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Abstract: For many years now, researchers as well as practitioners are harnessing well-known data mining processes, 
such as the CRISP-DM or KDD, to realize their data analytics projects. In times of big data and data science, 
at which not only the volume, variety and velocity of the data increases, but also the complexity to process, 
store and manage them, conventional solutions are often not sufficient and even more sophisticated systems 
are needed. To overcome this situation, in this positioning paper the (big) data science engineering process is 
introduced to provide a guideline for the realization of data-intensive systems. For this purpose, using the 
design science research methodology, existing theory and current literature from relevant subdomains are 
contextualized, discussed and adapted.

1 INTRODUCTION 

In the last decade, big data was one of the major 
trends in the computer science domain. Every year, 
more and more researchers and practitioners are 
harnessing the power that comes with new 
technologies, techniques, and paradigms to conduct 
their data-intensive projects. Application areas 
include, but are not limited to, industry (Reis and 
Gins, 2017) or the government sector (Kim et al., 
2014). However, despite the increasing interest, the 
proven added value through its application (Müller et 
al., 2018; Fosso Wamba et al., 2015), and the 
growing maturity of the topic as well as the related 
technologies, most of these projects fail to meet the 
expectations. Although lots of general guidelines, 
best practices and workflows exist, such as presented 
in (Pääkkönen and Pakkala, 2015; Chen et al., 2015; 
Volk et al., 2017; Grady, 2016), these either provide 
isolated activities or do not cover relevant projects’ 
steps from start-to-end. Additionally, some of the 
widely accepted approaches known from the data 
mining domain, like the knowledge discovery in 
databases (KDD) (Fayyad et al., 1996), Cross-
Industry-Standard-Process-for-Data-Mining (CRISP-
DM) (Shearer, 2000) or Sample, Explore, Modify, 
Model and Assess (SEMMA) (Azevedo and Santos, 
2008), are no longer easily applicable. This results 
especially from the missing consideration of the 
technical implementation as well as deployment and 

operational activities. Eventually, this complicates 
the applicability of useful processes and additionally 
confuses the users regarding the available options.  
Due to the nature of big data, numerous elaborated 
decisions need to be made regarding the 
corresponding collection, preparation, processing and 
storing (Pääkkönen and Pakkala, 2015). This 
includes, for instance, the general identification of 
relevant components and specific technologies. Most 
of these tasks fall under the term of big data 
engineering that can be defined as “a systematic 
approach of designing, implementing, testing, 
running and maintaining scalable systems, combining 
software and hardware, that are able to gather, store, 
process and analyze huge volumes of varying data, 
even at high velocities” (Volk et al., 2019). In here, 
the authors already highlighted the importance of the 
discipline for the future construction of big data 
systems. At the same time, it became apparent that 
currently no systematic process exists, which covers 
the system engineering from a start-to-end 
perspective in the domain of big data. Especially, due 
to the reason that this topic is also heavily interwoven 
with other domains and builds a technical foundation 
for the realization of their projects, such as data 
science (Provost and Fawcett, 2013) or industry 4.0 
(Xu and Duan, 2019), this may have a highly 
beneficial influence on all data-intensive systems. For 
the aforementioned reasons, we argue that one 
comprehensive approach that emerges from well-
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known theory could help to resolve the opacity of 
existing “guidelines”. Hence, the following research 
question shall be answered in the course of this work:  

“How can a system engineering process for data-
intensive projects be modeled to provide coverage for 
each step from the planning to the development and 
operation?” 

The outcome of this research is intended to 
provide a process model that shall serve as a guideline 
for researchers and practitioners to realize their data-
intensive projects. In order to substantiate the 
argumentation and positioning of our statements on a 
scientific basis, the design science research 
methodology according to (Hevner et al., 2004; 
Peffers et al., 2007) is used. Resulting out of this, the 
contribution at hand is structured as follows. While 
the first section provided a brief motivation, 
information about the current situation and the main 
objective, the subsequent section discusses relevant 
theories and approaches. This shall mainly serve as a 
foundation for the design and development of the 
intended artifact, which takes place in the third 
section of this paper. Apart from the general 
description of the artifact itself, initially existing 
approaches are discussed and a critical discussion as 
well as an outlook on future research provided. The 
work ends with a conclusion. 

