
MVCLang: A Software Modeling Language for the
Model-View-Controller Design Pattern

Mert Ozkaya1 and Irem Fidandan2

1Department of Computer Engineering, Yeditepe University, Istanbul, Turkey
2Eryaz Software, Istanbul, Turkey

Keywords: Model-View-Controller (MVC), Software Modeling Language, Model Analysis, Code Generation, ASP.NET.

Abstract: The Model-View-Controller (MVC) software design pattern promotes separating software systems into the
model, view, and controller elements. The views represent the user-interfaces, the models represent the system
data, and the controllers handle the requests sent by the views and coordinate the interactions between views
and models. While many software frameworks are available for the MVC-based software developments, no
any attempt have been made on increasing the level of abstraction for the MVC developments and provide a
model-based approach. Indeed, none of the high-level software modeling languages support the MVC design
pattern. So, we propose in this paper a visual, MVC-based modeling language called MVCLang, which
enables to model MVC-based software architectures that can be easily analysed and implemented. MVCLang
is supported with an Eclipse-based prototype toolset for specifying the visual MVC architectures and analysing
them for a number of wellformedness rules. MVCLang’s toolset can further produce ASP.NET MVC code
that reflects the architectural design decisions. We evaluated MVCLang on a software company that offers
e-commerce solutions. Therein, 5 developers used MVCLang for their e-commerce project developments and
provided feedback for a set of pre-determined questions.

1 INTRODUCTION

Model-View-Controller (MVC) has been proposed by
Trygve Reenskaug in the late seventies as a software
design pattern, which aims at modularising the soft-
ware systems into the model, view, and controller el-
ements and maximising their understandability and
analysability (Reenskaug, 2003). Models represent
the system data, views represent the pictorial forms
on which the users see the model data, and controllers
represent the interactions between the views and mod-
els (i.e., how the models need to be used and manipu-
lated upon any user requests via the views). Separat-
ing the software development into different concerns
maximises the cohesion and minimises the coupling,
which is one of the main principals of quality cod-
ing and aids in reducing the development and mainte-
nance cost. Also, separating the views from the busi-
ness logic and data enables multiple users (e.g., web
designers and developers) to work in parallel, which
reduces the development time.

MVC has first been applied in the Smalltalk 80
language in the late eighties, where the model, view,
and controller concepts are represented as abstract

entities that can be used for creating understandable
software systems (Burbeck, 1987). Later on, MVC
has gained huge popularity in the area of web applica-
tions development, and many web technologies (e.g.,
.NET, JavaScript, and Php) nowadays offer their own
frameworks for the MVC-based web developments.
Moreover, as discussed in Section 6, many researches
have been conducted on extending MVC for various
domain problems (e.g., secure systems, multi-agent
systems, and service-oriented systems).

However, the current MVC frameworks force
practitioners to work on the software implementation
and deal with the coding of the view, model, and
controller units. While the MVC frameworks pro-
vide many re-usabilities, developers are still expected
to deal with low-level programming issues that may
require expertise on particular software languages
and technologies. Therefore, the effort required for
developing and testing the model, view, and con-
troller elements separately may be unexpectedly high.
Besides, other (probably non-technical) stakeholders
(e.g., customers) may not be involved in the develop-
ment and testing process, which may negatively af-
fect the quality of software systems. To avoid these,

Ozkaya, M. and Fidandan, I.
MVCLang: A Software Modeling Language for the Model-View-Controller Design Pattern.
DOI: 10.5220/0009571400750083
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 75-83
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

75



Figure 1: The meta-model of the MVCLang language.

one could enhance the level of abstraction by apply-
ing software modeling, which promotes specifying
high-level software models that consist of abstract,
explanatory statements without any platform-specific
implementation details(Seidewitz, 2003). The high-
level models are potentially useful for the commu-
nication of the design decisions with different stake-
holders who can also contribute to the application de-
velopment and testing despite having very little (or
no) experience in programming. The models can be
useful for the early detection of the design errors that
may otherwise go undetected until the system deploy-
ment and cause huge maintenance cost. The models
that are analysed to be correct can be used for gener-
ating quality code that reflect the modeled design de-
cisions. However, as discussed in Section 6, software
modeling has not yet been systematically employed
for the development of MVC-based software appli-
cations. While many approaches have extended the
MVC design pattern for different needs, no any mod-
eling platform consisting of a modeling language (i.e.,
the notation set) and its toolset has been proposed so
far for the MVC-based modeling, analysis, and im-
plementation of software systems.

