
ISABEL: Infrastructure-Agnostic Benchmark Framework for
Cloud-Native Platforms

Paulo Souza a, Felipe Rubin b, João Nascimento c, Conrado Boeira d, Ângelo Vieira e,
Rômulo Reis f and Tiago Ferreto g

School of Technology, Pontifical Catholic University of Rio Grande do Sul,
Ipiranga Avenue, 6681 - Building 32, Porto Alegre, Brazil

Keywords: Cloud Computing, Cloud-Native Platforms, Cloud Services Evaluation, Benchmark Suite.

Abstract: The popularity of Cloud Computing has contributed to the growth of new business models, which have
changed how companies develop and distribute their software. The reoccurring use of cloud resources called
for a more modern and Cloud-Native approach in contrast to traditional monolithic architecture. While this
approach has introduced better portability and use of resources, the abstraction of the infrastructure beneath it
incited doubts about its reliability. Through the use of benchmarks, cloud providers began to provide quality
assurances for their users in the form of service-level agreements (SLA). Although benchmarking allowed
such assurances to be defined, the variety of offered services, each one of them requiring different tools, along
with a nonexistent standard of input and output formats, has turned this in an arduous task. In order to promote
better interoperability of benchmarking, we propose ISABEL, a benchmark suite for Cloud-Native platforms
that standardizes the process of benchmarking using any existing benchmark tool.

1 INTRODUCTION

The widespread adoption of Cloud Computing by
the industry has brought about new business mod-
els, which provides software development companies
platforms to build, compile, and deploy their prod-
ucts while abstracting the infrastructure beneath it.
Through these platforms, developers may request the
provisioning of services instances from vast catalogs,
according to their application’s needs.

Due to the growth of cloud service providers,
companies turn their decision based on their mo-
mentary requirements, such as demand for resources,
security, cost management, and others (Garg et al.,
2011).

While many cloud providers offer similar services
and prices, recently, companies have shifted their de-

a https://orcid.org/0000-0003-4945-3329
b https://orcid.org/0000-0003-1612-078X
c https://orcid.org/0000-0002-2261-2791
d https://orcid.org/0000-0002-6519-9001
e https://orcid.org/0000-0002-1806-7241
f https://orcid.org/0000-0001-9949-3797
g https://orcid.org/0000-0001-8485-529X

cisions towards the quality of service assurances (Jin
et al., 2013). Due to abstracting the infrastructure and
also the configuration of service instances provided
by these platforms, unexpected problems may occur
in production environments, which may have unfore-
seeable outcomes for companies and their consumers.

The quality of service delivered by platforms is
defined in contracts, such as service-level agreement
(SLA), and must be agreed between providers and
their consumers (Dillon et al., 2010). As the binding
obligations described in these contracts must be ful-
filled, benchmarking tools are used to ensure that the
quality of service agreed upon is assured, since they
can let the platform provider be aware of its bound-
aries.

Cloud providers can decide which assurances they
can provide to their consumers by using the assistance
of benchmark tools. Other than providers, develop-
ers may also benefit from benchmarking their appli-
cations and the services they rely on to better under-
stand how the provided platform affects or benefits
them and thus take the best course of action. (Binnig
et al., 2009). While a wide variety of benchmarks ex-
ist for each service a platform may wish to provide,
the use of different tools and their different config-

482
Souza, P., Rubin, F., Nascimento, J., Boeira, C., Vieira, Â., Reis, R. and Ferreto, T.
ISABEL: Infrastructure-Agnostic Benchmark Framework for Cloud-Native Platforms.
DOI: 10.5220/0009581004820489
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 482-489
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

urations for both input and output formats for each
benchmark tends to turn this whole operation into an
onerous task for cloud providers.

This study proposes an approach to solve the cur-
rent issue of interoperability between services and
their benchmarking tools available in the market.
Based on the current scenario, we present ISABEL:
A benchmark suite for Cloud-Native platforms. IS-
ABEL enables platforms to provide Benchmarking-
as-a-Service (BaaS), which can be used by platform
operators and developers alike.

Our contributions in this study are summarized as
follows:

• Unified Marketplace Solution: of benchmark
tools enabling operators to evaluate their services
consistently.

