Software Metrics, 2004.
Proceedings., pages 151–158. IEEE.

Nagappan, N., Baheti, P., Williams, L. A., Gehringer, E. F.,
and Stotts, D. (2003). Virtual collaboration through
distributed pair programming. Technical report, North
Carolina State University. Dept. of Computer Science.

Olson, G. M. and Olson, J. S. (2000). Distance matters.
Human–computer interaction, 15(2-3):139–178.

Rovai, A. P. (2002). Development of an instrument to mea-
sure classroom community. The Internet and higher
education, 5(3):197–211.

Smith, M. O., Giugliano, A., and DeOrio, A. (2017). Long
term effects of pair programming. IEEE Transactions
on Education, 61(3):187–194.

Staubitz, T. and Meinel, C. (2018). Collaborative learning
in moocs approaches and experiments. In 2018 IEEE
Frontiers in Education Conference (FIE), pages 1–9.
IEEE.

Stotts, D., Williams, L., Nagappan, N., Baheti, P., Jen, D.,
and Jackson, A. (2003). Virtual teaming: Experi-
ments and experiences with distributed pair program-
ming. In Conference on Extreme Programming and
Agile Methods, pages 129–141. Springer.

THE (2020). Times higher education world university rank-
ings https://www.timeshighereducation.com/world-
university-rankings/open-university.

Urai, T., Umezawa, T., and Osawa, N. (2015). Enhance-
ments to support functions of distributed pair pro-
gramming based on action analysis. In Proceedings
of the 2015 ACM Conference on Innovation and Tech-
nology in Computer Science Education, pages 177–
182.

Williams, L., Layman, L., Osborne, J., and Katira, N.
(2006). Examining the compatibility of student pair
programmers. In AGILE 2006 (AGILE’06), pages 10–
pp. IEEE.

Williams, L., McCrickard, D. S., Layman, L., and Hussein,
K. (2008). Eleven guidelines for implementing pair
programming in the classroom. In Agile 2008 Confer-
ence, pages 445–452. IEEE.

Williams, L. and Upchurch, R. L. (2001). In sup-
port of student pair-programming. SIGCSE Bull.,
33(1):327–331.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., and Miller, C.
(2002). In support of pair programming in the intro-
ductory computer science course. Computer Science
Education, 12(3):197–212.

Williams, L. A. and Kessler, R. R. (2001). Experiments with
industry’s “pair-programming” model in the computer
science classroom. Computer Science Education,
11(1):7–20.

Wood, K., Parsons, D., Gasson, J., and Haden, P. (2013).
It’s never too early: pair programming in cs1. In Pro-
ceedings of the Fifteenth Australasian Computing Ed-
ucation Conference-Volume 136, pages 13–21.

Zacharis, N. Z. (2011). Measuring the effects of virtual pair
programming in an introductory programming java
course. IEEE Transactions on Education, 54(1):168–
170.

Zarb, M. and Hughes, J. (2015). Breaking the commu-
nication barrier: guidelines to aid communication
within pair programming. Computer science educa-
tion, 25(2):120–151.

Remote Pair Programming

483


