
IRENE: Interference and High Availability Aware Microservice-based
Applications Placement for Edge Computing

Paulo Souza1 a, João Nascimento1 b, Conrado Boeira1 c, Ângelo Vieira1 d, Felipe Rubin1 e,
Rômulo Reis1 f, Fábio Rossi2 g and Tiago Ferreto1 h

1Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
2Federal Institute of Education, Science and Technology Farroupilha, Alegrete, Brazil

Keywords: Edge Computing, Microservices, Genetic Algorithm, Applications Placement.

Abstract: The adoption of microservice-based applications in Edge Computing is increasing, as a result of the improved
maintainability and scalability delivered by these highly-distributed and decoupled applications. On the other
hand, Edge Computing operators must be aware of availability and resource contention issues when placing
microservices on the edge infrastructure to avoid applications’ performance degradation. In this paper, we
present IRENE, a genetic algorithm designed to improve the performance of microservice-based applications
in Edge Computing by preventing performance degradation caused by resource contention and increasing the
application’s availability as a means for avoiding SLA violations. Experiments were carried, and the results
showed IRENE effectiveness over different existing strategies in different scenarios. In future investigations,
we intend to extend IRENE’s interference awareness to the network level.

1 INTRODUCTION

Edge Computing is gaining attention by delivering
processing power to mobile applications with reduced
latency compared to cloud solutions (Satyanarayanan,
2017). For this goal, small-sized data centers, also re-
ferred to as cloudlets, are positioned at strategic po-
sitions to provide fast feedback while avoiding core
network saturation. While the proximity between
cloudlets and end-users allows for reduced response
times, edge infrastructure operators still have resource
management concerns regarding the placement of ap-
plications. These concerns are even more challeng-
ing for applications built upon the microservices ar-
chitecture, which are designed with a particular set of
technologies to get the best-of-breed out of modern
computing infrastructure.

a https://orcid.org/0000-0003-4945-3329
b https://orcid.org/0000-0002-2261-2791
c https://orcid.org/0000-0002-6519-9001
d https://orcid.org/0000-0002-1806-7241
e https://orcid.org/0000-0003-1612-078X
f https://orcid.org/0000-0001-9949-3797
g https://orcid.org/0000-0002-2450-1024
h https://orcid.org/0000-0001-8485-529X

Microservice-Based applications usually priori-
tize smaller footprint, reduced storage requirements,
and the faster boot time of lightweight virtualization
over reinforced isolation provided by traditional vir-
tual machines (Gannon et al., 2017). As a conse-
quence, the co-location of multiple microservices into
the same server may result in performance-degrading
events due to resource contention.

Unlike most of cloud data centers, cloudlets may
count on heterogeneous servers to host applications,
which may provide different performance and avail-
ability assurances. Therefore, choosing host servers
for accomodating microservices also involves con-
sidering applications’ availability requirements as a
means to avoid Service Level Agreements (SLAs) vi-
olations.

Several studies have been focusing on optimiz-
ing the placement of applications (Wang et al., 2012;
Romero and Delimitrou, 2018). Whereas some of
them provided solutions for ensuring high availabil-
ity, others have focused on avoiding performance in-
terference. However, providing both minimal perfor-
mance interference and high availability for applica-
tions’ placement remains an open problem.

Therefore, in this paper, we present IRENE, a ge-
netic algorithm designed for ensuring minimal inter-

490
Souza, P., Nascimento, J., Boeira, C., Vieira, Â., Rubin, F., Reis, R., Rossi, F. and Ferreto, T.
IRENE: Interference and High Availability Aware Microservice-based Applications Placement for Edge Computing.
DOI: 10.5220/0009581604900497
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 490-497
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ference to avoid performance degradation and high
availability as a means for minimizing SLA violations
during the placement of microservice-based applica-
tions. We performed a set of experiments that showed
that IRENE could overcome several existing strate-
gies.

