
Microservices Management with the Unicorn Cloud Framework

George Feuerlicht1,2 a, Marek Beranek1 b and Vladimir Kovar1
1Unicorn College, V Kapslovně 2767/2, Prague 3, 130 00, Czech Republic

2Prague University of Economics, W. Churchill Square. 4, 130 67 Prague 3, Czech Republic

Keywords: Cloud Computing, Frameworks, Microservices.

Abstract: The recent transition towards cloud computing from traditional on-premises systems and the extensive use of
mobile devices has created a situation where traditional architectures and software development frameworks
no longer support the requirements of modern enterprise applications. This rapidly evolving situation is
creating a demand for new frameworks that support the DevOps approach and facilitate continuous delivery
of cloud-based applications using microservices. In this paper, we first discuss the challenges that the
microservices architecture presents and then describe the Unicorn Cloud Framework designed specifically to
address the challenges of modern cloud-based applications.

1 INTRODUCTION

We are now in the midst of a major transformation
driven by wide adoption of cloud computing and
extensive use of mobile and IoT (Internet of Things)
devices. Public cloud platforms such as AWS
(Amazon.com, 2017), Microsoft Azure (2017), etc.
offer ever increasing range of elastic services, and
practically unlimited compute power and storage
capacity, allowing more flexible acquisition of IT
resources and avoiding most of the limitations of
traditional on-premises IT solutions. This new
technology environment is creating opportunities for
innovative solutions at a fraction of the cost of
traditional on-premises enterprise applications. To
take full advantage of these developments,
organizations involved in the production of enterprise
applications must adopt a suitable enterprise
architecture and application development
frameworks. Two key architectural requirements
emerge as a result of recent technological advances:
1) the requirement to develop and deploy server-side
application components on a cloud infrastructure in
the form of microservices, and 2) the need to support
various types of mobile and IoT devices using cross-
platform client-side application components.
Deploying application components on a cloud
infrastructure enables applications to be shared by

a https://orcid.org/0000-0001-9333-5050
b https://orcid.org/0000-0003-0491-4275

very large user populations. The architecture needs to
facilitate rapid incremental development of
application components, ensure secure access to
information and support rapid cloud deployment.
There is increasing empirical evidence that to
effectively address such requirements, the
architecture needs to support microservices and
container-based virtualization (Balalaie et al., 2016).
However, it is also becoming clear that the
management of large-scale clusters of containers has
its own challenges and requires automation of
application deployment, auto-scaling and effective
control of resource usage. The need for continuous
delivery and monitoring of application components
impacts on the composition and skills profile of IT
teams, favoring small cross-functional teams and
leading to convergence of development and
operations (DevOps). The separation of code
development and declarative methods of environment
configuration play an important role in increasing the
productivity of the software development process.
Furthermore, developers of enterprise applications
are increasingly turning towards open source
solutions that allow full control over the entire
software stack, avoiding costly proprietary solutions.
Also, while the use of public cloud platforms is
economically compelling, an important function of
the architecture is to ensure independence from

826
Feuerlicht, G., Beranek, M. and Kovar, V.
Microservices Management with the Unicorn Cloud Framework.
DOI: 10.5220/0009572008260832
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 826-832
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

individual cloud providers, avoiding a provider lock-
in. Finally, the architecture should reduce the
complexity of application development and
maintenance process and facilitate effective reuse of
application components and infrastructure services.
These requirements demand a revision of existing
architectural principles and application development
methods.

In this paper, we describe the Unicorn Cloud
Framework (uuCloud). uuCloud is a part of the
Unicorn Application Framework (UAF), a suite of
closely integrated frameworks described in previous
publications (Beranek et al., 2017), (Beránek et al.,
2017), (Beranek et al., 2018). UAF was developed by
Unicorn (https://unicorn.com/cz) - a provider of IT
solutions based in Prague, Czech Republic and is used
to develop solutions for organizations across a range
of industry domains, including banking, insurance,
energy and utilities, telecommunications,
manufacturing and trade. The main objective of
uuCloud framework is to document and automate the
development and deployment of microservices
applications and to facilitate reuse of skills and
software components across multiple projects.

The paper is structured as follows. In the next
section (Section 2) we review recent research
publications dealing with frameworks for container-
based microservices. The following section (Section
3) describes the uuCloud framework and Section 4
are our conclusions.

