
Prevalence of Bad Smells in C# Projects

Amanda Lima Sabóia1, Antônio Diogo Forte Martins2, Cristiano Sousa Melo2,
José Maria Monteiro2, Cidcley Teixeira de Souza1 and Javam de Castro Machado2

1Department of Computing, Federal Institute of Ceará, Fortaleza - Ceará, Brazil
2Department of Computing, Federal University of Ceará, Fortaleza - Ceará, Brazil

Keywords: Bad Smell, Prevalence, C#.

Abstract: Bad smell can be defined as structures in code that suggest the possibility of refactoring. In object-oriented
languages such as C# and Java, Bad Smells are heavily exploited as a way to avoid potential software failures.
The presence of a high number of bad smells in a software project makes the system maintenance and evolution
hard. So, identifying smells in code and refactoring them helps to improve and maintain software quality. Anti-
patterns are considered inadequate programming practices, but not an error, they are bad solutions to recurring
software problems. In this work, we propose an exploratory study on open source projects written in C# and
published in GitHub. We empirically analyzed a total of 25 projects, studying the prevalence of Bad Smells,
in a quantitatively and qualitatively manner, and their relationship in order to identify possible anti-patterns.
Our results showed that implementation smells are the most common. Besides, some smells occur together,
such as Missing Default and Unutilized Abstraction that are perfectly correlated, and ILS and IMN detected
by association rules. Thus, the proposed study aims to assist software developers in avoiding future problems
during the development of C# projects.

1 INTRODUCTION

In object-oriented languages such as C# and Java,
software metrics have been used to provide devel-
opers with additional information about the software
quality (Singh and Kahlon, 2011). According to
(Pressman and Maxim, 2016), a metric lists the in-
dividual measurements found in the software. For ex-
ample, the average number of errors found per unit
test, providing quantitative measures to evaluate the
quality of software projects.

On the other hand, bad smells have been used
as a means to identify problematic classes in object-
oriented systems. In recent decades, bad smells
have received massive attention among software en-
gineering researchers, as they can pinpoint symptoms
that may, in the future, become significant problems
(Fowler, 2018). According to (Sharma et al., 2017),
the term bad smell indicates the presence of quality
issues, primarily impacting the maintenance of a soft-
ware system. Bad smell can degrade aspects of code
quality, such as readability and mutability, and may
lead to the introduction of software flaws. However,
even if a bad smell does not directly represent a defect
in the source code, as they are not technically incor-

rect and do not interfere with execution, they should
not be ignored as they may cause future problems and
compromise software quality.

In (Fowler, 2018), the authors have defined differ-
ent types of bad smells that can be refactored. They
defined refactoring as a process of changing the inter-
nal structure of a software system without changing
functionality. Thus, bad smells are used as a means to
identify problematic classes for refactoring in object-
oriented systems (Li and Shatnawi, 2007).

The presence of a high number of bad smells in a
software project makes the system maintenance and
evolution hard. So, identifying smells in code and
refactoring them helps to improve and maintain soft-
ware quality (Sharma, 2017). Some bad smells in-
dicate real code problems (for example, using a long
parameter list makes it difficult to invoke methods),
while other smells are possible symptoms of a prob-
lem. For instance, when a method has feature envy,
it may indicate that the method is misplaced or that
some pattern like Visitor is being applied (Fontana
et al., 2012). Besides, in (Suryanarayana et al., 2014),
the authors had noticed that some smells amplify the
effect of other smells.

In this work, we describe an exploratory study on

424
Sabóia, A., Martins, A., Melo, C., Monteiro, J., Teixeira de Souza, C. and Machado, J.
Prevalence of Bad Smells in C Projects.
DOI: 10.5220/0009580204240431
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 424-431
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



25 open source projects written in C# and published
in GitHub. First, We have investigated the preva-
lence of Bad Smells through a quantitative analysis.
Next, we have studied the correlation between Bad
Smells. Then, we have analyzed the degree of co-
occurrence between these smells. Finally, we tried
to identify possible anti-patterns. We have noted that
some smells occur more often than others and, based
on this observation, some of them have been indi-
cated as strong candidates for possible anti-patterns.
Anti-patterns are bad solutions to recurring software
problems. Importantly, this work is not intended to
identify and catalog anti-patterns, but only to analyze
some frequently occurring smells that are strong can-
didates for anti-patterns. Moreover, in later studies
verify whether they really can be classified or not as
anti-patterns. The main idea of this paper is to get
useful information, such as correlations, association
rules between C# Bad Smells, in order to assist soft-
ware developers in avoiding future problems during
the development of C# projects.