The remaining of this paper is organized as fol-
lows. In Section 2, we discuss the emergence of
Edge Computing, the popularization of microservice-
based applications, and challenges faced by edge in-
frastructure operators during the placement of these
applications, especially regarding performance inter-
ference and high availability. We also complement the
background section with an overview of current in-
vestigations in Section 3, which also discusses the re-
search gap tackled by our study. After describing the
problem we aim to solve in Section 4, we introduce
IRENE, our proposed genetic algorithm. Finally, Sec-
tions 6 and 7 are reserved for the evaluation of IRENE
versus three baseline heuristic placement strategies,
as well as for final remarks and directions for future
investigations.

2 BACKGROUND

The increasing amount of sensors integrated on mul-
tiple devices allowed the rise of various Internet of
Things (IoT) applications, such as Smart Homes and
Smart Cities (Shi et al., 2016). Due to the intrin-
sic limitation of embedded devices used in IoT ap-
plications in terms of resources, it becomes infeasible
to perform some computational tasks locally (Satya-
narayanan et al., 2009). A solution would be to send
the data collected to the cloud. Nonetheless, trans-
porting data to the cloud introduces new challenges,
such as network latency and security. There are also
connectivity restrictions that make the task of send-
ing the data from IoT and mobile applications to the
cloud even more challenging.

The concept of Edge Computing was proposed
as a solution to this problem. Edge Computing
performs computations at the edge of the network,
closer to the devices that are producing/consuming
the data (Shi et al., 2016). It results in a reduction
of network latency, as the data does not need to travel
long distances to reach the cloud. Satyanarayanan et
al. (Satyanarayanan et al., 2009) proposed the concept
of cloudlets as simpler and smaller data centers that
can be responsible for the computation in the Edge
Computing.

Microservices architecture is a recommendation
for getting the maximum benefits from the Cloud
Computing (Gannon et al., 2017), and this recom-

mendation also fits well for Edge Computing. The
microservices architecture proposes an opposing view
to the monolithic architecture by segmenting the dif-
ferent application functionalities into multiple com-
ponents. Each microservice can be managed indepen-
dently from others and has limited responsibilities and
dependencies (Gannon et al., 2017). They can also be
accommodated in cloudlets within the Edge Comput-
ing paradigm as a means for allowing improved use of
resources. Two of the main factors that edge infras-
tructure operators must keep in mind during the de-
cision of where to deploy the microservices are high
availability and interference.

When deploying an application on cloudlets, we
want the system to be highly available; that means,
to keep working properly, even when one or more
servers are not responding. Depending on how avail-
able an application is, the operator can provide Ser-
vice Level Agreements (SLAs) to the users. These
are explicit or implicit contracts that define service
levels promised in the form of a metric of interest like
availability, for example. SLAs also provide specific
remedies in case of any unexpected event.

Another factor that needs to be considered when
deciding the applications’ placement is how differ-
ent microservices in the same host interfere with
each other. At this point, understanding the core
technologies such as virtualization, which responsi-
ble for hosting applications inside servers, is nec-
essary. Virtualization allows microservices to ob-
tain access to shared resources from the same host
while still keeping a certain degree of isolation during
their execution. There are two types of virtualization:
hypervisor-based and container-based.

In the hypervisor-based virtualization, each appli-
cation has its own virtual machine with a guest operat-
ing system. The container-based virtualization lever-
ages OS-level features to provide isolation among ap-
plications that share the host kernel as a means for
improved performance (Soltesz et al., 2007). The
container-based virtualization has the advantage of
being lightweight (Gannon et al., 2017), which makes
it more suitable for Edge Computing, where hosts
present resource constraints. However, containers
have the downside that they grant less isolation for
the applications, compared to hypervisor-based virtu-
alization.

Applications tend to require more intensively a
specific computational resource (e.g., CPU, memory,
etc.) (Qiao et al., 2017). Microservices on the same
host using the same resources may end up degrading
each other performance. In an ideal scenario, where
applications could run on dedicated servers, there
would be no interference. However, this scenario is

IRENE: Interference and High Availability Aware Microservice-based Applications Placement for Edge Computing

491

usually not real due to the virtualization, which allows
a server to share its computational resources among
several microservices, which must compete for the
shared resources. This competition can be avoided
during the choice of where to accommodate applica-
tions. A remedy to avoid performance interference
would be considering the placement of microservices
with non-conflicting resource bounds (Qiao et al.,
2017).

