
An Engineering Approach to Integrate Non-Functional Requirements
(NFR) to Achieve High Quality Software Process

Muhammad Awais Gondal1, Nauman A. Qureshi2, Hamid Mukhtar3 and Hafiz Farooq Ahmed2

1National University of Modern Languages (NUML), Islamabad, 44000, Pakistan
2CCSIT, King Faisal University, AlAhsa 31982, K.S.A.

3National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan

Keywords: Requirements Engineering, Quality Assurance, Non-Functional Requirements, Software Quality.

Abstract: Software quality calls for an engineering approach to incorporate non-functional requirements as first-class
citizens into software specification and later operationalized at the development time. Recent research
argues to model high level goals capturing the intentions of the users as Non-functional requirements
(NFRs) at the early stage of the requirements engineering. However, intertwining relevant NFRs into the
specification at early stage increases the complexity to many folds. Therefore, a straightforward approach
for capturing NFRs is not possible as product specific NFRs are usually domain dependent. In this paper, we
propose a systematic approach to integrate NFRs into the specification and development artifacts to ensure
high quality of the software system under development. Considering existing seminal approaches in the
literature, we propose a textual template for specifying NFRs and provide systematic technique to integrate
relevant NFRs during the software requirements specification phase. We demonstrate our approach using a
healthcare-information-systems as a case study and report initial results.

1 INTRODUCTION

In Requirements Engineering (RE), the Software
Requirements Specification (SRS) document is the
key artefact specifying all requirements of the
software system (Davis et al., 1993). All the RE
phases contribute to engineer requirements which
are documented in the System Requirement
Specification (SRS) document making it the most
important artefact in the whole software
development process (Nuseibeh and Easterbook,
2000). Problematic and low-quality definitions of
requirements subsequently lead to a low-quality
software product (Berry, 1995) (Maiti and
Mitropoulos, 2017). Functional requirements (FRs)
of a software product must be fulfilled; and at the
same time satisfaction of non-functional
requirements (NFRs) can lead to success or failure
of the software (Ameller et al., 2012). NFRs have,
therefore, a direct link with the software quality.
NFRs are treated as constraints over functional or
domain requirements which require user’s input
from an early phase of the RE process. Moreover,
NFRs must also reflect quality attributes in general.
Most, if not all, quality attributes defined in quality

models of McCall et al. (1977), Boehm et al. (1978),
Dromey (1995), ISO 9126 (1991) and FURPS
(Grady, 1992), argue that explicit consideration of
NFRs shall be given by the software engineer to
incorporate relevant NFRs into the domain in which
the software will be put into practice.

1.1 A Brief History

Until recently, NFRs are not implemented in the
same way as Functional Requirements (Rosa et al.
2000). Mylopoulos et al. (1992) were among the
first ones to formalize a framework that would
incorporate NFRs into the development process
rather than evaluating them in the final product.

As identified by Rosa et al. (2000), some of the
reasons why it is too difficult to consider NFRs into
the software development process include:

1. NFRs are more complex to deal with as
compared to FRs

2. They are usually very abstract and stated only
informally

3. They are rarely supported by tools,
methodologies or languages

Gondal, M., Qureshi, N., Mukhtar, H. and Ahmed, H.
An Engineering Approach to Integrate Non-Functional Requirements (NFR) to Achieve High Quality Software Process.
DOI: 10.5220/0009568503770384
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 377-384
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

377

4. It is quite difficult to ensure if a specific NFR is
satisfied by the final product or not

5. Very often NFRs conflict with each other
6. Instead of being considered by application

programmers, they are taken as concerns of the
environment builders.

Glinz (2007) has divided the problems
associated with NFRs into three categories:
definition problems, classification problems, and
representation problems (see Figure 1). According to
Glinz (2007), the various definitions of NFRs have
discrepancies and they fail to provide one clear
picture. Secondly, available classifications tend to
give different idea of NFRs in different application
contexts. The problems with representation of NFRs
are also a challenge due to their fuzzy nature (Glinz,
2007). The kind of requirement (FR or NFR)
depends on the way how we define it; if we change
the way of its representation, an NFR may look like
a FR in an SRS document. Lastly, documenting
NFRs is also indicated as a representational
problem. It is not agreed that one should include
them in requirements definition section of SRS
document or not (Glinz, 2007). According to most of
the templates provided in IEEE Recommended
Practice for Software Requirements Specifications
(IEEE Computer Society, 1998), FRs and NFRs
should be stated separately in specification
documents. NFRs may also be attached to use cases
wherever possible (other than global NFRs)
(Jacobson et al. 1999).

Figure 1: Non-functional Requirements Problems (Glinz,
2007).

NFRs can be represented in different ways
depending on the rationale of their use and stage of
the project. For instance, at early stage of the RE
process, goal-oriented approaches provide a well-
defined approach to model NFRs (Mylopoulos et al.,
1992) (Chung et al., 2012). Moreover, architectural
representation provides clear motivation to the
designers to link architectural components with the
NFR properties such that design can be justified.