2 RELATED WORKS

Some authors have already studied the presence of
bad smells in C# projects. In (Sharma et al., 2017),
the authors studied the relationship between the oc-
currence of design smells and implementation smells,
as well as the distribution of these smells in C# codes.
Their studies showed that the density of smells and
lines of code in the analyzed C# projects have no
strong correlation, and the most frequently occurring
smells are unutilized abstraction and magic number, i.
e., it’s an unexplained number used in an expression.
Besides, they observed a high degree of correlation
between the number of detected instances of design
and implementation smells. In (Alenezi and Zarour,
2018), the authors analyzed six open source systems
written in C# and checked whether bad smells are re-
solved while the software is evolving. They focused
on monitoring the evolution of bad smells. They also
noted that in most cases, bad smells persisted over
several successive versions of the software and real-
ized that smells are introduced into maintenance ac-
tivities.

In addition, some authors have studied the pres-
ence of bad smells in databases and mobile appli-
cations. In (de Almeida Filho et al., 2019), they
have studied the occurrence of bad smells in PL/SQL
projects and the degree of co-occurrence between
them. They observed that many smells have high cor-
relation coefficients, above 0.9, and found bad smells
in SQL that occur together. In (Mannan et al., 2016),

the authors analyzed 500 open source applications
developed on Android and 750 desktop applications
written in Java, and later compared the instances of
smells present in the android application code with
the smells present in the java application code. They
noted that in java applications, the code is dominated
by two smells: external duplication and internal du-
plication. Meanwhile, android apps display a more
diverse set of bad smells. In (Habchi et al., 2017),
the authors performed a study related to the presence
of bad smells in the IOS mobile application. They
proposed a catalog of 6 IOS-specific smells identified
in the official platform documentation and feedback
from the developers. In addition, the authors also
presented an adaptation of the PAPRIKA tool, a tool
initially designed to detect smells in android applica-
tions, to detect smells in IOS applications.

Other authors have studied the impact of smells
on dimensions such as bug-proneness and change-
proneness. In (Palomba et al., 2016), the authors used
earlier findings on bug-proneness to create a special-
ized bug prediction model for smelling classes. Re-
sults indicated that the accuracy of a bug prediction
model increases by adding the intensity of bad smells
as a predictor. In (Kaur et al., 2016), the authors ex-
tracted bad smells from a mobile application written
in Java. They used machine learning techniques to
predict software change-proneness using bad smells
as predictor variables. They noted that bad smells are
better predictors of change-proneness problems com-
pared to object-oriented software metrics for balanced
and unbalanced learning methods. In (Liu et al.,
2018), the authors studied six open source projects
written in Java with up to 60 versions and noted
that: in most cases, smell-based metrics outperform
CK baseline metrics in the change-proneness study.
Furthermore, when used together, smell-based met-
rics are most effective at predicting change-proneness
files.

This paper proposes an empirical analysis of the
prevalence of bad smells in C# projects. Thus, the
main idea of this research is to obtain useful infor-
mation, such as correlations and rules of association
between these smells. Afterward, analyzing which
smells are candidates for possible anti-patterns, de-
serving future works special attention.

3 METHODOLOGY

We performed all experiments using only the back-
end code from the latest releases of some open source
projects written in C# public available on GitHub.

The methodology used in this article consists of

Prevalence of Bad Smells in C Projects

425



Figure 1: Diagram with the Methodology Overview.

five steps. The first step is to select some projects
developed in C# and published in public repositories
on GitHub. Subsequently, we applied a code anal-
ysis tool for C# projects called Designite to the se-
lected projects. Designite generates a CSV file con-
taining information about the bad smells found for
each project. In the third phase, we developed Python
scripts to process the CSV files generated by the tool
and, later, we generated the datasets with the smells (a
spreadsheet composed by a summary and aggregated
information about the smells found in the projects).
In the fourth phase, we applied a set of data analysis
techniques to the dataset with the bad smells. In using
these techniques, we use scripts in Python and Jupyter
Notebook. Finally, we studied bad smells in isolation
to analyze possible anti-patterns. Figure 1 contains an
overview of the methodology used.