3 RELATED WORK

3.1 High Availability

Bin et al. (Bin et al., 2011) propose a heuristic algo-
rithm that monitors the infrastructure to detect failures
beforehand and tries to reallocate applications from
hosts before they fail, thus enhancing applications’
availability.

Zhu and Huang (Zhu and Huang, 2017) formulate
a stochastic model for adaptive placement of Edge ap-
plications to achieve lower costs, while still consider-
ing high availability. As the problem scales, to cir-
cumvent the complexity of computations, a heuristic
algorithm is also presented for real-world scenarios.

Wang et al. (Wang et al., 2012) propose a high
availability scheme for virtual machines in cloud data
centers. The authors take advantage of both verti-
cal and horizontal scalability to improve applications’
availability. To this end, the number of instances per
application is increased, enabling their placement in
other hosts, thus improving availability.

3.2 Performance Interference

Kim et al. (Kim et al., 2018) propose a manage-
ment mechanism to reduce the memory interference
latency. The proposed approach differentiates the ex-
ecution of tasks by separating them into critical and
normal control groups. When a critical task is run-
ning, a prediction about excessive memory consump-
tion is made. If deemed necessary, the CPUFreq gov-
ernor is activated to throttle memory requests made
by applications of the normal control group.

Ren et al. (Ren et al., 2019) present a machine
learning-based prediction framework that enables the
classification of each task as repetitive or new. In con-
trast to new tasks, repetitive ones can provide histor-
ical information regarding their behavior, which can
be used to improve their scheduling to achieve perfor-
mance gains.

Romero and Delimitrou (Romero and Delimitrou,
2018) present a way to optimize performance and ef-

ficiency in systems with intra-server and inter-server
heterogeneity, with a solution called Mage. Mage
continuously monitors the performance of active ap-
plications and minimizes resource contention in cloud
systems. Using data mining, it explores the space
of application placements and determines those that
minimize interference between co-located applica-
tions.

3.3 Our Contributions

Several studies have been focused on optimiz-
ing availability or performance interference require-
ments. However, none of them considered both objec-
tives during the placement of applications in edge sce-
narios. Therefore, in this paper, we propose IRENE,
a genetic algorithm for improving the placement of
microservice-based applications regarding both high
availability requirements as means for minimizing the
number of SLA violations and interference that leads
to superior applications’ performance.

4 PROBLEM FORMULATION

In this study, we consider an Edge Computing sce-
nario where applications containing one or more mi-
croservices need to be placed inside physical servers
on a cloudlet. Our goal is to design a satisfactory
placement for applications considering a twofold ob-
jective:

1. Minimizing performance interference by avoid-
ing the co-location of microservices with similar
resource bounds (e.g., CPU-bound) in the same
host.

2. Minimizing the number of SLA violations by dis-
tributing applications’ microservices on hosts that
satisfy its availability requirements.

Table 1 presents the list of terminology adopted in
this study. We demonstrate both the capacity of
physical servers and the demand of microservices as
a resource vector containing: (i) CPU (number of
cores); (ii) memory (Gigabytes); and (iii) storage (Gi-
gabytes). The set of g physical servers is denoted by
P = {P1,P2, ...,Pg}. Each physical server Pi provides
an availability denoted by α(Pi) and has a binary vari-
able u(Pi), which represents whether the server is be-
ing used or not (0 = inactive, 1 = active).