2 RELATED WORK

In this section we review recent research publications
dealing with frameworks for the management of
container-based microservices. Cloud-based
application development frameworks and
architectures have been the subject of intense recent
interest by both industry practitioners and academic
researchers, in particular in the context of
microservices and DevOps (Mahmood and Saeed,
2013), (Thönes, 2015). According to Rimal et al.
(Rimal et al., 2011) the most important current
challenge is the lack of a standard architectural
approach for cloud computing. The authors explore
and classify architectural characteristics of cloud
computing and identify several architectural features
that play a major role in the adoption of cloud
computing. The paper provides guidelines for
software architects for developing cloud
architectures.

While container technologies and microservices
have revolutionized application development and

deployment, it is also evident that the use of these
technologies has its challenges. The management of
large-scale container-based environments requires
automation to ensure fast and predictable application
deployment, auto-scaling and control of resource
usage. At the same time, there is a requirement for
portability across different public and private clouds.
To address such issues a number of open source
projects aiming to support the development and
deployment of cloud-based applications have been
recently initiated. Prominent examples include Cloud
Foundry (CloudFoundry, 2017), OpenShift
(OpenShift, 2020), Docker Swarm (Naik, 2016) and
Kubernetes (Burns et al., 2016b). A key idea of these
open source platforms is to abstract the complexity of
the underlying cloud infrastructure and present a
well-designed API (Application Programming
Interface) that simplifies the management of
container-based cloud environments. Brewer
(Brewer, 2015) in his keynote “Kubernetes The Path
to Cloud Native” argues that we are in middle of a
great transition toward cloud native applications
characterized by highly available unlimited
“ethereal” cloud resources. This environment consists
of co-designed, but independent microservices and
APIs, abstracting away from machines and operating
systems. The Kubernetes project initiated by Google
in 2014 as an open source cluster manager for Docker
containers has its origins in an earlier Google
container management systems called Borg (Burns et
al., 2016b) and Omega (Schwarzkopf et al., 2013).
Kubernetes objective is to facilitate cloud native
systems that run applications and processes in
isolated units of application deployment (i.e. software
containers). Containers implement microservices
which are dynamically managed to maximize
resource utilization and minimize the cost associated
with maintenance and operations. The state of objects
in Kubernetes is accessed through a domain-specific
REST API that supports versioning, validation,
authentication and authorization for a diverse range
of clients (Burns et al., 2016a). Other similar efforts
in this area include OpenStack (Kumar et al., 2014) -
a cloud operating system designed to control large
pools of compute, storage, and networking resources,
managed using a dashboard used by administrators to
control cloud resources and to provision resources
through a web interface. In (Feller et al., 2012), the
authors argue that many existing frameworks have a
high degree of centralization and do not tolerate
system component failures, and present the design,
implementation and evaluation of a scalable and
autonomic virtual machine (VM) management
framework called Snooze. Truyen et al. (Truyen et al.,

Microservices Management with the Unicorn Cloud Framework

827

2019) evaluate the performance overheads introduced
by Docker engine and two container orchestration
frameworks: Docker Swarm and Kubernetes, when
running CPU-bound workloads in OpenStack. The
authors report that Docker engine deployments
running in host mode exhibit negligible performance
overheads in comparison to native OpenStack
deployments, but that virtual IP networking
introduces a substantial overhead in Docker Swarm
and Kubernetes. They conclude that the solution
involves service networking approaches that run in
true host mode and offer support for network isolation
between containers. Another finding discussed in the
paper was that volume plugins for persistent storage
have a large impact on the overall resource model of
a database workload. The paper provides
experimental confirmation for this assertion showing
that a CPU-bound Cassandra workload changes into
an I/O-bound workload in both Docker Swarm and
Kubernetes. This implies that placement decisions for
native or Docker engine deployments need to be
recomputed when using container orchestration
frameworks such as Docker Swarm or Kubernetes.
The authors conclude that while container
orchestration frameworks provide various advantages
for automating SLO-aware placement of multi-tenant
applications, to gain full benefits of this approach
container orchestration frameworks need further
development.