The goal of this paper is to propose a software
modeling language called MVCLang for the MVC-
based architecture modeling of software systems.
MVCLang offers a visual notation set for the specifi-
cations of the model, view, and controller elements of
software systems and their relationships. MVCLang
is supported with an Eclipse-based prototype toolset.
The toolset’s modeling editor enables to create the vi-
sual MVC architectures and check correctness for a
set of wellformedness rules. The toolset’s code gener-

ator translates MVC models into software code using
the ASP.NET MVC framework.

In the rest of this paper, we initially introduce the
MVCLang language (i.e., syntax and semantics) and
then introduce MVCLang’s prototype toolset (i.e., the
model editor, analyser, and code generator). Next, we
illustrate MVCLang via the sports store case-study
and evaluate the language in industry. Lastly, we pro-
vide the discussions of the related works.

2 OVERVIEW OF MVCLang

MVCLang offers a visual notation set for the model-
ing of MVC-based software architectures, which are
separated into four packages: model, view, controller,
and MVC. While the model, view, and controller
packages are created for modeling the model, view,
and controller elements of the MVC architectures, the
MVC package is created for establishing the relation-
ships between model, view, and controller elements
that are modeled in their own packages. Figure 1
shows MVCLang’s meta-model, which describes the
modeling concepts composing each package and their
relationships. The visual symbols that are associated
with the modeling concepts are depicted in Figure 2,
Figure 3, Figure 4, and Figure 5, which are for the
model, view, controller, and MVC packages respec-
tively. In the rest of this section, we discuss for each
modeling package the syntax and semantics of the
language elements informally. That is, we describe
the visual symbols for the language concepts and their
relationships, the constituting parts of the language
concepts and relationships, and how those concepts

ICSOFT 2020 - 15th International Conference on Software Technologies

76



Figure 2: The abstract and concrete syntax for MVCLang’s
model package.

and relationships can be used and composed together
to create meaningful specifications for each package.

2.1 Model Package

As depicted in Figure 1, a model package is specified
with a set of model elements that have association re-
lationships between each other. Models represent a
dataset to be stored and manipulated by the software
system, which may be implemented as database ta-
bles. Figure 2 displays the concrete symbols that cor-
respond to the abstract concepts given in Figure 1. So,
each model consists of a set of properties that repre-
sent the model data and are specified with the data
type and its name. The data type can be either inte-
ger, boolean, string, or double. The association rela-
tionship is used to relate the data of different model
datasets that are dependent on each other (e.g., the
company and employee datasets). The association
relationship is specified with the multiplicities and
roles, where multiplicities can be one-to-one, one-to-
many, many-to-one, and many-to-many and role de-
scribes the how each dataset acts in the relationship.

2.2 View Package

Figure 3 shows the symbols for the view package.
The partial view represents any re-usable view con-
tent(s) that can be used (or rendered) as part of
other view(s). The layout view represents the com-
mon user-interface parts (e.g., the footer and header),
which are shared among different views for offering
a consistent layout appearenace. As in Figure 1, each
view may have zero or more layout or render rela-
tionships, and each relationship enables the view to
render/use exactly one partial/layout view. A view of
any type is specified with action-link or form mes-
sages that are triggered by the users who interact
with the view and cause the view to send requests
to the controllers. An action-link message represents

Figure 3: The abstract and concrete syntax for MVCLang’s
view package.

a link displayed on the view’s user interface, which
can be clicked by the user. An action-link is spec-
ified with the (i) name, (ii) request type, and (iii)
http method.The request type can be an HTTP request
that prompts the controller to return with a view or
an AJAX request that do not prompt for a new view.
The http method can be GET or POST. A form mes-
sage represents the action that results from a form dis-
played on the view and transmits the data filled in the
form to the controller. The form messages are speci-
fied with the (i) form name, (ii) request type, and (iii)
http method.