3.1 Collect C# Projects

First, we researched many projects developed in C#
and published in public repositories on GitHub. These
projects were selected based on the following criteria:
• The number of stars on GitHub, which represents

the sum of developers who appreciate the reposi-
tory;

• The number of forks in the repository, which
shows the number of times the repository has been
copied to private developer repositories;

• The percentage (%) of the project written in the
C# language, which shows the percentage of the
code implemented in C#. In this selection, only
projects whose implementation in C# was greater
than 80% were considered.

We have chosen twenty-five projects selected on
GitHub. All information about these projects, such
as name, description, the number of stars, the number
of forks. and the percentage (%) of the code written
in C# can be seen in our public repository1.
1https://github.com/amandalsaboia/Bad-Smells-Projects

3.2 Report Generation with Bad Smells

We have used Designite (version 3.2.0.0) to perform
the collection of Bad smells from C# projects, a tool
that analyzes C# code and identifies quality prob-
lems for software. Based on granularity and scope,
bad smells can be classified into architectural smells
(creation nature), smells from design (structural na-
ture), and smells implementation (behavioral nature)
(Ganesh et al., 2013). Designite detects seven smells
of architecture, eleven of implementation, and twenty
smells of design, totaling thirty-eight bad smells.
Also, this tool detects some object-oriented design
(OO) metrics, such as the number of classes and the
number of namespaces, in addition to detecting code
clones. Some of these metrics were collected by the
tool for the twenty-five projects analyzed in this arti-
cle.

For each analyzed project, Designite generates
three CSV files containing the bad smells found in
each class. The first file contains the architectural
smells (at the namespace level), the second contains
the design smells (at the class level), and the last, the
implementation smells (at the method level). Each file
contains the location where a bad smell was found,
and the cause of smell occurring. Although there is
a difference in granularity between the types of bad
smells, the tool associates the occurrence of smell
with a class.

3.3 Construction of Datasets with Bad
Smells

Each previously generated CSV file contains a con-
siderable amount of bad smells in C#. For example,
the Newtonsoft.Json project contains a total of 15534
bad smells. Since it is not recommended to extract
smells manually, for the generation of datasets with
the smells found in each project, we developed some
Python scripts. In total, there were four scripts. In
the first and second script, the data contained in the

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

426



CSV files were prepared with the smells of design
and implementation, in which a column called Path
containing the junction of Namespace and the Class
where smell took place. The files with the architecture
Smells used as path the value displayed in the column
Namespace, and it is not necessary to create a new
one. In the third script, the bad smells were added,
which were only of architecture, then those that were
only of the design and finally, those that were only of
implementation. Finally, in the last script, we have
constructed the dataset joining all bad smells (archi-
tectural, design, and implementation) found in the
project. Each line of this dataset represents a class
present in the analyzed project, and each column rep-
resents a bad smell. So, the value of a given cell
means the number of occurrences of a given smell in a
given class. We use these datasets in the data analysis
performed by the project.

The creation of a dataset with the smells found in
all projects happened similarly. It is only necessary
to create one more Python script. This script is re-
sponsible for merging all datasets per project created
previously. In this case, each row of the dataset with
all smells represents a C# project, and each column
represents a smell, in which the value of a given cell
contains the number of occurrences of the smell in
a given project. We used this dataset mainly in the
quantitative analysis of the data.

3.4 Analysis of Datasets with C# Bad
Smells

We performed both quantitatively and qualitative data
analysis. In quantitative data, research generally in-
cludes descriptive statistics and correlation analysis,
for example. Descriptive statistics, such as mean val-
ues, standard deviation, histograms, and scatterplots,
are used to help understand the data. Correlation anal-
ysis is used to describe how one smell is related to an-
other. For qualitative data, the main objective of the
analysis is to draw conclusions from the data, main-
taining a clear chain of evidence. Besides, advances
in Machine Learning techniques and data analysis
have provided powerful means for extracting useful
information and data knowledge (de Almeida Filho
et al., 2019). In this study, we used some data anal-
ysis techniques, such as correlation analysis, associa-
tion rule, and descriptive statistics.