We define the set of h applications as A =
{A1,A2, ...,Ah}, where each microservice A j ∈ A has
a placement requirement β(A j) that represents the
minimum availability ratio expected by A j. In this
scenario, each application A j ∈ A is composed of

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

492

Table 1: List of terminology used in this paper.
Notation Description
P Set of g servers within the cloudlet
A Set of h applications
M Set of p microservices to be hosted

α(Pi)
Variable that represents the availability level
assured by a server Pi

β(A j)
Variable that represents the minimum availability
ratio expected by an application A j

σ(Pi)
Variable that represents the number of colliding
microservices inside a server Pi

u(Pi)
Binary variable that receives 1 if a server Pi
is active or or receives 0 otherwise

xi,k
Binary variable that receives 1 if a server Pi
hosts a microservice k, or receives 0 otherwise

one or more microservices. The set of all p mi-
croservices within the cloudlet is defined as M =
{M1,M2, ...,Mp}.

Each microservice may be distributed across the
hardware components differently. For simplicity
reasons, we consider microservices as CPU-bound,
memory-bound, or IO-bound. We also define which
microservices belong to which applications with the
vk, j variable, that receives 1 if a microservice Mk is
part of an application A j, and receives 0 otherwise.

5 PROPOSAL

The problem we aim to solve in this work can be
considered a variant of the vector bin-packing prob-
lem. It can be briefly formulated as packing n vec-
tors into k sets (or bins) without surpassing their limit.
This problem is acknowledged to be an NP-hard prob-
lem (Zhang et al., 2010), and hence, no optimal so-
lution in polynomial time is known. Therefore, this
work proposes a solution that uses a Genetic Algo-
rithm, as it offers a near-optimal solution in con-
strained time.

Genetic Algorithms (GA) are a class of algorithms
that are based on Darwin’s ideas of natural selection
and evolution. It encodes possible solutions for a
problem into the chromosome-like structure and then
applies recombination methods. The idea is that a GA
starts with a population of potential solutions charac-
terized as individuals. Then, it evaluates each one of
them accordingly to a defined set of mathematically
expressed goals, which ones are better and worse so-
lutions. The collection of mathematical equations
used to evaluate solutions is called fitness function.
The individuals deemed ”fitter” have attributed to
them a higher chance of ”reproducing”, as in passing
some of its characteristics to a new individual (Whit-
ley, 1994). Therefore, GA can reach a satisfactory
solution by repeating this process multiple times.

5.1 Chromosome Representation

In the genetic algorithm presented in this work, the
genes of an individual represent which server will
host each microservice. In other words, if bit i has
value x, it means the microservice with id i will be
hosted in server number x. Therefore, each individual
represents a possible placement configuration.

5.2 Fitness Function

IRENE assesses solutions based on the trade-off
between cloudlet’s consolidation rate, applications’
availability, and microservices interference. To
achieve this goal, IRENE utilizes the following fitness
function to evaluate each solution z on the population:

f(z) ← (c + s + h)2 (1)
The c variable represents the colliding microservices
ratio resulted from the solution. To calculate this ra-
tio, IRENE applies a ”rule of three” equation to mea-
sure the representativeness of the number of colliding
microservices gathered by the σ function concerning
the number of p microservices within the cloudlet.
This process is depicted next:

c ← 100 −

((
∑
P
i σ(pi)

)
×100

p

)
(2)

The s variable gets the number of applications whose
SLA requirements were violated with the proposed
placement. This process involves checking the ϑ

function, that verifies if the SLA of an application
was violated. To accomplish this, the ϑ function com-
pares the guaranteed availability ratio provided by
each server through the α function against the appli-
cation’s availability requirements:

s ← 100 −

((
∑
A
i ϑ(ai)

)
×100

h

)
(3)

The h represents the cloudlet’s consolidation rate.
This variable utilizes a ”rule of three” equation to
calculate how many servers stay inactive within the
cloudlet after the suggested placement is applied.
This process is described in the following equation:

h ← 100 −

((
∑
P
i u(pi)

)
×100

g

)
(4)

To evaluate the generated solutions, IRENE sums
c, s, and h variables, and the result of this sum is
raised to the power of 2. We perform this exponen-
tiation to aid the genetic algorithm to understand that
even a slightly better solution may refer to significant
progress in overall.