• Benchmark Accuracy Verification: through a
comparison of different tools by operators and
benchmark developers alike.

• Standardized Output Format: based on a per-
benchmark set of post-processing rules, which
lessens the burden of processing raw output data
for monitoring solutions.

The remainder of this paper is organized as follows:
Section 2 provides the main concepts of cloud com-
puting, Cloud-Native applications and platforms, and
service reliability. Section 3 presents an overview of
benchmarking cloud services, followed by ISABEL
suite specification in section 4. Experimental results
and then conclusion are provided in sections 5 and 6.

2 BACKGROUND

In this section, we provide background information
on key-aspects discussed in the following sections of
this paper.

2.1 Cloud Computing

The National Institute of Standards and Technology
(NIST) (Mell et al., 2011) defines Cloud Computing
as a model providing on-demand access to a config-
urable pool of shared resources (storage, networking,
applications, and services) with minimum effort re-
quired for both provisioning and releasing.

Cloud Computing has changed how the software
industry develops and distributes its products. It also
allows companies to focus on developing their prod-
ucts, with no need for expertise outside their scope,
leaving such to the cloud providers that specialize in
those.

Other than reducing the need for expertise, there
are compelling features that lead a business to adopt
this technology. Elasticity enables resources to be
scaled on a need-basis, thus reducing costs and elim-
inating the need for up-front payments, which are re-
placed by the model of pay-as-you-go. Resilience is
also one of the main reasons for business’ to adopt
the cloud. As failures will eventually occur, having a
fast response for such events is a must. By utilizing
a service that assures a certain degree of resilience,
organizations can reduce significant costs associated
with responding to possible failures. This must be the
primary goal for companies that rely on web-revenue
(e.g., e-commerce, ads) since this downtime would be
kept them from earning any revenue. Amazon’s esti-
mated cost for a one-hour downtime on Prime Day
(most significant revenue day of the year) for its ser-
vices is up to $100 million, as shown by (Chen et al.,
2019).

Besides resilience, reliability must also be taken
into consideration. Reliability is defined as the abil-
ity of an item to perform a required function, under
stated conditions, for a stated time period (Bauer and
Adams, 2012). The lack of knowledge regarding the
infrastructure beneath, as well as security concerns
of sharing the same resources with others, has pre-
sented itself as a hindrance over the years for sig-
nificant companies to migrate their business-critical
workloads (Sfondrini et al., 2018).

2.2 Cloud-Native Approach

As previously mentioned, the Cloud Computing
paradigm has changed how the software is developed,
delivered, and designed. With its development and the
porting of applications from end-users’ workstations
to the cloud, applications started growing in complex-
ity. This complexity eventually leads to increasing
concerns regarding the monolithic development ap-
proach. One of them is the fact that, due to mod-
ules being highly coupled, compromising only one of
them is enough to compromise the whole application.
Also, if a single module needs scaling or fixing, the
entire application must be interrupted.

To mitigate these concerns, a Cloud-Native ap-
proach appeared as an alternative. Cloud-Native ap-
plications are built specifically for the cloud; hence,
they need to be scalable, fault-tolerant, easily upgrad-
able, and secure (Gannon et al., 2017). To accomplish
this, the development of new applications started fol-
lowing a microservices architecture where there are
compartmentalization and decoupling of an applica-
tion, allowing independent scalability (Namiot and
Sneps-Sneppe, 2014). This methodology consists of

ISABEL: Infrastructure-Agnostic Benchmark Framework for Cloud-Native Platforms

483

using minimal, loosely coupled services, each respon-
sible for specific functions, as they improve resource
utilization and also minimize waste. Another main
characteristic of the Cloud-Native approach is the use
of containers instead of virtual machines, due to re-
duced storage requirements, and faster booting time,
which allows for improved elasticity and disposability
(Cloud Native gives preference to provisioning new
instances in case of failure, instead of trying to fix the
failed instance).

The decomposition of monolithic applications
into microservices improves independence among
different software teams and achieves better resource
usage and flexibility, as each component could be
resized or replicated as the demand for resources
changes.

Nonetheless, while the Cloud-Native approach
has several benefits, it still has its pitfalls. As the mi-
croservices are distributed and may not reside on the
same host, the infrastructure has a higher effect than
on the monolithic architecture. Therefore they are
more susceptible to losing performance due to prob-
lems such as latency, scheduling, among others. Con-
sequently, assuring that the infrastructure beneath it is
resilient and provides resources as expected, is highly
required.