While Kubernetes is gaining momentum as a
platform for the management of cloud resources with
support from major public cloud platforms including
Google Cloud Platform, Microsoft Azure and most
recently Amazon AWS, there is a number of
alternative projects that aim to address the need for
universal framework for the development and
deployment of cloud applications. However, some
proposals lack empirical verification using large-
scale real-life applications. Complicating this
situation is the rapid rate of innovation in this area
characterized by the current trend toward finer
resource granularity with corresponding impact on
the complexity of cloud resource management
frameworks (Baldini et al., 2017). According to Ben-
Yehuda (Agmon Ben-Yehuda et al., 2014), the trend
toward increasingly finer resource granularity is set to
continue resulting in improved flexibility and
efficiency of cloud-based solutions. The authors
assert that resources such as compute, memory, I/O,
storage, etc. will be charged for in dynamically
changing amounts, not in fixed bundles. They
conclude that the RaaS (Resource as a Service) cloud
requires new mechanisms for allocating, metering,
charging for, reclaiming, and redistributing CPU,

memory, and I/O resources among multiple clients
every few seconds.

3 uuCLOUD FRAMEWORK

As noted in section 2, currently there is a lack of
agreement about a standard framework for the
management of cloud-based microservices. Our
solution is the uuCloud cloud management platform
that facilitates provisioning, monitoring and
management of elastic cloud services in the form of
virtualized Unicorn Applications (uuApps). uuCloud
supports hybrid cloud operation combining on-
premises cloud infrastructure with public cloud
infrastructures such as Microsoft Azure and AWS
cloud platforms.

Importantly, uuCloud enables the development of
cloud-native applications using the DevOps
approach. As illustrated in Figure 1, uuCloud
incorporates a comprehensive range of infrastructure
services that allow rapid deployment of applications
without the need to re-implement basic functionality
(i.e. authentication, authorization, etc.) separately for
every application.

Figure 1: uuCloud framework services.

Logging and monitoring services are used by
systems administrators at runtime to ensure that the
system operates as specified by the SLA (Service
Level Agreement).

The uuCloud framework consist of three basic
components: 1) uuCloud Operation Registry – a
database that maintains active information about
uuCloud objects, 2) uuCloud Control Centre (uuC3) -
a tool that is used to automate deployment and
operation of container-based microservices, and 3)
Operation Runtime that provides facilities for

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

828

monitoring runtime services. To ensure portability
and to reduce overheads uuCloud uses Docker
container-based virtualization (Docker, 2015).
Docker containers can be deployed either to a public
cloud infrastructure (e.g. AWS or Microsoft Azure)
or to a private (on-premises) infrastructure (e.g.
Plus4U – Unicorn cloud infrastructure).

uuCloud supports multi-tenancy and can
accommodate a large number of Tenants using
scalable resources across multiple cloud platforms.
Each Tenant typically represents a separate
organization (e.g. a publisher of online learning
courses). Tenants are assigned resources from
Resource Pools using the mechanism of Resource
Lease that specifies usage constraints such as the
maximum number of vCPUs (virtual CPUs), RAM
size and size of storage that are available for the
operation of a specific Tenant. A Tenant can be
allocated several Resource Pools, for example
separate Resource Pools for production and
development. Each Tenant consumes its own
resources and is monitored and billed separately.
Applications can be shared among multiple Tenants
with the Tenant in whose Resource Pool the
application is deployed being responsible for the
consumed resources. Each Host (physical or virtual
server) is allocated to a logical aggregation of
computing resources called a Resource Group.
Resource groups can have additional Resources (e.g.
MongoDB (MongoDB, 2020), Oracle DBMS,

Gateways, etc.). Each Resource Group belongs to a
Region – a separate IT infrastructure sourced from a
single cloud provider with co-located compute,
storage and network resources characterized by low
latency and high bandwidth connectivity. Regions are
grouped into Clouds that can be composed of multiple
public and private cloud platforms.

A Node is a unit of deployment with hardware
characteristics that include virtual CPU count
(vCPU), RAM size and ephemeral storage. Nodes are
classified according to NodeSize, e.g. M (Medium
size: 1xvCPU, 1 GB of RAM, 1 GB of ephemeral
storage) or L (Large size: 2xvCPU, 2 GB of RAM, 1
GB of ephemeral storage). Nodes are further
classified as synchronous or asynchronous depending
on the behaviour of the application that the node
virtualizes. Nodes are grouped into sets of nodes with
identical functionality called NodeSets.

Figure 2. illustrates the mapping of uuCloud
objects to Microsoft Azure and Docker Swarm (Naik,
2016). uuCloud constitutes a middleware layer
between the Microsoft Azure cloud platform and the
Docker cluster orchestration platform Docker Swarm.
uuCloudInstance represents a private or public cloud
instance. There is one to one mapping between Azure
Regions, Resource Groups and virtual Machines, and
the corresponding uuCloud objects: uuRegions,
uuResourceGroups and uuHosts, and Swarm Clusters
and Swarm Nodes that map into uuResourceGroups
and uuHosts.