IRENE: Interference and High Availability Aware Microservice-based Applications Placement for Edge Computing

493

5.3 Genetic Operators

In this section, we present IRENE’s genetic operators.
We used the Roulette Wheel Selection method as the
selection algorithm for our approach. In this proce-
dure, the probability of an individual being chosen as
a parent is directly proportional to its fitness score.
The highest the fitness rate, the highest the likelihood
of a chromosome being selected for the list of parents
used in the selection phase (Sivaraj and Ravichandran,
2011).

The next step, after the parents’ selection, the ge-
netic algorithm framework proceeds to the crossover
operation. This stage consists of generating the off-
spring by combining parts of the genes from the se-
lected parents. There are multiple methods to per-
form the crossover operation, but the one chosen was
a uniform crossover. The uniform crossover consists
of randomly choosing from which parent the genes
are copied from (Umbarkar and Sheth, 2015). During
this step, a random mutation is also performed. Any
offspring has a specific probability of being mutated
and having one of its bits randomly chosen to be mu-
tated. This means that when a solution is mutated, one
of the microservices is assigned to a random cloudlet
server.

6 NUMERICAL EVALUATION

6.1 Workloads Description

For the evaluation, we consider a data set with a fixed
number of 18 applications, grouped according to their
SLA requirements and number of microservices (also
called as application size for brevity purposes).

Regarding the SLA requirements, we divide appli-
cations in three groups according to the minimum ac-
ceptable availability rate: (a) Low SLA Requirement:
80%; (b) Medium SLA Requirement: 85%; and (c)
High SLA Requirement: 90%. Regarding the number
of microservices, we also divide applications in three
groups: (i) Small: 3 microservices; (ii) Medium: 6
microservices; and (iii) Large: 9 microservices.

Given the heterogeneous nature of edge environ-
ments, where a multitude of applications with differ-
ent behaviors must be allocated, in this study, we con-
centrate on assessing the implications of having to ac-
commodate applications with different sizes (Table 4
and SLA requirements (Table 5). To aid the analysis,
we also consider a baseline scenario (Table 6) wherein
applications are divided equally regarding number of
microservices and SLA requirements.

During the evaluation, we considered microservices
that may have different behaviors, based on the re-
source bounds (e.g., CPU-Bound, Memory-Bound,
and IO-Bound). The resource demands of microser-
vices may also be different, as can be seen in Table 2.

Table 2: Different microservice resource demands consid-
ered during the evaluation.

Size CPU (# of Cores) Memory (GB) Disk (GB)
Small 1 1 8

Medium 2 2 16
Large 4 4 32

We consider a fixed number of 60 homogeneous edge
servers with the following configuration: CPU: 16
cores, RAM: 16GB, Disk: 128GB. The servers are di-
vided according to different levels of availability they
can assure, as described in Table 3.

Table 3: Availability levels of edge servers.
Type Availability Number of servers
Low 90% 30

Medium 95% 20
High 99.9% 10

We compare our proposal against the following algo-
rithms:

• Best-Fit (BF): Prioritizes server consolidation,
reducing the total number of servers used to host
applications.

• Worst-Fit (WF): Focuses on balancing work-
loads between servers.

• IntHA: focuses on accommodating applications
in a minimal number of servers given interfer-
ence and high availability goals. To accomplish
this, IntHA takes into account both the assured
availability (depicted by α(Pi)) and the number of
colliding microservices (represented by σ(Pi)) for
each host. Algorithm 1 shows the pseudocode for
this heuristic.

All solutions considered during the evaluation were
developed and executed using the Ruby language
v2.7.0p0 (2019-12-25 revision 647ee6f091). For the
execution of the solutions, we used a Linux host ma-
chine with specifications contained in Table 7. Dur-
ing the experiments, we configured IRENE to look
for placement solutions during 25000 generations us-
ing a population of 500 chromosomes, with mutation
rate set to 35% and 100 parents being used for mating.
All experimentation assets can be found at our GitHub
repository (https://github.com/paulosevero/IRENE).

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

494

Table 4: Application size scenarios.