Figure 4: The abstract and concrete syntax for MVCLang’s
controller package.

2.3 Controller Package

As depicted in Figure 1, a controller package is speci-
fied with controller elements that each coordinates the

MVCLang: A Software Modeling Language for the Model-View-Controller Design Pattern

77



interactions between the view and model elements.
A controller includes a set of action methods, which
are triggered by the view request (i.e., action-link or
form) messages and perform the necessary operations
(e.g., adding/removing data, displaying a new web-
page, performing some computations, etc.) followed
by an output to be returned. Figure 4 shows the sym-
bols for specifying controllers and their action meth-
ods. An action-method is specified with (i) an http
method, (ii) its name, (iii) its parameter list, and (iv)
a return type. The http method can be GET or POST.
The method name can be any identifiers. The param-
eter list has zero or more parameters that each de-
scribes the data to be passed from the view whose
action link (or form) message is connected with the
action-method. A parameter is specified as a pair of
data type (i.e., integer, string, double) and identifier.
The return type is for specifying what output the con-
troller method will return after its computation. The
return type can be either (i) view, (ii) partial view,
(iii) redirect to action, or (iv) content. The view re-
turn type is specified when the action-method returns
a view to the user, while the partial view return type is
when a partial view is returned. The redirect-to-action
herein creates a call for another action-method of the
controller. The content option is specified when a data
of any supported type is returned.

Figure 5: The abstract and concrete syntax for MVCLang’s
MVC package.

2.4 MVC Package

As Figure 1 shows, an MVC package is specified with
(i) the instances of the model, view, and controller el-
ements that are specified in the model, view, and con-
troller packages and (ii) their relationships. Figure 5

shows the symbols for the MVC package elements
and their relationships. Concerning the relationships,
each receives a request from one type of element and
directs the request to another type of element as spec-
ified in Figure 1. The relationship between a view and
controller is for connecting the action-link (or form)
message of a view with the action-method of a con-
troller so as to enable the view to send requests to the
controller. The link arrow herein is by-default spec-
ified with the sendrequests stereotype. Each action
link (or form) message of a view may be linked with
exactly one controller method. The relationship be-
tween the view and model is for connecting the view
with any model whose data are to be displayed on the
view. The link’s stereotype is read, and users can at-
tach the list of properties to be displayed. A view may
be connected with zero or more models. The relation-
ship between controller and model is for connecting
controller’s action-method with the model element so
as to perform read/create/update/delete operations on
the model data. Users may attach the proper stereo-
type to the link that indicates the operation and the
list of model properties on which the operation is per-
formed. The stereotype can be either read, create, up-
date, or remove. The operation read is for reading the
model data specified in the property list, create is for
creating a new model data, and update is for updating
the model data given in the property list. The prop-
erty list may be left empty for creating a model data.
Each controller method may be connected with zero
or more models. Lastly, the relationship between con-
troller and view is for connecting the action-method
with a view element to indicate what view the method
returns after its computation. An action-method of a
controller may return zero or one view elements.

3 MVCLang’s TOOL SUPPORT

We developed a prototype tool for MVCLang using
the Sirius meta-modeling tool (Viyović et al., 2014)1.
Sirius is essentially an Eclipse project that uses and
extends the Eclipse Modeling Framework (EMF) for
the meta-modeling activities. With Sirius, we cre-
ated Ecore meta-models to define our language syn-
tax and semantics in EMF and automatically obtained
a modeling editor that can be used in the Eclipse plat-
form. Also, we used Eclipse’s Acceleo code genera-
tion technology2, which enabled us to integrate a code
generator to the modeling editor that we obtained
in Sirius. Our Eclipse-based prototype toolset (i.e.,

1Sirius: www.eclipse.org/sirius/
2Eclipse Acceleo: www.eclipse.org/acceleo/

ICSOFT 2020 - 15th International Conference on Software Technologies

78



Figure 6: The snapshot of the modeling editor for MVCLang.