Developers deploy Cloud-Native applications on
cloud platforms, where they gain access to personal
spaces, allowing them to provision services (e.g.,
databases and caches) for use in their applications.

Provisioning VMs, aggregating logs, and scaling
components are onerous tasks for cloud operators;
hence, there are cloud platforms that seek to lessen
this burden. Cloud Foundry is a platform intended for
deploying and running applications, tasks, and ser-
vices in the cloud. It seeks to minimize the efforts
needed not only by operators but also from develop-
ers, enabling them to deploy and execute their ap-
plications reliably, even in an unreliable infrastruc-
ture (Winn, 2017). One of its components, BOSH,
can interact with any cloud infrastructure, deploy soft-
ware, monitor and heal VM’s health, and also provi-
sion computational resources as needed.

The counterpart of BOSH VM management is
Diego, responsible for handling containers. Diego al-
lows running two types of applications: (i) Tasks that
run once for a limited time, and (ii) Long-Running
Process (LRP), which run continuously. After a task
or LRP is pushed to Diego, it calls one of its internal
components, the Auctioneer, to decide in which of the
multiple isolated container environments the applica-
tion should run. After an application starts running,
it is necessary to keep track of logs and metrics of it.
The component responsible for this is the Loggrega-

tor; it has agents on VMs that collect logs and met-
rics and forward them to temporary buffers (called
Doppler). From there, the information can be used
by specific programs called Nozzles that consume this
data and process it.

3 RELATED WORK

To minimize potential risks caused by unknown vari-
ants, benchmarking tools can be used to compare
the services each cloud provider has to offer. From
the operator’s perspective, data obtained from bench-
marks provide insights on any problem on its infras-
tructure as well as its limits. With the analysis of this
information, cloud providers can provide guarantees
of their offering services to their users’, in the form
of Service-Level Agreements (SLAs) (Dillon et al.,
2010), for example. Multiple Benchmark suites and
frameworks have been developed for cloud applica-
tions and services. These suites are usually designed
to provide testing for specific kinds of applications.

Kasture and Sanchez (Kasture and Sanchez, 2016)
proposed a benchmark suite and evaluation methodol-
ogy called TailBench. This tool focuses on providing
a way to perform testing for latency-critical applica-
tions easily. It supports eight representative applica-
tions and contains workloads for them. The authors
also validate their tool by testing it in a real system
and simulations.

Ferdman et al. (Ferdman et al., 2012) introduced
in his work the CloudSuite benchmark suite. This tool
focus on testing applications that have workloads that
scale-out to multiple machines in the datacenter. The
applications tested included NoSQL databases, a Me-
dia Streaming server, and a Web Search service. The
main objective of the work was to define the efficiency
of the processors’ micro-architecture for these work-
loads and to devise possible enhancements for it.

CloudCmp is a benchmark suite proposed by Li
et al. (Li et al., 2010) with the primary objective of
proposing a collection of tools to measure and evalu-
ate the differences between cloud providers. The tool
compares four of the major providers in terms of com-
puting performance, scaling latency, storage response
time, and cost per benchmark, among others.

Another benchmark suite proposed is the Death-
StarBench (Gan et al., 2019). This benchmark in-
cludes six different applications (a social network, a
media service, an e-commerce site, a banking system,
and a drone control system). All of these were built
using the concepts of microservices and are highly
modular. The benchmark tool provides its tracing sys-
tem to track requests between microservices. The au-

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

484

thors have used this tool to study the effects the ap-
plications have in the cloud system stack, from server
design to the operating system used and programming
framework.

Alhamazani et al. (Alhamazani et al., 2015)
presented a framework for monitoring and bench-
marking cloud applications called CLAMBS (Cross-
Layer Multi-Cloud Application Monitoring and
Benchmarking-as-a-Service Framework). He de-
fines cloud platforms as being separated into three
layers: Software-as-a-Service, Platform-as-a-Service,
and Infrastructure-as-a-Service. The framework pro-
posed by the authors allows for monitoring and
benchmarking applications, and components on any
of the three layers. Also, it provides the same ca-
pabilities for applications in multiple cloud provider
environments.