Small-Size Applications Medium-Size Applications Large-Size Applications

Scenario 1

Low SLA Requirement 1 1 4
Medium SLA Requirement 1 1 4

High SLA Requirement 1 1 4
TOTAL 3 3 12

Scenario 2

Low SLA Requirement 4 1 1
Medium SLA Requirement 4 1 1

High SLA Requirement 4 1 1
TOTAL 12 3 3

Table 5: SLA requirements scenarios.

Small-Size Applications Medium-Size Applications Large-Size Applications

Scenario 1

Low SLA Requirement 1 1 1
Medium SLA Requirement 1 1 1

High SLA Requirement 4 4 4
TOTAL 6 6 6

Scenario 2

Low SLA Requirement 4 4 4
Medium SLA Requirement 1 1 1

High SLA Requirement 1 1 1
TOTAL 6 6 6

Table 6: Baseline scenario.

Small-Size Applications Medium-Size Applications Large-Size Applications

Baseline

Low SLA Requirement 2 2 2
Medium SLA Requirement 2 2 2

High SLA Requirement 2 2 2
TOTAL 6 6 6

Algorithm 1: IntHA heuristic.

1 A←{A1,A2, ...,Ah}
2 P←{P1,P2, ...,Pg}
3 M←{M1,M2, ...,Mp}
4 foreach application A ∈ A do
5 foreach microservice M ∈M do
6 if M ∈ Ams then
7 µ← null
8 foreach server P ∈ P do
9 if P has cap. to host M then

10 s← Pusage+α(P)
1 + σ(P)

11 end
12 if s≥ µscore then
13 µ← P
14 end
15 end
16 µms← µms∪M
17 end
18 end
19 end

6.2 Results and Analysis

6.2.1 Application Size

The goal of this analysis is to understand how much
the average size of applications impact the evaluated
solutions behavior regarding interference, SLA viola-
tions, and consolidation rate. The results of this anal-
ysis are depicted in Figure 1.

Table 7: Testbed specifications.
Component Specification

Processor Intel(R) Core(TM) i7-4790 4(8) @ 3.60GHz
Memory 16GB DDR3 @ 1333MHz
Storage 1TB HDD SATA @ 7200RPM

Operation System elementary OS 5.1.2 Hera

Achieving high levels of availability becomes harder
when applications have more microservices. There-
fore, facing a scenario with larger applications leads
to more SLA violations. Consolidating applications
inside hosts that provide higher availability guaran-
tees avoid SLA violations, but with the cost of caus-
ing the collision of more microservices. This ex-
plains why the Best-Fit approach surpasses Worst-Fit
and IntHA when handling SLA violations, but loses
in terms of interference. IRENE, on the other hand,
follows a different path for avoiding SLA violations
without hurting too much the other metrics. It fo-
cuses on not wasting the resources of servers that
provide higher availability with applications that have
low SLA requirements.

In the evaluated scenarios, we can notice that there
is a trade-off between delivering high levels of avail-
ability and avoiding collision of microservices with
similar resource bounds. If we focus on providing the
highest availability possible for all applications, we
will be forced to consolidate all the workload inside
a limited number of servers that offer higher guaran-
tees. However, this decision would lead to several mi-
croservices with similar bound being hosted by the
same server, which raises concerns with interference.

As a consequence, considering just one of these

IRENE: Interference and High Availability Aware Microservice-based Applications Placement for Edge Computing

495

6

1 4

9

0

8

1 6

1 3

4
2

1 1

4

0

1 0 5

3 3

0

3 9

1 2 9

5 9

0

6 4
7 5

1 2
0 4

B e s t - F i t W o r s t - F i t I n t H A I R E N E B e s t - F i t W o r s t - F i t I n t H A I R E N E B e s t - F i t W o r s t - F i t I n t H A I R E N E

B a s e l i n e A p p l i c a t i o n S i z e S c e n a r i o 1 A p p l i c a t i o n S i z e S c e n a r i o 2

0

3

6

9

1 2

1 5

1 8

 S L A V i o l a t i o n s C o l l i d i n g M i c r o s e r v i c e s

S t r a t e g y

SL
A V

iol
ati

on
s

0

5 0

1 0 0

1 5 0

 Co
llid

ing
 M

icr
os

erv
ice

s

Figure 1: Heuristic results in edge scenarios with variable application sizes.