Table 1: The well-formedness rules for MVCLang.

Modeling
Packages

Wellformedness Rules

Model
Model element name must be unique in a model package Model property name must be unique in a model element
Each model element must have at least one property Model association relationships must be acyclic

View
View element name must be unique in a view package Each layout/partial view must be used by at least one view element
A message http method must be either GET or POST A message request type must be either HTTP or Ajax
Each view message (i.e., either action-link or form) must be specified with a name, request type, and http method

Controller
Controller element name must be unique in a controller package Each controller element must have at least one action-method message
Each controller message must be specified with a name,
http method, and return type

A message http method must be either GET or POST

A message return type must be either View, Partial-View, Redirect-to-Action, or Content

MVC
Each view/model/controller element must be used in at least one MVC package
Each action-link/form message of each view element must send a request to exactly one action-method of any controller element
Each action-method message of each controller element must receive a request from at least one action-link/form message
of any view element
If the request type of a view message is HTTP, the controller which receives the request needs to return a view page
Any controller element connected with a model element must specify at least one model property that it needs to access
The http method of any controller’s action method must be the same as that of the view message from which the action
method receives a request

modeling editor and code generator) can be down-
loaded via the project web-site3. As depicted in Fig-
ure 6, the modeling editor consists of three sections:
modeling section, palette section and warning section.
The warning section displays any warning messages
due to the violation of the language’s wellformedness
rules that are presented in Table 1. Whenever an ar-
chitecture model violates any of those rules, the editor
warns the user with an appropriate message.

Our code generator produces ASP.NET MVC
framework code4 from the MVC models specified

3MVCLang: sites.google.com/view/mvclang
4Asp.net:dotnet.microsoft.com/apps/aspnet/mvc

in MVCLang via our Eclipse modeling editor. In
our code generator development, we firstly defined
the translation algorithms for producing the ASP.NET
MVC code informally and tested their correctness via
some simple case-studies. Note that due to the space
limitation, we are not able to discuss the translation
algorithms here. Then, we used Acceleo to develop
the generator that generates ASP.NET MVC code in
accordance with the translation algorithms. The gen-
erated ASP.NET MVC code essentially consists of
three folders, i.e., view, controller, and model. The
view folder includes an .cshtml file for each view el-
ement. The controller folder includes a C# file for

MVCLang: A Software Modeling Language for the Model-View-Controller Design Pattern

79



each controller element, where a C# class is gener-
ated that includes a distinct method for each action
method of the controller. The method body herein
includes the relevant algorithm implementation for,
e.g., manipulating the model data and displaying data
on a view’s web user-interface, which are generated
from the MVC relationships between the controller
and model, view elements. The model folder includes
a program file in C# for each model element, which
is responsible for connecting to a database in an MS
SQL Server and creating the necessary table that in-
cludes a distinct column for each model property. The
resulting code folders can be imported in any Visual
Studio .NET environment so as to use the generated
ASP.NET MVC framework code.

4 SPORTS STORE CASE STUDY

To illustrate MVCLang, we considered the sports
store application (Freeman, 2013). The sport store of-
fers a product catalog for the customers to browse by
category and add/remove any product to their shop-
ping cart. Customers can checkout after entering their
shipping details. The administrators may also monitor
sports store application and change the product cata-
logue by adding/removing/editing products.

In the rest of the section, we present the MVC
package models for the sports store application. Note
that due to the space limit, we give here the partial
specification that does not include the view, model,
and controller package specifications. The whole
specifications are available via the project website3.