In this stage of the work, we apply a set of data
analysis techniques to the dataset formed with the bad
smells. For this, we use scripts in python and the
Jupyter notebook for the execution of scripts. The ob-
jective of this step was to understand the smells in C#
and the relationship between them.

1. Quantitative Analysis: In this analysis, we used
some methods of descriptive statistics, such as bar
graphs, to understand the prevalence of smells in
C#. More specifically, the most common smells
and the most common types of smells.

2. Correlation between Bad Smells: An effective
correlation coefficient measures the extent to
which two variables tend to change together.
Thus, it describes the strength and direction (pos-
itive or negative) of the relationship between
these two variables. Correlations between vari-
ables can be measured using different coefficients
(de Almeida Filho et al., 2019). The most com-
mon correlation coefficients are Pearson, Spear-
man, and Kendall.
The Pearson correlation coefficient measures the
strength of the linear relationship between contin-
uous variables. It is the value that indicates how
much a line can describe the relationship between
variables. The Spearman correlation coefficient
assesses the monotonic relationship between two
continuous or ordinal variables. In a monotonic
relationship, the variables tend to change together,
but not necessarily at a constant rate. Finally, we
have the correlation coefficient of Kendall, which
is a measure of rank correlation, i.e., it verifies
the similarity between the orders of the data when
classified by one of the quantities. This correla-
tion takes into account the directional agreement
of the so-called concordant and discordant pairs.
In this work, we use the Spearman correlation co-
efficient, because it is the correlation that does not
need an assumption of normality of the distribu-
tion.

3. Association Rules: The purpose of the associa-
tion rule is to identify associations between data
records (items) that are related. For this, the
main idea is to find subsets of items whose pres-
ence is correlated with the presence of some other
item in the same transaction (de Almeida Filho
et al., 2019). Smells usually do not exist in isola-
tion and are often accompanied by others smells
within the same class or in related classes (Wal-
ter et al., 2018). In the association rule, there are
two components, one called antecedent and the
other called consequent. Therefore, we observe
the set of bad smells (antecedent) that implies the
presence of other smells (consequent) in the same
classes. We use the Apriori algorithm, which re-
sults in a set of various items that should be used
to create the association rules that represent trends
found in the dataset. Then we use the associa-
tion rule to identify associations between the bad
smells in C#.

Prevalence of Bad Smells in C Projects

427



3.5 Analysis of Possible Anti-patterns

For the analysis of possible anti-patterns in C#, in the
Results and Discussion section, we analyzed and dis-
cussed three research questions. Through these anal-
yses, it was possible to select some bad smells present
in the twenty-five projects analyzed and indicate them
as strong candidates for possible anti-patterns.

4 RESULTS AND DISCUSSION

In this section, the results collected through analysis
and observations are shown through the following re-
search questions (RQ):
• RQ1: How often do bad smells appear in C#

projects?
• RQ2: Are there significant correlations between

C# bad smells?
• RQ3: Are there smells that occur together in C#

projects?

4.1 Quantitative Analysis

To answer the first question (RQ1), we performed
quantitative analysis on the occurrence of bad smells
in the twenty-five projects collected in C#. For this,
we built a dataset per project containing all bad smells
collected in Designite. Subsequently, we created a
dataset joining the smells of all chosen projects in-
dividually.

Table 1: Architecture Smells.

Acronym Architecture Smell
ACD Cyclic Dependency
AUD Unstable Dependency
AAI Ambiguous Interface
AGC God Component
AFC Feature Concentration
ASF Scattered Function
ADS Dense Structure

Tables 1, 2, and 3 contain the bad smells detected
by Desiginite, together with the acronym for each
smell (Garcia et al., 2009), (de Andrade et al., 2014),
(Suryanarayana et al., 2014). An acronym was as-
signed to each smell, which the smells of design start
with the letter “D”, those for implementation with
the letter “I” and those for architecture with the letter
“A”. These acronyms were created in order to facili-
tate later references in the article.

First, we observed that smell DFE was not found
in the studied projects. We also noted that some

Table 2: Implementation Smells.

Acronym Implementation
Smells

ICC Complex Conditional
ICM Complex Method
IDC Duplicate Code
IEC Empty Catch Block
ILI Long Identifier
ILM Long Method
ILP Long Parameter List
ILS Long Statement
IMN Magic Number
IMD Missing Default

IVC Virtual Method Call
from Constructor

Table 3: Design Smells.