Another very well-defined approach for
representing NFRs is textual representation. While
documenting requirements in SRS, we do require a

specific template to incorporate NFR descriptions
relevant to the FR and domain criterion. Natural
language-based textual representations are the most
widely used and easily adopted way of representing
requirements (Davis, 2013) (Luisa et al., 2004)
(Carvalho et al. 2015).

2 RELATED WORK

Various research works have been carried out that
aim to incorporate NFRs in software development
process. Some of these tend to be guidelines for this
incorporation (Ormeno et al., 2013) (Martin et al.,
2014) while others propose specific methodologies
for achieving the mentioned goal, which are
discussed in this section. As NFRs have their
relationship with multiple stages and artefacts of
software development process, the efforts in
literature are also spread over these domains.

The work of Rosa et al. (2000) presents an
approach for integrating NFRs in architecture
through a formal model, but as identified by the
authors, it is applicable only for dynamic software
architectures. Paul et al. (2001) have tried to bridge
the gap between architecture and NFRs by
presenting a simple and direct mapping of
requirements to architecture. The presented
approach suggests that each software requirement
explicitly or implicitly may contain information that
is required for software architecture.

Along with architectural integration, design
patterns focusing on NFRs can also be seen in
literature. Liu and Yu (2004) and Carvalhaes et al.
(2014) suggest that particular attributes of NFRs are
satisfied by specific design patterns and using them
in architecture design helps in achieving objectives
associated with NFRs. Although less used and
understood by software development community,
using goal graphs for representing NFRs is also very
common among research community (Bano et al.,
2018). Goals are those objectives that the system
must fulfil with cooperation of different associated
actors (Liu and Yu, 2004).

The focus of this research paper is textual
representations of NFRs that can be incorporated in
SRS documents. Therefore, this section principally
highlights such approaches that satisfy our focus.
Volere Requirements Specification Template
(Robertson and Robertson, 2006) is a widely used
method for recording requirements in a structured
way. Goals and requirements can be documented
through Volere template with respect to their

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

378

rationale, associated stakeholder, priority and
contextual details.

Different non-functional requirements like
security, usability, maintainability etc. have specific
templates presented in Volere documentation.
Several studies like (Carvalhaes et al., 2014) (Porter
et al., 2014) have used techniques inspired by Volere
template, for their proposals.

A series of requirements templates provided by
Duran et al. (1999) include non-functional
requirements description template as well. Although,
functional requirements templates provided in this
template series have very concrete fields to be filled
for describing functional requirements, it has been
admitted that for non-functional requirements, the
template is very general and does not have any
specific field.

A problem with the usage of such templates is
that they are useful only when a single person is
responsible for managing them. However, in a
project where many people are working
simultaneously, this can lead to inconsistent,
contradicting and omitted requirements, and a need
for a complex requirements management tool
(Nikula and Sajaniemi, 2002).

Moreira et al. (2002) have presented a model to
identify quality attributes crosscutting functional
requirements and to integrate them with functional
requirements at an early stage of software
development. The flow of our proposed approach is
moderately related to this research work. However,
unlike the authors, our approach is open and does
not rely on specific modelling language like UML.

A number of research works propose NFRs
templates that can be used for a specific NFR or
quality attribute. An approach presented by He and
Anton (2003) deals explicitly with privacy
requirements modelling, while another similar
approach based on use cases deals with efficiency
requirements only (Dorr et al., 2003). The work by
Chih-Wei, et al. (2006) proposes a model for dealing
with performance requirements in agile development
processes.

Apart from detailed tabular templates and
models, several research works provide boilerplates
(reusable sentences); a term first used by Hull and
Jackson (2005) in the meanings of limited
vocabulary sentences having specific placeholders
to be completed in order to obtain semi-formal
requirement sentences. Kopczyńska et al. (2014)
have presented an elicitation methodology by the
use of their Non-functional Requirements Templates
(NoRTs), which focuses on using generic statements

(having core and optional parts) that become defined
NFRs after adding required information.

EARS presented by Mavin et al. (2009) also
provides a simple boilerplate for requirement
templates that can be used for non-functional
requirements as well. Other such sentence templates
can be seen in natural language-based boilerplates
proposed by Ibrahim et al. (2014), and catalogues
presented by Chung and Nixon (1995) and
Cysneiros and Eric (2004).

Younas et al. (2019) use natural language
processing techniques for identification of NFRs
from requirements documents. The approach uses a
language model and popular keywords for
identification of NFRs. The empirical evidence
shows that the automated semi-supervised approach
reduces manual human effort in the identification of
NFRs. This work suffers from the limitation of the
lexicon or keywords as they are domain dependent.
Also, the authors mention other limitations including
the bias of the data labeller or the source of
vocabulary for training the model.