The product MVC package is depicted in Fig-
ure 7. Whenever the CartHomePage view sends
a request to the ProductController via its Continue
Shopping action-link message (i.e., the user clicks
to continue shopping), the controller receives the re-
quest with its GetProductCategoryList action-method
and returns the ProductCategoryListPage view. The
ProductCategoryListPage view reads the product cat-
egory data from the Product model and displays
them. Also, ProductCategoryListPage view includes
the ProductListPage view as a partial view. So, when
the user selects a product category via the Product-
CategoryListPage view, the view’s ChooseProduct-
Category action-link message sends the selected cat-
egory to ProductController’s GetProductList action-
method and that returns the ProductListPage view
which reads and displays the Product model dataset
that matches with the chosen product category.

The MVC package for the shopping cart is de-
picted in Figure 8. The CartOperationsPage view that
is the partial view for the ProductListPage receives

add and remove requests from the user and direct
them to the controller via its Add to Cart and Remove
Product from Cart action-link messages respectively.
Whenever, CartController’s action-methods receive a
request, the action-methods return the corresponding
views that include the form for performing the ad-
d/remove operations. That is, the addToCart action-
method returns the AddtoCartPage while the Remove-
FromCart action-method returns RemoveFromCart-
Page. When the users fill in the forms on the corre-
sponding views, the views send form requests to the
CartController’s action-methods with the appropriate
parameter arguments. The arguments herein are the
product ID and amount of products added/removed.
CartController’s action methods modify the CartLine
model accordingly. Note also that the action-links
and action-methods for the form requests are speci-
fied with the POST http method.

The administrator MVC model is depicted in Fig-
ure 9. Whenever the user clicks to add, edit, or
delete products, the AdminHomePage view’s Create
a new Product, Edit a Product, and Delete a Prod-
uct action-link messages are triggered respectively.
Then, the action link messages forward the requests
to the connected action methods of AdminController.
The AdminController responds with the appropriate
form views (e.g., if delete request is received, the
DeleteProductPage form view is returned). When
the user submits the form, the corresponding view’s
form message is sent to AdminController’s connected
action-method and the action method accesses the
Product model data so as to make the necessary
changes. Note that the action-link and action-method
messages for handling the form requests are specified
with the POST http method.

We used our modeling editor for analysing Sport
store’s MVC architectures for the wellformedness
rules given in Table 1. Given all the rules being
satisfied, we used the code generator to produce the
ASP.NET MVC framework code. Figure 10 shows
the user-interfaces that have been generated from the
sport store’s view specifications. The full generated
code can be accessible via the project web-site3.

5 EVALUATION

We evaluated MVCLang and its toolset in a software
company called Eryaz Software5, which have offered
MVC-based e-commerce systems to hundreds of dif-
ferent customers since the nineties. In Eryaz, we
asked 5 experienced developers to use MVCLang for

5Eryaz Software: www.eryazsoftware.com.tr/en

ICSOFT 2020 - 15th International Conference on Software Technologies

80



Figure 7: The MVC package model for the product controller in sports store.

Figure 8: The MVC package model for the shopping cart controller in sports store.

Figure 9: The MVC package model for the admin controller in sports store.

any project that they develop and share their feedback
with us. We separated a 2-hour slot for each devel-
oper. During each session, we observed the devel-
oper’s modeling activities and answer the questions

that the developer asked. After completing the ses-
sion, we requested each developer to answer the fol-
lowing questions:
1. Do you find the notation set for the MVCLang ad-

MVCLang: A Software Modeling Language for the Model-View-Controller Design Pattern

81



Figure 10: The web-pages generated from the sports-store’s architectural models in MVCLang.

equate for MVC-based architecture modeling?