Acronym Smell Design
DBH Broken Hierarchy
DBM Broken Modularization

DCD Cyclically-Dependent
Modularization

DCH Cyclic Hierarchy
DDH Deep Hierarchy
DDE Deficient Encapsulation
DDA Duplicate Abstraction
DHM Hub-like Modularization
DIA Imperative Abstraction
DIM Insufficient Modularization
DMH Missing Hierarchy
DMA Multifaceted Abstraction
DMU Multipath Hierarchy
DRH Rebellious Hierarchy
DUE Unexploited Encapsulation
DUH Unfactored Hierarchy
DUA Unnecessary Abstraction
DUN Unutilized Abstraction
DWH Wide Hierarchy
DFE Feature Envy

smells are rare to happen, such as ACD, AUD, AAI,
ACG, AFC, ASF, and ADS. Besides, the two most
frequent smells are the IMN and the ILS, both of
which are smells of implementation and with a 50.1 %
and 16.74 % occurrence percentage, respectively. In
addiction, the Newtonsoft.Json project is the largest in
the number of lines of code (1594611) and the number
of classes (14195). IMN and ILS are the bad smells
that occur most frequently in this project.

4.2 Correlation between the Bad Smells

We obtained the correlation between the bad smells
of the C# code to assess how closely they are related.
We performed an analysis of the strongly correlated

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

428



characteristics to identify whether they are potentially
related. Initially, we had to perform an analysis of the
smells correlation in each project using the correla-
tion coefficient of Spearman and a lower limit of 0.5.
As shown in Figure 2, we noted that as the number of
classes in a project increased, the values of the corre-
lation coefficients tended to decrease. It occurs since
the number of classes in a project increases. So, the
smells tend to dissolve between them, thus decreasing
the correlation between smells.

Figure 2: Graph with the Relationship between Correlation
Coefficient and Number of Classes of the Project.

However, when analyzing the correlation between
bad smells at the project level, we observed that there
were many weakly correlated smells. So to answer
the research question RQ2, we listed only smells with
a correlation coefficient greater than 0.675.

The DUE and DIM smells have a correlation co-
efficient equal to 1 in the MaterialSkin project. The
smell 1 addresses the fact that it has a series of if-else
within a class by doing an explicit type check. The
smell 2 addresses the fact that a very large class can
be reduced to reduce complexity. So, it makes sense
that the two smells occur together, as there is a large
class where there are several if-else doing type check-
ing. However, this class could be reduced using the
concept of polymorphism. The code snippet in Fig-
ure 3 contains a real example of the joint occurrence
of smells ILS and IMN in the MaterialSkin project.

The smells DUA and DBM are strongly correlated
since the smell 1 occurs when a class exists, but it is
not necessary. The smell 2 occurs when methods that
should be present in a single class are found in sev-
eral classes. Thus, the strong correlation of these 2
smells makes sense because the classes instantiated
unnecessarily may be using methods that should be
exclusive to a single class. The smells ICM and ICC
are also strongly correlated. This is justified because
smell 1 when it occurs generates very high cyclomatic
complexity, and smell 2 occurs when a very complex
decision structure is used. Thus, if there is a complex

decision structure within a method, the method will
also be complex, increasing its cyclomatic complex-
ity.

The smells ACD and DMA are strongly correlated
since smell 1 occurs when a class A method depends
on a class B method and vice versa. The smell 2 oc-
curs when there is a class with many methods. Thus,
a class with a large number of methods has a good
chance of being called and going into cycles.

4.3 Association Rule

In order to answer the RQ3 research question, we
have developed a script in Python that implements the
Apriori algorithm to find the association rules. We
generated a data collection in table format as follows:
if the smell occurs in a given project, the value TRUE
for that cell, and the value FALSE will be associated,
otherwise.

With datasets in the proper format, the next step
in finding the association rules based on confidence
is to set the confidence parameter to 50 %. With this
lower limit, it is possible to identify the smells that
occur together in some projects. We also identified
which of the smells occur in most projects. In total,
we found 56 different rules that happened in at least
two projects. However, we have considered only the
rules that happened from three projects onwards in
this study.