One of the works most related to our contribu-
tions was proposed in (Chhetri et al., 2013). Smart
CloudBench is a platform that offers benchmarking-
as-a-service for major cloud providers. It automates
multiple steps necessary for executing the testing of
a service. The system allows the selection of the tar-
get cloud provider, one of its available benchmarking
tools, and its respective workload for testing. It also
collects results and generates a visualization of the
metrics gathered. The authors have also implemented
a prototype for Smart CloudBench that evaluated mul-
tiple cloud servers using the TPC-W benchmark.

The benchmark tools and suites previously de-
scribed are capable of benchmarking different aspects
of Cloud Computing, but mainly focus on bench-
marking applications and cloud infrastructures and do
not specifically target cloud services. Moreover, to
the best of our knowledge, there is no framework for
easily extending the available benchmarking tools on
those solutions, as most of these tools are either inex-
tensible or require changes to the codebase. Hence,
we propose ISABEL, a benchmark framework for
services that can abstract the implementation details
needed for the integration of new tools and thus al-
lowing it to be easily extensible.

4 ISABEL BENCHMARK SUITE

The adoption of benchmarking strategies for cloud
services benefits both cloud providers and their
clients. Through the analysis of different metrics ob-
tained from benchmark tools, platform operators be-
come capable of providing their clients with perfor-
mance assurances. Conducting benchmarks on multi-
ple services, such as databases and message handlers,
entails the use of many different tools. With every

additional tool, a new workflow must be adopted for
running, gathering the output, and performing analy-
sis over it.

Due to the unique configurations required to ex-
ecute each tool (e.g., parameters and runtime de-
pendencies), benchmarking becomes an onerous task
for platform operators. Besides, problems regard-
ing the interoperability between benchmark tools be-
come more evident. Different tools might require dif-
ferent mechanisms for retrieving their output (e.g.,
reading from stdout and fetching from a database).
Moreover, the lack of standard nomenclature for per-
formance metrics leads to scenarios where differ-
ent tools provide the same piece of information, but
with different descriptions (e.g., ”AverageLatency”
and ”AvgLatency”).

To lessen the burden of managing various bench-
mark tools, increasing their interoperability is essen-
tial. To this end, we propose ISABEL, a benchmark-
ing suite framework for improving the evaluation of
services on Cloud-Native platforms. The core mo-
tivation for ISABEL is to provide an internal ser-
vice of Benchmarking-as-a-Service (BaaS) for cloud
providers, enabling platform operators to benchmark
their services, while also allowing benchmark devel-
opers to validate their tools against others. The pro-
posed architecture is illustrated in Figure 1.

To deliver BaaS, ISABEL is designed as an ex-
tensible marketplace solution for ordering the bench-
marking of any available service through one of its
designated tools. From deploying service instances
and containerized tools to retrieving benchmarking
results, ISABEL is capable of performing a complete
workflow through a single order.

When an order is received, a new service instance
is provisioned accordingly; then, the desired bench-
mark tool is deployed as a container, along with all the
required information for its execution, which follows
next. Finally, the results are gathered by ISABEL and
delivered to the client (i.e., who made the benchmark-
ing request). A more detailed explanation of this pro-
cedure is presented further on.

While the responsibility of providing ISABEL
with the means of deploying services instances fall
upon platform operators, the execution of container-
ized tools by ISABEL is made available through one-
time-only tool registration. The procedure for extend-
ing ISABEL with the registration of new benchmarks
is illustrated in Figure 2.

The registration of new benchmarks requires
above all else the definition of which service it sup-
ports. Hence, the service’s deployment workflow
must be provided to ISABEL a priori. Benchmark de-
velopers can also query ISABEL regarding which ser-

ISABEL: Infrastructure-Agnostic Benchmark Framework for Cloud-Native Platforms

485

Cloud-Native Platform

ISABEL

 Parsing

GCP Azure AWS On Premises

Cloud Infrastructure Interface (C2I)

 Benchmark
 Setup

 Service Benchmarking

Platform Operator

Benchmark
Developer

Benchmarks
Database

3. Service Information

4. Benchmark Parameters 5. Raw Output

2. Benchmark
Configuration

6. Formatted Output

1. Benchmark
Tool

Figure 1: ISABEL architecture.