2. Is MVCLang easy to learn and use?

3. Does MVCLang shorten the development time for
the MVC-based web applications?

4. Is the generated code from MVC architectures
useful?

So, we observed interesting findings. Concerning
the first question, the developers are satisfied with
the language’s notation set. However, one developer
asked if we could enable modeling the views in terms
of user-interface elements such as labels, text-boxes,
and buttons and their layout. Also, two developers
requested a user-manual that describes the language
syntax. Another developer asked if we plan to make
MVCLang extensible to enable users to introduce
domain-specific notations for the MVC-based model-
ing. Concerning the second question, the developers
found MVCLang easy to learn and use as MVCLang
resembles the simple boxes-and-lines and UML that
many practitioners are familiar with. The developers
were however concerned about MVCLang’s support
for large and complex MVC architectures, as MV-
CLang does not currently support any techniques for
managing large models (e.g., sub-diagramming and
composite architectures). Concerning the third ques-
tion, some developers agreed that using MVCLang
for the automated generation of ASP.NET code from
the MVCLang specifications aids in shortening the
development time and maximising the software qual-
ity as the code is expected to meet the design de-
cisions. However, some code-oriented developers
pointed out the time needed for generating correct ar-
chitectural models that may sometimes outweigh the
time needed for just-coding. Lastly, the developers
are quite happy with the generated code that can be
used with some little changes to reach an executable
web application. One of the developers asked whether
we plan to provide a reverse-engineering support so
as to get back to an MVCLang specification after the
generated code is changed.

6 RELATED WORK

Many software modeling languages, including UML
(Rumbaugh et al., 2004) and its derivatives, architec-
tural languages, and domain-specific modeling lan-
guages, are available for creating software models
from different perspectives at different levels of ab-
stractions and performing useful operations such as
model analysis, formal verification, and code gener-
ation. However, our recent analyses on the existing
languages (Ozkaya, 2018a; Ozkaya, 2018b) let us ob-
serve that none of those languages provide a mod-
eling notation set for the MVC-based modeling and
rather focus on particular domains (e.g., embedded
systems, multi-agent systems, and distributed sys-
tems) or provide general-purpose notation sets. The
only exception here is UWE, which extends UML for
the web-applications modeling. UWE (Kraus et al.,
2007) does not directly adopt the MVC pattern and
rather supports the separation of concerns in terms
of the content, navigation, presentation, and process
viewpoints. While the presentation viewpoint corre-
sponds to the view element in MVC, the model and
controller elements of MVC are not explicitly con-
sidered in UWE. Also, it is not so easy to model
the relationships between different viewpoint models
that are each specified as a separate UML diagram.
Unlike our toolset that generates code in ASP.NET,
UWE’s toolset generates code in JSF (Java Server
Faces) framework.

The literature also includes some works that at-
tempt at extending the MVC pattern for different
needs. In (Taraghi and Ebner, 2010), Taraghi et al.
extended MVC for designing and developing web-
based widgets that are to be used for the personal
learning environment implementation at TU Graz.
In (Delessy-Gassant and Fernandez, 2012), Delessy-
Gassant et al. considered extending MVC with the
modeling of some security requirements such as au-
thentication, role-based access control, secure log-
ging, and secure data traffic. In (Sauter et al., 2005),

ICSOFT 2020 - 15th International Conference on Software Technologies

82



Sauter et al. proposed another extension on MVC for
the development of pervasive multi-device web appli-
cations. In (Barrett and Delany, 2004), Barrett et al.
extended MVC with a 5-tier architecture. The first
tier is the client, the second tier is the view, the third
tier is the business logic, the fourth tier is the data ab-
straction, and the fifth tier is the persistent data in the
database. In (Mahmoud and Maamar, 2006), Mah-
moud et al. proposed an approach for applying MVC
for the modeling of multi-agent systems. In (Cortez
and Vazhenin, 2015), Cortez et al. extended MVC for
the design and development of service-oriented archi-
tectures. While MVC have been extended many times
for different problem domains, none of those works
actually offer a modeling notation set for the MVC-
based modeling and a supporting toolset for the mod-
eling, analysis, and code generation.