2 BACKGROUND 

To provide a better understanding of the topics we are 
positioning on, the theory and related work about 
each of the relevant domains are presented. This is not 
to deliver an overview but also to confirm the needed 
theory identification (Peffers et al., 2007) for the 
actual design and development of the artifact. Hence, 
in the following section, relevant information, as well 
as related research articles, are presented. This 
comprises big data, data science, systems engineering 
and big data engineering processes. 

2.1 Big Data 

While big data is an intensely discussed topic that is 
dealt with by a multitude of publications, as shown in 
(Staegemann et al., 2019b), there is still no single one, 
universally applied definition for the term itself. One 
of the most commonly used definitions is provided by 
the National Institute of Standards and Technology 
(NIST), stating that big data “consists of extensive 
datasets primarily in the characteristics of volume, 
velocity, variety, and/or variability that require a 
scalable architecture for efficient storage, 

manipulation, and analysis” (NIST, 2019). While 
volume indicates the sheer amount of data, regarding 
volume or size, that are to be processed (Russom, 
2011), velocity stands for the speed with which those 
data are incoming as well as the timeliness in which 
results are expected by the users (Gandomi and 
Haider, 2015). Another challenge lies in the data’s 
heterogeneity, including for example different 
structures (structured, semi-structured, unstructured), 
formats, units of measurement or contexts, subsumed 
under the term variety (Gani et al., 2016). Moreover, 
variability signifies the ability of those 
aforementioned characteristics to change over time, 
with the same applying to the determined questions 
as well as the data’s content (Katal et al., 2013; Wu 
et al., 2014). However, those characteristics do not 
even include the factor of the data quality, which is in 
turn highly influential on the quality of the obtained 
analysis results (Hazen et al., 2014), or the task of 
verifying the validity of the developed application, 
adding even more challenges to the topic. 
Furthermore, besides big data’s inherent complexity 
due to those factors and its multidimensional nature, 
combining technical, human and organizational 
aspects (Alharthi et al., 2017), also the abundance of 
potentially available tools and techniques (Turck and 
Obayomi, 2019) increases the difficulty when 
attempting to engineer such a system. 

2.2 Data Science 

The volume of big data led not only to an increased 
demand of data-intensive systems, at the same time 
methodologies and theories to investigate those 
massive amounts were needed (Cao, 2017). As a 
consequence, the term data science evolved that can 
be described as “a set of fundamental principles that 
support and guide the principled extraction of 
information and knowledge from data” (Provost and 
Fawcett, 2013). For the actual information extraction 
and knowledge creation, different types of analytics 
are frequently used today, such as descriptive-, 
predictive- or prescriptive analytics (Cao, 2017).Due 
to the origin from the data mining domain, for the 
actual realization of related projects, today often well-
known approaches are used (Provost and Fawcett, 
2013). This includes, for instance, the already 
mentioned processes KDD, SEMMA and most of all 
the CRISP-DM (Piatetsky, 2014). Although most of 
them differ in parts, all of them share a similar 
understanding when it comes to the exploration of the 
data in a structured way. Azevedo and Santos (2008), 
for instance, performed a thorough comparison of all 
three approaches. In their work, they highlighted that 
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the KDD can be more observed as an implementation 
of the other two approaches and that the CRISP-DM 
appears to be more complete than the others are. 
Apart from the sole preparation and analysis of the 
data, this approach explicitly incorporates the 
business understanding in an organizational context 
as well as the deployment of the targeted solution. 
This results in the six phases of business 
understanding, data understanding, data 
preparation, modeling, evaluation, and deployment 
(Shearer, 2000; Azevedo and Santos, 2008). 

