o  Content level proposes adequate 
resources according to the student’s 
knowledge and in relation with the 
corresponding sequences 
o  Presentation level determines the better 
form and nature of the resources  
o  Learning process level which defines 
specific learning methods to adopt 
during sequences 
  a-teacher: It presents to the teacher tables and 
graphs offering a monitoring space and 
calculate indicators that will be displayed on. 
5  CONCLUSIONS AND FUTURE 
WORK 
In this paper, we proposed an agent-based 
Personalized Learning Architecture. The system is 
characterized by the following properties: 
  A learner model to store and permanently 
update learner’s profile. 
  Learning strategies according to the learner's 
profile. 
  Scenarios chosen by the course manager based 
on prerequisites and learner's profile. 
 
Ontologies play an increasing role in the new 
generation of information or knowledge-based 
systems. It is also a keystone of multi-agent systems 
using high-level communication (Freitas et al., 
2017). 
Our work is in progress. It consists firstly in 
finalizing the ontology of the learner model. 
Secondly agent integration and personalization of 
scenarios will be dealt in the Moodle environment. 
Our challenge is to identify, from traces and 
questionnaires deployed throughout learning 
processes on Moodle, the common trajectories 
leading in achievement of objectives, and in 
academic and professional success. 
REFERENCES 
Brusilovsky, P., Schwarz, E., Weber, G., 1996. ELM-
ART: An intelligent tutoring system on World Wide 
Web. In Intelligent Tutoring Systems, Lectures Notes 
in Computer Science, Vol 1086. 
Brusilovsky, P., 2001. Adaptive hypermedia, User 
Modeling and User Adapted Interaction, 11(1/2), 
pp87-110. 
Chachoua, S., Tamani, N., Malki, J., Estraillier, P., 2016. 
Towards a Trace-Based Adaptation Model in e-
Learning Systems. In The 24th International 
Conference on Computers in Education, Nov 2016, 
Mumbai, India. hal-01899912. 
Dardier, A., Laïb N., Robert-Bobée I. 2013. Les 
décrocheurs du système éducatif : de qui parle-t-on ?  
in France portrait social, édition 2013 INSEE Paris  
El Haddioui, I., 2015. Manhali : un système de gestion 
d’apprentissage adaptatif pour la modélisation du 
comportement et la détection du style d’apprentissage 
de l’apprenant. In 7ème Conférence sur les 
Environnements Informatiques pour l’Apprentissage 
Humain (EIAH 2015), Jun 2015, Agadir, Maroc. 
pp.462-0. hal-01405992. 
Freitas, A,  Panisson, A., R.,  Hilgert, L., Meneguzzi, F., 
2017. Applying ontologies to the development and 
execution of Multi-Agent Systems. In Web 
Intelligence, vol. 15, no. 4, pp. 291-302,2017. 
Gong,Y., 2014. Student Modeling in Intelligent Tutoring 
Systems, Doctoral dissertation, Worcester Polytechnic 
Institute. 
Henze, N., Dolog, P. Nejdl, W., et al., 2004. Reasoning 
and ontologies for personalized e-learning in the 
semantic web. In Journal of Educational Technology 
& Society, 7 (4), 82–97. 
Kaya, G., Altun,A., 2011. A Learner Model for Learning 
Object Based Personalized Learning Environments, 
Communications. In Computer and Information 
Science, October 2011. 
Muruganandam, S., Srininvasan, N., 2017. Personalised e-
learning system using learner profile ontology and 
sequential pattern mining-based recommendation, In 
Int. J. Business Intelligence and Data Mining, Vol. 12, 
No. 1, pp.78–93. 
Nafea, S. M., Siewe, F., He, Y., 2017. An adaptative 
learning ontological framework based on learning 
styles and teaching strategies. In Proceedings of 85th 
ISERD International Conference, Cairo, Egypt, 11th-
12th September 2017. 
Parmentier P. 2018. La réussite des étudiants, objectif de 
la transformation pédagogique. In Journées nationales 
de l'Innovation pédagogique dans l'Enseignement 
supérieur.  20 Novembre 2018  
Tack, A,François, T., Ligozat, A.-L. Fairon, C., 2016. 
Modèles adaptatifs pour prédire automatiquement la 
compétence lexicale d’un apprenant de français langue 
étrangère. In JEP-TALNRECITAL 2016
, Jan 2016, 
Paris, France. Actes de la conférence conjointe JEP-
TALN-RECITAL 2016. <hal-01631772>. 
Tadlaoui, M. A., Aammou, S., Khaldi,M., Carvalho, R. N., 
2016.Learner Modeling in Adaptive Educational 
Systems: A Comparative Study.InInternational 
Journal of Modern Education and Computer Science, 
vol. 8, n° 13, p. 1. 
Talon, B., Kerkeni, I., Tliche, S., Belaïd Ajroud, H., 
2013.Tracking a collaborative Web 2.0 learning 
environment. D.  In  Hernandez-Leo et al. (Eds): EC-
TEL 2013, LNCS 8095, pp 577-583. Springer-Verlag 
Berlin Heidelberg. 
Tmimi, M.,Benslimane, M., Berrada, M., Ouazzani, K., 
2017.A Proposed Conception of the Learner Model for