7 CONCLUSION

In this paper, we proposed a software modeling lan-
guage called MVCLang for the MVC-based modeling
of software architectures. MVCLang provides a vi-
sual notation set for specifying the model, view, and
controller elements, and their relationships. We also
developed a modeling editor using the Eclipse Sir-
ius technology, through which practitioners can cre-
ate their MVC-based software models and check their
models for a number of wellformedness rules that we
defined. Furthermore, we also developed a code gen-
erator that can be used together with a modeling editor
for producing ASP.NET MVC framework code from
the MVCLang models. To illustrate the use of MV-
CLang, we considered in the paper the sports store
case-study, which we specified, analysed, and imple-
mented using MVCLang and its toolset. To evaluate
MVCLang, we considered a software company called
Eryaz, which builds MVC-based e-commerce solu-
tions for their customers. We prompted 5 develop-
ers from Eryaz to use the MVCLang language and its
toolset for their projects and share their feedback with
us. We also asked the developers a pre-determined set
of questions to learn their thoughts.

We are currently in the process of modifying the
language definition and the prototype toolset in accor-
dance with the feedback received from the developers
and releasing a newer version of the language. We
also plan to design some case-studies from diverse in-
dustries for evaluating MVCLang so as to determine
whether (i) the language definition (i.e., syntax and
semantics) is adequate for modeling diverse problems
and (ii) the toolset detects the design errors and pro-
duces the expected ASP.NET code correctly or not.

REFERENCES

Barrett, R. and Delany, S. J. (2004). openmvc: A
non-proprietary component-based framework for web
applications. In PROC. 13 TH INTERNATIONAL
WORLD WIDE WEB CONFERENCE, pages 464–
465.

Burbeck, S. (1987). Applications programming in
smalltalk-80(tm): How to use model-view-controller
(mvc).

Cortez, R. and Vazhenin, A. (2015). Virtual model-view-
controller design pattern: Extended mvc for service-
oriented architecture. IEEJ Transactions on Electrical
and Electronic Engineering, 10(4):411–422.

Delessy-Gassant, N. and Fernandez, E. B. (2012). The se-
cure mvc pattern. In 1st LACCEI International Sym-
posium on Software Architecture and Patterns, pages
1–6.

Freeman, A. (2013). Pro ASP.NET MVC 5. Apress, USA,
5th edition.

Kraus, A., Knapp, A., and Koch, N. (2007). Model-driven
generation of web applications in UWE. In Koch, N.,
Vallecillo, A., and Houben, G., editors, Proceedings
of the 3rd International Workshop on Model-Driven
Web Engineering MDWE 2007, Como, Italy, July 17,
2007, volume 261 of CEUR Workshop Proceedings.
CEUR-WS.org.

Mahmoud, Q. H. and Maamar, Z. (2006). Applying the mvc
design pattern to multi-agent systems. In 2006 Cana-
dian Conference on Electrical and Computer Engi-
neering, pages 2420–2423.

Ozkaya, M. (2018a). Analysing uml-based software mod-
elling languages. Journal of Aeronautics and Space
Technologies, 11(2):119–134.

Ozkaya, M. (2018b). The analysis of architectural lan-
guages for the needs of practitioners. Softw., Pract.
Exper., 48(5):985–1018.

Reenskaug, T. (2003). The model-view-controller (mvc) its
past and present.

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Uni-
fied Modeling Language Reference Manual, The (2Nd
Edition). Pearson Higher Education.

Sauter, P., Vögler, G., Specht, G., and Flor, T. (2005). A
model-view-controller extension for pervasive multi-
client user interfaces. Personal Ubiquitous Comput.,
9(2):100?107.

Seidewitz, E. (2003). What models mean. IEEE Software,
20(5):26–32.

Taraghi, B. and Ebner, M. (2010). A simple mvc frame-
work for widget development. In Proceedings of the
3rd Workshop on Mashup Personal Learning Environ-
ments (MUPPLE10), pages 1–8. . ISSN 1613-0073.

Viyović, V., Maksimović, M., and Perisić, B. (2014). Sir-
ius: A rapid development of dsm graphical editor. In
IEEE 18th International Conference on Intelligent En-
gineering Systems INES 2014, pages 233–238.

MVCLang: A Software Modeling Language for the Model-View-Controller Design Pattern

83