2.3 Systems Engineering 

The design and development of information systems 
remains one of the major disciplines for many years 
now. Due to this, it is not surprising that many 
researchers, as well as practitioners, are attempting to 
provide approaches and guidelines for the successful 
planning and engineering of the systems and 
software, such as (Hevner et al., 2004; Peffers et al., 
2007; Mobus and Kalton, 2015; Nicholas and Steyn, 
2012b; Sommerville, 2016). Commonly, each 
system, independently from its nature, follows a life 
cycle that runs from the initial identification of the 
need for the system over the system analysis, the 
design, the construction, and operation until the 
decommissioning (Mobus and Kalton, 2015). 
Nicholas and Steyn (2012b) refer to systems 
engineering (SE) as “a way to bring a whole system 
into being and to account for its whole life cycle”.   
This is comparable to other definitions such as from 
the non-profit organization International Council on 
Systems Engineering (INCOSE). According to 
INCOSE, the term can be observed as a 
“transdisciplinary and integrative approach to enable 
the successful realization, use, and retirement of 
engineered systems, using systems principles and 
concepts, and scientific, technological, and 
management methods“ (INCOSE, 2020). Despite 
those explanations, as well as, the needed integration 
of different concepts, technologies and (sub-) 
systems, sometimes from different domains, the SE 
can be seen as a meta-engineering discipline (Mobus 
and Kalton, 2015). Apart from the general description 
of the term and the life cycle of a system, the authors 
also developed one of the most widely accepted 
approaches to engineer those systems while covering 
the mentioned life cycle stages. The process is 
depicted in Figure 1. This approach synthesizes most 
of the existing approaches, such as from (Nicholas 
and Steyn, 2012b), but in more detail. The process 
covers seven main steps that range from the initial 
identification of the problem until the operation. 

 

Figure 1: SE Life Cycle (Mobus and Kalton, 2015). 

Within the problem identification, the same will be 
performed. Important here is that the actual problem 
will be discovered and not only (obvious) 
implications of it, providing a problem-centric instead 
of a solution-centric view. Afterward, the problem 
needs to be specified in more detail by developing 
requirements within the problem analysis stage. Inter 
alia, this can be realized through decomposition and 
separate observation of relevant sub-problems. 
Besides that, boundaries of the system functionalities 
can be determined. The identified problems are 
subsequently used as an input for the solution 
analysis that pursues to present a possible system 
specification. In doing so, smaller, logically 
independently acting parts of the system (sub-system) 
and their interconnections are identified. The 
specifications of those should conform to the needs 
ordinated from the problem analysis. After all 
relevant specifications were made, the solution design 
is taking place at which the physical aspects are 
determined. By the end, design documents are 
formulated, which serve as an input for the solution 
construction. Within this step, the actual systems, 
which is often referred to as the artifact, is developed. 
Eventually, the developed artifacts need to be 
evaluated, which will be performed in the solution 
testing phase. Although at this point a comprehensive 
verification will be performed, concurrent validations 
during each of the previous stages are recommended 
that are covered under the discrepancy resolution 
feedback. This in turn, may lower the need to perform 
changes in later stages. If everything was successfully 
developed, the solution is delivered and productively 
used. Continuing steps cover the monitoring, 
performance monitoring, and further analysis, which 
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may lead to modifications, upgrades or 
decommissioning (Mobus and Kalton, 2015). 

2.4 Big Data Engineering 

Due to the general characteristics of big data, the 
realization of related projects differs greatly from 
conventional IT projects. Most of all, the 
implementation is associated with much more data 
handling and interpretation, since the these differ 
quite strongly in terms of variety, velocity and 
volume (cf. 2.1). Hence, the development of suitable 
systems appears to be even more demanding. The 
engineering of systems in the area of big data is 
described by the term big data engineering (Volk et 
al., 2019). Relevant domains and activities were 
already identified in numerous publications, but to 
our knowledge, no comprehensive start-to-end 
process exists that not only observes the general data 
analysis but also the technical implementation and 
operation. In most of the cases, only the project 
realization (Dutta and Bose, 2015; Mousannif et al., 
2016; Li et al., 2016; Grady, 2016) or specific 
activities, needed for this, were thoroughly 
investigated. This includes, for instance, the general 
planning, requirements engineering steps (Volk et al., 
2017; Altarturi et al.), the identification of the 
suitable technologies (Lehmann et al., 2016) and 
most of all relevant reference architectures (Martínez-
Prieto et al., 2015; Jay Kreps, 2014; Nadal et al., 
2017). Especially the latter can be highly beneficial 
when it comes to the limitation of available options 
for technologies to be applied and guidance during 
the construction of the system. However, the selection 
of these can be a very demanding task, mainly due to 
the same reason, the availability of numerous big data 
technologies, such as highlighted in (Turck and 
Obayomi, 2019). Hence the thorough planning and 
requirements engineering represents an initial step for 
the construction of the needed system (Volk et al., 
2019). Followed by activities that identifies relevant 
components and specify them in terms of their 
connection and technological implementation. 