Figure 2: Mapping between uuCloud, Microsoft Azure and Docker Swarm.

Microservices Management with the Unicorn Cloud Framework

829

Figure 3: Mapping of applications (uuApps) to microservices.

The function of the Unicorn Cloud Control Center
(uuC3) is to automate the management and operation
of container-based microservices via a REST API.
uuCloud API includes deployment commands
(deploy, redeploy, undeploy), commands to increase
or decrease the number nodes in a nodeset (scale),
commands that control sharing of applications (share,
unshare) and commands that are used to monitor the
status of nodes and applications (getStatus,
getAttributes, etc.).

uuApp application is composed of sub-
applications (uuSubApps) – independent units of
functionality that implement a particular set of related
business functions (e.g. administration of online
learning courses). As illustrated in Figure 3, each
uuSubApp is implemented as a containerized
microservice (uuAppServer) and is associated with its
own structured or binary storage (uuObjectStore). We
made an architectural decision to implement each
sub-application as a single containerized
microservice to ensure fast access to persistent data
and to maintain security and consistency of the
underlying data sources. In general, each
microservice has its own life-cycle that includes
requirements specifications, design, development,
testing, deployment and monitoring phases. To allow
finer control over computing resource individual
application modules (Separated Performing Parts)
can be directly addressed. This allows selected

modules of the uuSubApp to be deployed on separate
computing nodes improving application scalability
and reducing resource utilization.

Before a microservice can be deployed to a
particular node (or NodeSet) the developer creates a
Node Image from a uuSubApp and a Runtime Stack
that contains all the related archives and components
needed to run the application (i.e. system tools,
system libraries, etc.). The resulting Node Image
constitutes a unit of deployment, its metadata is
recorded in the Operation Registry and the Node
Image is published to the private Docker Image
Registry. During deployment, the uuC3 Deploy
command reads the Deployment Descriptor (JSON
file that contains deployment attributes) and searches
the Operation Registry for an existing application
deployment object.

At runtime, client applications send requests to a
a router via a gateway (uuGateway) that passes each
request to a load balancer. The load balancer selects a
Node from a NodeSet of functionally identical nodes,
optimizing the use of the hardware infrastructure and
providing a failover capability (i.e. if a particular
Node is not responsive the request is re-directed to an
alternative Node).

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

830

4 CONCLUSIONS

While the use of microservices and container-based
virtualization brings many benefits, the highly
distributed nature of the resulting applications and the
short software release cycles that characterize the
DevOps approach present many challenges to
organizations involved in the development of cloud-
based applications. The management of large-scale
container-based microservices environments requires
automation to ensure fast and predictable application
deployment, auto-scaling and control of resource
usage. Furthermore, there is a need to support the
ever-expanding range of various types of mobile and
IoT devices using cross-platform client-side
application components. Suitable application
development frameworks and associated methods
and tools are an essential pre-requisite for achieving
successful project results on a repeatable basis.

The uuCloud framework described in this paper is
an integral part of the Unicorn Application
Framework that was developed specifically to
address the requirements of modern mobile cloud-
based applications. The UAF is currently used for the
development of large-scale enterprise applications at
Unicorn. An important difference between UAF and
other similar frameworks (e.g. Kubernetes) is that
UAF is not limited to the management of container-
based environments (container orchestration) but it is
a suite of closely integrated frameworks that address
a comprehensive range of requirements of modern
mobile cloud-based applications over the entire
systems development lifecycle. An important benefit
of the uuCloud framework is its ability to manage
complex multi-tenant environments deployed across
multiple (hybrid) cloud platforms, hiding the
heterogeneity of the underlying cloud infrastructures.
uuCloud manages cloud metadata, supports
automatic application deployment and autonomic
scaling of applications. uuCloud multi-tenancy
derives benefits from the economies of scale. With a
large number of tenants deployed on a public cloud
infrastructure such as AWS or Microsoft Azure,
resources can be purchased in bulk and then allocated
in smaller packages to individual tenants who benefit
from the reduced overall cost. Furthermore, uuCloud
includes a detail lifecycle methodology that captures
the knowledge and expertise gained across numerous
projects and describes the entire design and
development process starting with the identification
of business use cases and ending with the
implementation of well-engineered, component-
based software applications.