Thus, we used three metrics: Support, Confi-
dence, Lift. According to (Cardoso and Figueiredo,
2015), the Support metric calculates the proportion
of transactions that contain the set of items, showing
their importance and significance. Confidence is the
probability of seeing the consequent of the rule on the
condition that the transactions contain the antecedent.
Moreover, the Lift metric measures how many times
more than expected the antecedent smell, and the con-
sequent smell occur together if they are statistically
independent.

From the results of the association rule, we ob-
served that:

• IMN is the smell that most occurs together with
others smells.

• The values displayed in the columns that start with
the word min., inform the lowest value of the pa-
rameter found in one of the projects in which the
rule occurred. Furthermore, the opposite is re-
peated for the values shown in the columns that
start with the word max.

The rule that occurs in the most significant number
of projects, in which the antecedent is smell ILS, and
the consequent is IMN, also appears in the correlation

Prevalence of Bad Smells in C Projects

429



Figure 3: Source code with the joint occurrence of the ILS and IMN smells.

analysis, as previously studied. The second rule that
happens in the highest number of projects has as its
antecedent the smell ICM and the consequent smell
IMN. The source code snippet in Figure 4 contains an
example from the SharpZipLib project of the occur-
rence of this rule.

Figure 4: Source code with the joint occurrence of ICM and
IMN smells.

4.4 Analysis of Possible Anti-patterns

Bad Smells and anti-patterns are recurring software
problems. There is a minimal difference between the
two terms, in which anti-pattern is considered a in-
adequate programming practice, but not an error. In
(Singh and Kaur, 2017), the author defined bad smell
as a warning for the presence of an anti-pattern.

Bad smells warn the developers of software that
the source code has some problems, while anti-
patterns provide software engineers, architects, de-
signers, and developers a common vocabulary to
recognize possible sources of problems in advance.
However, refactoring is a solution to remove both
anti-patterns and bad smells from the code. Accord-
ing to (Luo et al., 2010), the refactoring methods
for bad smells are more technical and programming-
based, whereas for anti-patterns are ”approaches to
involving the solution in a better one.”

During the quantitative analysis of datasets with
bad smells, we noted that the smells IMN and ILS are
the ones that occur in higher numbers both in the joint
analysis of the 25 projects and in the individual anal-
ysis per project. Moreover, in the qualitative analysis,
we also noted that the IMN and ILS smells have had a

high correlation and occurred together in 14 projects.
The frequency of these two smells can be caused by
some common reasons in development environments,
such as the time when the functionality must be de-
veloped and delivered, and the lack of knowledge and
understanding of good programming practices. Thus,
these two smells are strong candidates to be classified
as possible anti-patterns.

5 CONCLUSIONS

In this paper, we presented an exploratory study on
the occurrence of bad smells in C# projects. We ana-
lyzed 25 open-source projects, published on GitHub,
in order to study the prevalence of bad smells in C#
code. From this exploratory study, we answered the
three key questions of the article:

• RQ1: How often do bad smells appear in C#
projects? Some smells are more frequent than oth-
ers. Implementation smells are the most common,
with IMN and ILS being the most common.

• RQ2: Are there significant correlations between
bad smells C#? The results showed that some
smells have high correlation coefficients, with
some having a coefficient equal to 1, such as the
smells IMD and DUN.

• RQ3: Are there smells that occur together in C#
projects? We used the Apriori algorithm and
found some interesting association rules, in which
we verified the occurrence of some smells that oc-
curred together. Also, we identified that the rule
that occurred in most projects was the one that had
the smell ILS as an antecedent and IMN as a con-
sequent.

Finally, we analyzed that the smells IMN and ILS
can be considered possible anti-patterns, this being a
future work. So, this work has the potential to help
professionals in the software development field in or-
der to avoid future problems during the development
of C# projects.

ACKNOWLEDGEMENTS

This research was funded by LSBD/UFC.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

430



REFERENCES

Alenezi, M. and Zarour, M. (2018). An empirical study of
bad smells during software evolution using designite
tool. i-Manager’s Journal on Software Engineering,
12(4):12.