3 DESIGN AND DEVELOPMENT 

In consideration of the previously described data 
science and engineering domain, it becomes apparent 
that the discipline of big data engineering unites both 
domains. Many researchers are aware of the 
importance of big data in concatenation with data 
science. Due to this, many attempts to provide 
guidelines for the realization of those projects exist. 

To provide an enhanced overview over the base of 
argumentation we are positioning on, subsequently, 
an excerpt from the current state of the art is 
presented. Afterward, the (big) data science 
engineering process (BDSEP) is presented. 

3.1 State of the Art 

By performing a three-stepped literature review 
according to the methodology of (Levy and J. Ellis, 
2006) and the forward-backward procedure proposed 
by Webster and Watson (2002) relevant publications 
were identified. In the following, each of the found 
out papers is shortly described. Dutta and Bose (2015) 
introduced a holistic roadmap that attempts to guide 
organizations by the conceptualization, planning and 
implementation of big data projects.  Although the 
previously mentioned data science processes are 
introduced within the contribution and noticeable 
similarities ascertained, no concrete details about 
their relationship to the workflow are described. An 
explicit connection between big data and the 
previously referred data science processes was made 
in (Grady, 2016). It presents a mixture of the KDD, 
the CRISP-DM and parts of the big data domain. In 
particular, a five-stepped procedure is developed, that 
covers the planning, collection, curating, analysis and 
acting. Another process model that interconnects the 
KDD with big data was presented by Li et al. (2016). 
In their contribution, a snail shell process model for 
knowledge discovery, the proposed eight-stepped 
procedure heavily relies on the key activities used in 
the KDD process and involves the lifecycle 
presentation of the CRISP-DM model. A similar 
approach was found in (Mousannif et al., 2016). The 
authors propose a big data project workflow that 
describes the realization of big data projects step-by-
step. Additionally to that, concrete technical 
implementation details, such as specific technologies, 
are addressed. These detailed system observations are 
even more concretized in (Chen et al., 2015), which 
propose a new method called Big Data system 
Design. The procedure consists of ten essential steps, 
starting from the requirements analysis to the design 
and implementation. Here, reference architectures are 
considered as a suitable foundation. The same applies 
to the implicit application of system engineering-
related activities, such as the decomposition of the 
solution for better understanding. Compared to 
previously described contributions, this work rather 
focuses on the technical implementation and thus the 
system engineering of big data related systems. 
However, the theoretic background is little described 
and data science-related activities not included. IBM 
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developed a step-by-step guide that extends the 
CRISP-DM. The Analytics Solutions Unified Method 
(ASUM) presents a hybrid approach that attempts to 
integrate agile as well as traditional principles in 
combination with big data relevant aspects (IBM, 
2016). Yet, as in the case of the previous approaches, 
the process describes the needed steps without any 
concrete implementation details. Another approach 
that attempts to provide a general guideline for the 
realization of big data projects is presented in (Volk 
et al., 2017). By including a specific requirements 
engineering strategy, the KDD and metrics to check 
the general sensibility of a big data project, a through 
project instantiation process are introduced. 

3.2 The (Big) Data Science Engineering 
Process (BDSEP) 

Again, in none of the approaches a completed process 
that enlightens the realization of data-intensive 
projects in a combination of the data science and 
systems engineering domain, was found. Instead, 
different combinations of all of the aforementioned 
domains were ascertained. Especially the CRISP-DM 
(Shearer, 2000) and SE methods, known from the 
recommended workflow by (Mobus and Kalton, 
2015), were either implicitly or explicitly used. Due 
to this, we argue that the linkage of both approaches 
in addition to big data-related specifics appears 
sensible. Although both of the approaches attempt to 
achieve different goals, a closer comparison of each 
of the related steps reveal similarities. This applies 
not only for the general problem identification 
(business understanding) and for problem analysis 
(data analysis) but for the solution construction 
(modeling), solution testing (evaluation) and solution 
delivery (deployment) as well. Differences, in turn, 
are predominantly noticeable in terms of the main 
scope. While the CRISP-DM intends to rather focus 
on the analysis of the data, the SE pursues the 