6

1 4

9

0

6

1 5

1 1

1

5

1 3

8

0

1 0 5

3 3

0

3 9

1 0 5

3 3

0

5 5

1 0 5

3 3

0

3 2

B e s t - F i t W o r s t - F i t I n t H A I R E N E B e s t - F i t W o r s t - F i t I n t H A I R E N E B e s t - F i t W o r s t - F i t I n t H A I R E N E

B a s e l i n e S L A S c e n a r i o 1 S L A S c e n a r i o 2

0

5

1 0

1 5

 S L A V i o l a t i o n s C o l l i d i n g M i c r o s e r v i c e s

S t r a t e g y

SL
A V

iol
ati

on
s

0

5 0

1 0 0

1 5 0

 Co
llid

ing
 M

icr
os

erv
ice

s

Figure 2: Heuristic results in edge scenarios with variable application SLA requirements.

two metrics may result in placements that hurt the
other. For example, Best-Fit and Worst-Fit only take
into account the number of hosts used for accommo-
dating applications. Best-Fit tries to consolidate ap-
plications the most and ends up by causing high in-
terference levels. On the other hand, Worst-Fit that
tries to balance the workload the most ends up by pro-
viding poor availability ratios which result in several
SLA violations.

Bearing in mind this trade-off, IRENE chooses to
sacrifice the consolidation rate a little to achieve more
significant gains regarding interference and SLA vio-
lations. Compared to Best-Fit, it sacrifices the consol-
idation rate in 16% for the sake of reducing the num-
ber of colliding microservices in 45.74% and mini-
mizing the SLA violations by half.

6.2.2 SLA Requirements

This analysis aims at examining the implications of
decisions made by placement strategies regarding in-
terference, consolidation rate, and SLA violations in
edge scenarios containing applications with variable
SLA requirements. The results of this analysis is de-
picted in Figure 2.

When most of applications have high availability
requirements, placement strategies may have to stack
as many microservices as possible into servers that

provide higher availability in order to avoid SLA vio-
lations. As a consequence, Best-Fit suits well in this
scenario, being able to achieve the second-best re-
sult regarding SLA violation while utilizing only 16
servers. However, due to the order of placement of
applications being crescent in availability need, the
Best-Fit heuristic guarantees a higher SLA for the low
availability applications and a lower one for the appli-
cations that demand a higher availability.

In contrast, IRENE is able to minimize the
percentage of applications with SLA violations in
27.77% compared to Best-Fit in the first scenario.
Furthermore, IRENE manages to have 0 SLA viola-
tions in scenario 2. However, this gain is achieved at
the cost of reducing the consolidation rate in 16.66%
and 20.0% for scenarios 1 and 2 respectively.

Another aspect where IRENE differ from Best-
Fit is the SLA guarantees for each type of applica-
tions. Our algorithm ensures higher SLAs for applica-
tions that need higher availability and lower SLAs for
the ones with lower availability needs. This decision
of stacking as many microservices from applications
with high SLA requirements as possible into the sub-
set of servers that provide higher availability guaran-
tees also allows IRENE to accommodate, in scenario
1, all microservices in only 26 servers, 2 less than in
the baseline scenario. Nonetheless, it also generates

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

496

an increase of 14.81% on the number of co-located
microservices with similar bound compared to the re-
sult it achieved in the baseline scenario.

7 CONCLUSIONS

Edge Computing is gaining significant popularity
with the idea of using small-sized data centers (often
called as cloudlets) to bring data processing closer to
end-users. Even though cloudlets provide faster re-
sponse time, performance-degrading events such as
resource contention may affect applications’ perfor-
mance and, consequently, negatively influence the
end-user experience. This performance interference
can be even more dangerous considering an existing
trend in modern application development of prioritiz-
ing flexibility provided by microservices running on
containers over the improved isolation offered by the
classical approach that uses virtual machines. On sce-
narios such as those, high availability requirements
present in SLAs also come into the scene. When plac-
ing all microservices of a given application on a single
host, it becomes a single point of failure.