Cardoso, B. and Figueiredo, E. (2015). Co-occurrence
of design patterns and bad smells in software sys-
tems: An exploratory study. In Anais do XI Simpósio
Brasileiro de Sistemas de Informação, pages 347–354.
SBC.

de Almeida Filho, F. G., Martins, A. D. F., Vinuto, T. d. S.,
Monteiro, J. M., de Sousa, Í. P., de Castro Machado,
J., and Rocha, L. S. (2019). Prevalence of bad smells
in pl/sql projects. In Proceedings of the 27th Interna-
tional Conference on Program Comprehension, pages
116–121. IEEE Press.

de Andrade, H. S., Almeida, E., and Crnkovic, I. (2014).
Architectural bad smells in software product lines: An
exploratory study. In Proceedings of the WICSA 2014
Companion Volume, page 12. ACM.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Au-
tomatic detection of bad smells in code: An exper-
imental assessment. Journal of Object Technology,
11(2):5–1.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Ganesh, S., Sharma, T., and Suryanarayana, G. (2013). To-
wards a principle-based classification of structural de-
sign smells. Journal of Object Technology, 12(2):1–1.

Garcia, J., Popescu, D., Edwards, G., and Medvidović, N.
(2009). Toward a Catalogue of Architectural Bad
Smells. In Proceedings of the Fifth International Con-
ference on Quality of Software Architectures: Archi-
tectures for Adaptive Software Systems, volume 5581
of Lecture Notes in Computer Science, pages 146–
162. Springer International Publishing.

Habchi, S., Hecht, G., Rouvoy, R., and Moha, N. (2017).
Code smells in ios apps: How do they compare to an-
droid? In 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems
(MOBILESoft), pages 110–121. IEEE.

Kaur, A., Kaur, K., and Jain, S. (2016). Predicting software
change-proneness with code smells and class imbal-
ance learning. In 2016 International Conference on
Advances in Computing, Communications and Infor-
matics (ICACCI), pages 746–754. IEEE.

Li, W. and Shatnawi, R. (2007). An empirical study of
the bad smells and class error probability in the post-
release object-oriented system evolution. Journal of
systems and software, 80(7):1120–1128.

Liu, H., Yu, Y., Li, B., Yang, Y., and Jia, R. (2018). Are
smell-based metrics actually useful in effort-aware
structural change-proneness prediction? an empirical
study. In 2018 25th Asia-Pacific Software Engineering
Conference (APSEC), pages 315–324. IEEE.

Luo, Y., Hoss, A., and Carver, D. L. (2010). An on-
tological identification of relationships between anti-
patterns and code smells. In 2010 IEEE Aerospace
Conference, pages 1–10. IEEE.

Mannan, U. A., Ahmed, I., Almurshed, R. A. M., Dig, D.,
and Jensen, C. (2016). Understanding code smells
in android applications. In 2016 IEEE/ACM Inter-
national Conference on Mobile Software Engineering
and Systems (MOBILESoft), pages 225–236. IEEE.

Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A., and
Oliveto, R. (2016). Smells like teen spirit: Improving
bug prediction performance using the intensity of code
smells. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
244–255. IEEE.

Pressman, R. and Maxim, B. (2016). Engenharia de
Software-8a Edição. McGraw Hill Brasil.

Sharma, T. (2017). Designite: A customizable tool for smell
mining in c# repositories. In 10th Seminar on Ad-
vanced Techniques and Tools for Software Evolution,
Madrid, Spain.

Sharma, T., Fragkoulis, M., and Spinellis, D. (2017). House
of cards: code smells in open-source c# repositories.
In Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement, pages 424–429. IEEE Press.

Singh, S. and Kahlon, K. (2011). Effectiveness of encapsu-
lation and object-oriented metrics to refactor code and
identify error prone classes using bad smells. ACM
SIGSOFT Software Engineering Notes, 36(5):1–10.

Singh, S. and Kaur, S. (2017). A systematic literature re-
view: Refactoring for disclosing code smells in object
oriented software. Ain Shams Engineering Journal.

Suryanarayana, G., Samarthyam, G., and Sharma, T.
(2014). Refactoring for software design smells: man-
aging technical debt. Morgan Kaufmann.

Walter, B., Fontana, F. A., and Ferme, V. (2018). Code
smells and their collocations: A large-scale experi-
ment on open-source systems. Journal of Systems and
Software, 144:1–21.

Prevalence of Bad Smells in C Projects

431