engineering of the implementation. However, in both 
processes the supplemented steps are implicitly 
integrated.  Due to the aforementioned reasons above, 
a mixture out of both of the approaches was chosen. 
In particular the system engineering process from 
(Mobus and Kalton, 2015) was used as a base and 
extended by the thorough data investigation. The 
concrete workflow of the process is depicted in 
Figure 2. Within this figure, the referred foundation 
comprises all steps of the SE procedure until the 
operation, in combination with the data understanding 
from the CRISP-DM. In contrast to the other steps, 
the data understanding was explicitly integrated, due 
to the importance of the data be processed. The 
BDSEP together with the most important information 
and the general focus are depicted in the second layer 
of the figure. In here, the workflow contains the steps 
as execution directives. It starts with the formulation 
of the vision or idea. Due to the closely related 
concept of IT project realizations, the starting point is 
not necessarily limited to a problem. Moreover, the 
general description of an overarching vision or idea 
for the project may appear also as a sufficient starting 
point. Furthermore, also contracts might be forming 
the base for the instantiation of the engineering. 
Independent from its origin, the detailed 
identification of the main scope is the result of this 
step. This serves as a transition to the in-depth 
analyzes of the use case. At this point, scenario 
descriptions and use case diagrams may serve as an 
additional help to formalize the problem and set its 
boundaries, such as highlighted in (Chen et al., 2015; 
Sommerville, 2016). Apart from this, relevant 
stakeholders and the data to be used need to be 
determined in here. For instance, if the data is 
gathered multiple times from a multitude of data 
sources, sophisticated orchestration activities are later 
on required (Khalifa et al., 2016). Furthermore, due 
to the strong relationship between the data and 
requirements in data-intensive environments, the  

 

Figure 2: The (Big) Data Science Engineering Process. 
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specific characteristics should be uncovered, such as 
highlighted in (Volk et al., 2017). Among other things, 
the template of Chen et al. (2015) could be taken into 
account, that comprises 14 essential data 
requirements. Further, the requirements engineering 
step finishes the general planning of the projects, by 
the development of the functional, non-functional 
requirements and constrains. While the functional 
requirements, define general functions of the system 
to be performed, the non-functional requirements are 
focusing on system properties (Sommerville, 2016).  
Prioritizations and feasibility analysis can be helpful 
at this process step (Nicholas and Steyn, 2012a). In 
any case, the requirements should be developed as 
thorough as possible, to avoid massive changes on the 
system architecture. After the project planning is 
finished, the design and development takes places. At 
the beginning, specifications are needed, at which 
basic components their relation, functionalities, 
performance  and future tests are defined (Mobus and 
Kalton, 2015; Nicholas and Steyn, 2012b). 
Additional inputs and outputs as well as available 
interfaces are relevant in terms of this. For better 
depiction and understanding of the system, structural 
and functional maps could be used, known from the 
system decomposition (Mobus and Kalton, 2015). 
After each of the needed elements is determined, the 
system design is conducted. This includes most of all 
the definition of the component specifics. In the area 
of big data, multiple technologies exist that can be 
used for different purposes (Turck and Obayomi, 
2019). Hence, the adequate selection of suitable 
solutions during the specification of the required 
architecture represents a sophisticated undertaking. 
At this point, best practices (Pääkkönen and Pakkala, 
2015), reference architectures (Martínez-Prieto et al., 
2015; Jay Kreps, 2014; Nadal et al., 2017) and 
decision support systems appear to be useful (Volk et 
al., 2019). All of them intent to provide general 
guidelines for the construction of the system 
architecture, as well as, in parts, concrete 
implementation details and technology 
recommendation. In any case, the requirements 
originating from the previous phase need to be 
discussed in a thorough manner. However, not always 
are the made decisions final and in some cases further 
modification are required, for instance, in terms of the 
technologies or patterns to be used (Mobus and 
Kalton, 2015; Li et al., 2016). After all of the required 
elements and their interconnections were identified, 
the actual combination and construction of the 
solution takes place. Apart from the development of 
the system itself, this includes the programming or 
modeling of the needed application running on the 