Figure 2: Procedure for the registration of a new bench-
mark.

vices are supported. In order to register a new bench-
mark, the following items must be provided:

• Service: The available target supported by the
tool.

• Tool: A configuration file describing the con-
tainerized deployment and execution of the
benchmark tool (e.g., a Dockerfile).

• Parameters: The information required for its ex-
ecution, which will be provided to the container
in the form of environment variables.

• Metrics: The performance information obtain-
able by executing the benchmark.

To promote interoperability, the registration of new
benchmarks requires that their output follow a stan-
dard format, such as a key-value based JSON. Al-
though the benchmarking tool’s source-code might
not be available for modification, the same could be
achieved through the use of a wrapper for its exe-
cution, thus allowing the final output to be format-
ted. Additionally, to avoid misinterpretation of bench-
marking results, ISABEL enforces the use of a met-
rics knowledge base (KB). Any metric obtained from
a benchmark must be known to ISABEL at the mo-
ment of its registration. In the event one of its metrics
is unknown, the registration fails. To solve this prob-
lem, each unknown metric must be either replaced
with another equivalent or added to the metrics KB.
Imposing a nomenclature for available metrics en-
ables not only benchmark developers to compare their
tools, but also facilitate performance analysis later on.

While our method of enforcing the registration of
metrics improves the interoperability of benchmark-
ing tools, it is not absolute; hence, one of its pitfalls is
that it’s prone to human error. If a benchmark devel-
oper must seek an equivalent entry or register a new
one for one of its tool’s metrics, nothing prevents him
from missing the equivalent entry and registering a
different one. In this case, there would be two entries
consisting of the same information, but with differ-
ent identifications. Even worse is the fact that even if
these two entries were to be discovered later on, noth-
ing could be done, as removing any of them would in-
validate a registered benchmark. For these scenarios,

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

486

Figure 3: Procedure for executing the benchmark of a service.

we recommend that entries on the KB be able to refer-
ence others. When a problem of this kind is detected,
simply changing the reference of all the affected en-
tries to a single one would solve it, thus avoiding the
re-registration of every affected benchmark.

When ISABEL successfully stores a benchmark
on its database, the new benchmark’s registration is
complete, and it becomes available for execution. The
execution procedure is illustrated on Figure 3.

In order to execute a benchmark, the following
information must be provided to ISABEL: a desired
benchmarking tool, its execution parameters, and a
targeted service supported by the tool. Information
regarding available services, benchmarking tools, and
their execution parameters can be requested from IS-
ABEL.

After receiving a benchmark request, ISABEL
verifies if all the required information was provided
correctly (e.g., all the execution parameters). If any
inconsistency is detected on the provided information,
ISABEL refuses the benchmark request. Once the
information is validated, ISABEL provisions a new
instance of the targeted service using the informa-
tion provided by the platform operator for supporting
this service. The benchmarking request may also in-
clude parameters regarding which service plan (i.e.,
resource configurations) to deploy. Supporting this

feature relies on what capabilities the platform opera-
tor provided to ISABEL.

When the deployment is completed, ISABEL re-
trieves the instance’s address and credentials, and de-
ploys the containerized benchmarking tool with this
information, along with the benchmarking request pa-
rameters, through environment variables. After the
benchmark finishes, ISABEL gathers the output from
the containerized tool and parses the obtained met-
rics according to the information provided during the
benchmark’s registration. Finally, the metrics are sent
to the client as the result of the benchmarking request.

5 EXPERIMENTAL RESULTS

A Proof-of-Concept (PoC) of our proposed frame-
work (ISABEL) was implemented for Pivotal Plat-
form, a Cloud Foundry distribution. Pivotal Platform,
formerly Pivotal Cloud Foundry (PCF), offers addi-
tional enterprise features, such as support, training,
documentation, and technology certifications. Pivotal
Platform obtains its PaaS capabilities through Piv-
otal Application Service (PAS), an application run-
time. Platform operators can install additional soft-
ware services (tiles) on Pivotal Platform and provide
their users with different service-plans through PAS

ISABEL: Infrastructure-Agnostic Benchmark Framework for Cloud-Native Platforms

487

Marketplace.
Experiments were conducted over Pivotal Cloud

Foundry v2.6 and Pivotal Application Service v2.6
(PAS) runtime, deployed on a VMware vSphere v6.7
cluster. The cluster available resources consisted of
two Dell PowerEdge R730 hosts, with VMware ESXi
v6.7 bare-metal hypervisor, sharing a Dell Equallogic
ps4100 storage through iSCSI. The hosts’ hardware
configuration is described in Table 1.