Previous investigations proposed solutions for
high availability issues or performance interference
demands over cloud-based applications. However,
none of them focused on providing a solution for
both objectives in edge scenarios. Therefore, in this
paper, we present IRENE, a genetic algorithm ap-
proach designed to acquire the best of breed out of
edge servers regarding high availability (as means
for avoiding SLA violation) and performance inter-
ference (to achieve superior application performance)
during the placement of microservice-based applica-
tions. We validated IRENE through a set of experi-
ments, and the results showed that it could overcome
several existing approaches with minimal overhead.
As future work, we intend to minimize performance
interference issues at the network level by reducing
packets collision and network saturation.

ACKNOWLEDGEMENTS

This work was supported by the PDTI Program,
funded by Dell Computadores do Brasil Ltda (Law
8.248 / 91).

REFERENCES

Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E. K.,
Moatti, Y., and Lorenz, D. H. (2011). Guaranteeing

high availability goals for virtual machine placement.
In 2011 31st International Conference on Distributed
Computing Systems, pages 700–709. IEEE.

Gannon, D., Barga, R., and Sundaresan, N. (2017). Cloud-
native applications. IEEE Cloud Computing, 4(5):16–
21.

Kim, J., Shin, P., Noh, S., Ham, D., and Hong, S.
(2018). Reducing memory interference latency of
safety-critical applications via memory request throt-
tling and linux cgroup. In 2018 31st IEEE Inter-
national System-on-Chip Conference (SOCC), pages
215–220. IEEE.

Qiao, S., Zhang, B., and Liu, W. (2017). Application clas-
sification based on preference for resource require-
ments in virtualization environment. In 2017 18th
International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT),
pages 176–182. IEEE.

Ren, S., He, L., Li, J., Chen, Z., Jiang, P., and Li, C.-
T. (2019). Contention-aware prediction for perfor-
mance impact of task co-running in multicore com-
puters. Wireless Networks, pages 1–8.

Romero, F. and Delimitrou, C. (2018). Mage: Online
interference-aware scheduling in multi-scale hetero-
geneous systems. arXiv preprint arXiv:1804.06462.

Satyanarayanan, M. (2017). The emergence of edge com-
puting. Computer, 50(1):30–39.

Satyanarayanan, M., Bahl, V., Caceres, R., and Davies, N.
(2009). The case for vm-based cloudlets in mobile
computing. IEEE pervasive Computing.

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5):637–646.

Sivaraj, R. and Ravichandran, T. (2011). A review of selec-
tion methods in genetic algorithm. International jour-
nal of engineering science and technology, 3(5):3792–
3797.

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and
Peterson, L. (2007). Container-based operating sys-
tem virtualization: a scalable, high-performance al-
ternative to hypervisors. In ACM SIGOPS Operating
Systems Review, volume 41, pages 275–287. ACM.

Umbarkar, A. and Sheth, P. (2015). Crossover operators in
genetic algorithms: a review. ICTACT journal on soft
computing, 6(1).

Wang, W., Chen, H., and Chen, X. (2012). An availability-
aware virtual machine placement approach for dy-
namic scaling of cloud applications. In 2012 9th Inter-
national Conference on Ubiquitous Intelligence and
Computing and 9th International Conference on Auto-
nomic and Trusted Computing, pages 509–516. IEEE.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics
and computing, 4(2):65–85.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges. Jour-
nal of internet services and applications, 1(1):7–18.

Zhu, H. and Huang, C. (2017). Availability-aware mo-
bile edge application placement in 5g networks. In
GLOBECOM 2017-2017 IEEE Global Communica-
tions Conference, pages 1–6. IEEE.

IRENE: Interference and High Availability Aware Microservice-based Applications Placement for Edge Computing

497