Developing cloud frameworks such as uuCloud
has its challenges, in particular the need to keep up
with the rapid development and ever-increasing range
of cloud services available from public cloud
providers. Incorporating new types of services, for
example AWS Lambda serverless compute services,
and AWS Machine Learning services, requires
continuous evolution of the framework and
constitutes the focus of our current efforts.

REFERENCES

2017. Microsoft Azure: Cloud Computing Platform &
Services [Online]. Available: https://azure.microsoft.
com/en-au/ [Accessed 22 August 2017 2017].

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A. &
Tsafrir, D. 2014. The rise of RaaS: the resource-as-a-
service cloud. Communications of the ACM, 57, 76-84.

Amazon.Com. 2017. http://aws.amazon.com/ [Online].
Available: http://aws.amazon.com/ [Accessed 7 July,
2017 2017].

Balalaie, A., Heydarnoori, A. & Jamshidi, P. 2016.
Microservices architecture enables DevOps: migration
to a cloud-native architecture. IEEE Software, 33, 42-
52.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.
& Slominski, A. 2017. Serverless computing: Current
trends and open problems. Research Advances in Cloud
Computing. Springer.

Beránek, M., Feuerlicht, G. & Kovář, V. Developing
enterprise applications for cloud: the unicorn
application framework. International Conference on
Grid, Cloud and Cluster Computing, GCC, 2017.

Beranek, M., Kovar, V. & Feuerlicht, G. Framework for
Management of Multi-tenant Cloud Environments.
2018 Seattle, USA. Springer International Publishing,
309-322.

Beranek, M., Stastny, M., Kovar, V. & Feuerlicht, G.
Architecting Enterprise Applications for the Cloud: The
Unicorn Universe Cloud Framework. International
Conference on Service-Oriented Computing, 2017.
Springer, 258-269.

Brewer, E. A. Kubernetes and the path to cloud native.
Proceedings of the Sixth ACM Symposium on Cloud
Computing, 2015. ACM, 167-167.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. &
Wilkes, J. 2016a. Borg, omega, and kubernetes. Queue,
14, 10.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. &
Wilkes, J. 2016b. Borg, omega, and kubernetes. Queue,
14, 70-93.

Cloudfoundry. 2017. Cloud Application Platform - Devops
Platform, Cloud Foundry [Online]. @cloudfoundry.
Available: https://www.cloudfoundry.org/ [Accessed
28 September 2017].

Microservices Management with the Unicorn Cloud Framework

831

Docker. 2015. What is Docker [Online]. @docker.
Available: https://www.docker.com/what-docker
[Accessed 21 August 2017.

Feller, E., Rilling, L. & Morin, C. Snooze: A scalable and
autonomic virtual machine management framework for
private clouds. Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), 2012. IEEE
Computer Society, 482-489.

Kumar, R., Gupta, N., Charu, S., Jain, K. & Jangir, S. K.
2014. Open source solution for cloud computing
platform using OpenStack. International Journal of
Computer Science and Mobile Computing, 3, 89-98.

Mahmood, Z. & Saeed, S. 2013. Software engineering
frameworks for the cloud computing paradigm,
Springer.

Mongodb. 2020. MongoDb [Online]. Available: https://
www.mongodb.com/ [Accessed 20 January 2020].

Naik, N. Building a virtual system of systems using Docker
Swarm in multiple clouds. 2016 IEEE International
Symposium on Systems Engineering (ISSE), 2016.
IEEE, 1-3.

Openshift 2020. OpenShift Container Platform by Red Hat,
Built on Kubernetes.

Rimal, B. P., Jukan, A., Katsaros, D. & Goeleven, Y. 2011.
Architectural requirements for cloud computing
systems: an enterprise cloud approach. Journal of Grid
Computing, 9, 3-26.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. &
Wilkes, J. Omega: flexible, scalable schedulers for
large compute clusters. Proceedings of the 8th ACM
European Conference on Computer Systems, 2013.
ACM, 351-364.

Thönes, J. 2015. Microservices. IEEE Software, 32, 116-
116.

Truyen, E., Van Landuyt, D., Lagaisse, B. & Joosen, W.
Performance overhead of container orchestration
frameworks for management of multi-tenant database
deployments. Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019. ACM, 156-
159.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

832