Table 1: Testbed hosts hardware specification.

Component Specification

Processor XEON E5-2650 v4
@ 2.20GHz (24/48)

Memory 192GB DDR4 @ 2400MHz

Storage Seagate ST1000NM0023 1TB
SAS @ 7200RPM x 10

Networking 1 Gigabit Ethernet

To validate ISABEL, we considered a scenario of
benchmarking MySQL, a database service, using
the benchmark tool Sysbench (Kopytov, 2012). To
this end, we deployed ISABEL on PAS and cre-
ated a Dockerfile to execute the SysBench benchmark
tool (Kopytov, 2012). We also provided ISABEL
with a workflow for enabling the deployment of Piv-
otal MySQL service instances. For our experiments,
we selected three different MySQL service plans (re-
source configurations). These configurations are pre-
sented on Table 2. A performance analysis over the
metrics obtained from the benchmark is illustrated in
Figure 4.

We centered our analysis over the number of ex-
ecuted queries and average query latency. Our tests
have shown that there is a relation between the num-
ber of CPU cores and the number of executed queries.
Granted that MySQL database is a CPU-bound appli-
cation (Gregg, 2019), increasing the number of CPU
cores impacts the number of queries that can be pro-
cessed. Therefore, as queries are processed faster, in-
creasing the number of cores also decreases query la-
tency.

While this assessment still holds, for there is a de-
crease of query latency as more CPU cores become
available (small to large), the decreasing rate differs,
even though the increase of CPU cores is equivalent

Table 2: VM configurations based on available CPU cores.

Configuration CPU
(Cores)

Memory
(GB)

Disk
(GB)

Small 1 16 16
Medium 4 16 128

Large 16 16 64

98

41 36

Configuration

Q
ue

ry
 L

at
en

cy
 (m

s)

0

25

50

75

100

Small Medium Large

100

59

17

Configuration
Ef

fic
ie

nc
y

(%
)

Sp
ee

du
p

(%
)

0

25

50

75

100

0

500

1000

1500

2000

Small Medium Large

Efficiency Speedup Ideal Speedup

Figure 4: Number of executed queries (top) and average
latency for each query (bottom).

(small to medium, then medium to large). Hence, we
analyzed the speedup and efficiency of each service
configuration. Whereas the speedup of an application
that scales well is expected to increase at a similar rate
to increase the number of cores, efficiency indicates
how well an application uses the available resources.
An application being stressed due to benchmarking
may still not be able to use all available resources it
was provided with, leaving them idle.

On a typical scenario of provisioning resources,
where the pricing increases according to the selected
configurations, we can deduce the following: Small
is the best configuration in terms of costs since it
achieves the best efficiency over the others (40.77%
and 82.78%, respectively), fully utilizing the pro-
visioned resources. Medium sacrifices some effi-
ciency (40.77%) for an improvement in performance
(136.93% from the small configuration); hence it pro-
vides the best cost-benefit. Large is the best when
considering only the performance, as it provides an
improvement above the others (275.46% and 38.53%,
respectively).

6 CONCLUSIONS

With the Cloud-Native architecture approach of de-
veloping software as micro-services, applications are

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

488

capable of allocating only the necessary resources
by scaling micro-services according to current work-
loads. However, this approach leaves the application’s
performances more dependent on the cloud services
they interact with.

Platform operators use benchmarks to provide
users with reliability assurances for their services.
However, the more benchmarking tools are used, the
more time-consuming their management becomes.
Therefore, in this paper, we present ISABEL, a
benchmark suite framework for Cloud-Native plat-
forms. ISABEL lessens the burden of benchmarking
multiple services by providing an extensible bench-
mark marketplace.