system. After the solution was constructed, it needs to 
be evaluated whether everything is working correctly 
or not. For that reason, a thorough testing procedure 
is needed, comprising significant test cases that cover 
the validation of the separate components as well as 
the system as a whole. However, the properties of the 
big data domain turn this into a highly sophisticated 
task (Staegemann et al., 2019b). It is necessary to 
cover a variety of technologies, types and sources of 
data, connections and requirements. At the same time, 
the demand for future scalability and an often 
prevailing lack of knowledge regarding the correct 
outcome, which complicates a verification, pose 
additional challenges. Furthermore, even apparently 
small flaws like for example rounding errors can be 
built up during the processing, amounting to 
considerable derivations from the correct result 
(Yang et al., 2018). At the same time, while being 
highly important and complex, the testing of big data 
applications is not sufficiently acknowledged in the 
literature (Staegemann et al., 2019a). Subsequently to 
the successful evaluation, the developed solution can 
be deployed. In context of the described process, the 
step refers to the actual distribution of the solution in 
the targeted environment. In case of complex 
systems, Mobus and Kalton (2015) highlight that this 
should be realized in a staged process, to uncover 
unforeseen issues. Especially in the domain of big 
data, this should be recognized. Due to the high 
number of existing technologies and their versions, 
compatibility issues can easily emerge. This is not 
restricted to the dependencies between the used 
components, but also the targeted environment (Chen 
et al., 2015). Hence, during the delivery, 
comprehensive monitoring activities are required. 
Eventually, the actual application of the developed 
solution and its further maintenance will be 
performed during the operation phase. As prescribed 
in most of the existing approaches, for each problem 
encountered in one of the steps, considerations and 
tasks of a previous step should be revised. 

3.3 Discussion 

The BDSEP covers relevant steps needed for the 
engineering of data-intensive systems. Instead of 
presenting a stepwise procedure that meticulously 
describes every single step in a detailed chronological 
way, we attempt to draw the attention on the big 
picture. This is especially due to the reason that each 
project differs quite strongly and the same applies to 
the engineering of the system. Sometimes 
sophisticated procedure may be required in larger 
projects, while smaller ones are rather lacking on a 
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general plan. Independent from its size, attention 
should be most importantly to the data to be stored, 
managed and processed. Compared to other 
approaches, we built our positioning upon existing 
theory, in particular from the data science, big data 
and systems engineering domain. Hence, for detailed 
information about the referred activities, potential 
users can make use of the referenced contributions. In 
the future, it is planned to evaluate this process in 
large scale. Consequently, possible shortcomings and 
best practices can be identified in more detail and 
contributed back to the BDSEP. While this approach 
serves as an initial starting point, providing an 
overview regarding the steps to be conducted, future 
observations and changes can reinforce the general 
applicability. This applies especially for the detailed 
investigation of particular steps and their relevant 
activities. Within the requirements engineering part, 
for instance, agile project management principles 
were not discussed in detail. For now, the 
requirements are considered as to be completed. In 
context of this, another direction could be realized 
through the test-driven development, at which the test 
of the relevant component or system is developed 
before the targeted element itself. Further principles 
that are worthy to be examined are related to the 
operations phase and their transition to it. 
Approaches, such as continuous delivery or DevOps 
in general, appear to be sensible, especially in context 
of fast changing fields of a data-intensive nature. 

4 CONCLUSIONS 

In the last decade, big data was one of the most 
regarded topics in the computer science domain. 
However, many issues are still existing today that are 
challenging the realization of corresponding projects 
and the needed systems. Although many processes, 
best practices and other relevant workflows for the 
realization of data-intensive projects arose, still a lot 
of insecurity about their applicability exists. By 
harnessing the design science research methodology, 
we uncovered intersection points of some of the most 
prominent approaches and adapted them to create a 
comprehensive (big) data science engineering 
process. This process unifies knowledge and best 
practices from the information systems engineering 
domain as well as data science processes to overcome 
the stated problem. Researchers and practitioners 
benefit from this artifact, especially when it comes to 
the structured planning and realization of data-
intensive projects. 
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