We describe ISABEL’s architecture and the proce-
dures of execution and registration of new benchmark
tools. A proof-of-concept implementation on Pivotal
Platform is presented, and metrics obtained by bench-
marking a service are discussed. As future work, we
intend to extend the capabilities of ISABEL to an-
alyze metrics obtained from benchmarking services,
providing a piece of more detailed performance infor-
mation for platform operators.

ACKNOWLEDGEMENTS

This work was supported by the PDTI Program,
funded by Dell Computadores do Brasil Ltda (Law
8.248 / 91).

REFERENCES

Alhamazani, K., Ranjan, R., Jayaraman, P. P., Mitra, K.,
Liu, C., Rabhi, F., Georgakopoulos, D., and Wang,
L. (2015). Cross-layer multi-cloud real-time appli-
cation qos monitoring and benchmarking as-a-service
framework. IEEE Transactions on Cloud Computing,
7(1):48–61.

Bauer, E. and Adams, R. (2012). Reliability and availability
of cloud computing. John Wiley & Sons.

Binnig, C., Kossmann, D., Kraska, T., and Loesing, S.
(2009). How is the weather tomorrow?: Towards
a benchmark for the cloud. In Proceedings of the
Second International Workshop on Testing Database
Systems, DBTest ’09, pages 9:1–9:6, New York, NY,
USA. ACM.

Chen, J., He, X., Lin, Q., Xu, Y., Zhang, H., Hao, D., Gao,
F., Xu, Z., Dang, Y., and Zhang, D. (2019). An empir-
ical investigation of incident triage for online service
systems. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), pages 111–120. IEEE.

Chhetri, M. B., Chichin, S., Vo, Q. B., and Kowalczyk,
R. (2013). Smart cloudbench–automated performance

benchmarking of the cloud. In 2013 IEEE Sixth Inter-
national Conference on Cloud Computing, pages 414–
421. IEEE.

Dillon, T., Wu, C., and Chang, E. (2010). Cloud computing:
Issues and challenges. In 2010 24th IEEE Interna-
tional Conference on Advanced Information Network-
ing and Applications, pages 27–33.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Al-
isafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D.,
Ailamaki, A., and Falsafi, B. (2012). Clearing the
clouds: a study of emerging scale-out workloads on
modern hardware. Acm sigplan notices, 47(4):37–48.

Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki,
N., Bruno, A., Hu, J., Ritchken, B., Jackson, B.,
et al. (2019). An open-source benchmark suite for mi-
croservices and their hardware-software implications
for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 3–18.

Gannon, D., Barga, R., and Sundaresan, N. (2017). Cloud-
native applications. IEEE Cloud Computing, 4(5):16–
21.

Garg, S. K., Versteeg, S., and Buyya, R. (2011). Smicloud:
A framework for comparing and ranking cloud ser-
vices. In 2011 Fourth IEEE International Conference
on Utility and Cloud Computing, pages 210–218.

Gregg, B. (2019). BPF Performance Tools. Addison-
Wesley Professional, City.

Jin, S., Seol, J., and Maeng, S. (2013). Towards assurance
of availability in virtualized cloud system. In 2013
13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, pages 192–193.

Kasture, H. and Sanchez, D. (2016). Tailbench: a bench-
mark suite and evaluation methodology for latency-
critical applications. In 2016 IEEE International Sym-
posium on Workload Characterization (IISWC), pages
1–10. IEEE.

Kopytov, A. (2012). Sysbench manual. MySQL AB, pages
2–3.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
cmp: comparing public cloud providers. In Proceed-
ings of the 10th ACM SIGCOMM conference on Inter-
net measurement, pages 1–14.

Mell, P., Grance, T., et al. (2011). The nist definition of
cloud computing.

Namiot, D. and Sneps-Sneppe, M. (2014). On micro-
services architecture. International Journal of Open
Information Technologies, 2(9):24–27.

Sfondrini, N., Motta, G., and Longo, A. (2018). Public
cloud adoption in multinational companies: A survey.
In 2018 IEEE International Conference on Services
Computing (SCC), pages 177–184.

Winn, D. C. (2017). Cloud Foundry: The Definitive Guide:
Develop, Deploy, and Scale. ” O’Reilly Media, Inc.”.

ISABEL: Infrastructure-Agnostic Benchmark Framework for Cloud-Native Platforms

489