With the emergence of Agile software
development approaches, user stories (Cohn, 2004)
have become the most popular way of expressing
requirements focusing on the viewpoint of a role.
However, the details required to capture the
subtleties of NFR’s cannot be captured by user
stories by ordinary users.

The research works included in this section can
be summarized as below:

a) The models to integrate NFRs are too generic
to be practically adopted by software
development units. They do not provide an
implementation strategy for NFRs, thus
leaving it up to the developer to document
any such required strategy.

b) Most of the text-based tabular templates
represent NFRs as independent elements of
requirements process. The need of NFRs’
relationship with specific functional
requirements is not fulfilled by most of the
efforts.

c) Boilerplates/sentence-oriented templates, on
the other hand, lack the attribute of proper
traceability and formal inclusion in SRS
templates.

This paper specifically focuses on textual
representation of NFRs that can be included in
requirements documents with the aim of effective
traceability and practical incorporation throughout
the development process.

An Engineering Approach to Integrate Non-Functional Requirements (NFR) to Achieve High Quality Software Process

379

3 PROPOSED APPROACH

This section describes our proposed approach as
represented in Figure 2. Table 1 presents the tabular
text-based template used in our proposal. Following
subsections provide details of each activity.

3.1 Identifying Functional
Requirements

Software systems are based on a collection of
functional and non-functional requirements. Several
methods of elicitation of requirements are there that
can be used to specify all requirements of the system
under construction.

We start by specifying FRs and identifying
actors associated with them as per use case
approach. Some NFRs and quality attributes can be
added at this stage according to the expertise of the
developer and nature of the system under
construction (Pressman, 2005), however, they are
refined and identified in detail in the next step.

3.2 Identifying NFRs (Quality Factors)

As mentioned by Pressman (2005), specific implicit
characteristics are expected from specific domains
of software systems. Such common quality factors
are usability as general for most of the applications,
security for banking systems, and privacy for social
networking applications. However, other quality
factors must be analyzed that may impose
constraints on the system or on a specific FR. Each

Figure 2: Proposed approach for integrating NFRs quality
attributes.

quality factor can be further divided into specific
quality attributes, for example, the usability factor
can be divided in to attributes of task time,
efficiency, and (user) error frequency.

We advocate creating a relationship of certain
quality factors with FRs as fulfilling the quality
factors at functional level will support NFRs at the
global level. At this stage, we define the required
quality factors for considered functional
requirement.

3.3 Specifying Quality Requirements
(with Respect to Quality Factors)

The specified quality factors and their attributes may
have specific constraints and obligations associated
with them. A quality requirement is defined at this
stage that specifies the constraints or obligations
linked with certain quality attributes. The quality
requirement can be written in simple textual
statements; however, we strongly support use of
quantitative statements that can be measured as well
at later stages. The specific quality attribute is
highlighted in our proposed approach with ‘< >’.
The specific constraint to the quality attribute is
described with ‘{ }’. This is to guide developers to
keep a record of quality factors and their
achievement criteria (constraints) at the development
stage.

3.4 Integrating Functional and Quality
Requirements

Functional requirements and quality requirements
should be integrated together in the form of
Integrated Functional-Quality requirements. The
basic functional requirement is enhanced to
accommodate the conditions suggested by the
quality requirement. The integrated requirements
must include all constraints mentioned in quality
requirement in relationship to the functional
requirement in consideration (Glinz, 2007). The
integrated functional-quality requirement is the final
requirement description that will be used in
subsequent phases of software development.

Inclusion of NFRs attributes in functional
description will oblige the developers to consider
them in all design decisions and phases. Since NFRs
attributes are now a part of functional description,
tracing them does not need a separate methodology;
rather they are traced with functional requirements
automatically.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

380

Moreover, creation of test cases for specific
functional requirements will also include NFRs
attributes inevitably.

3.5 Formulating Achievement Strategy

At this earlier phase of software development, a
specific strategy has to be specified for addressing
the constraints imposed on functional description
after integration of quality requirement.

A strategy can be specific design patterns,
implementation techniques or simply conditions to
be applied in code. At this stage, the strategy is for
consideration purposes, and it is supposed to be
explained in more detail during system design phase.

Table 1: Elements of Proposed NFRs Template.

NFR Template

Functional Requirement (description)

Quality Factors (description)

Quality Factors Requirement (description)

Integrated Functional-Quality
Requirement

(description)

Achievement Approach
Specification

(description)

4 CASE STUDY

For practical demonstration of the proposed
approach and NFRs template, we developed a case
study that consists of a simplified version of
requirements from a Healthcare system practically
deployed as mentioned in (Khan et al., 2017).
Account of features required for the system is
provided below.

“The Electronic Health Record (EHR) System
for Obstetrics Specialty should provide the features
of scheduling appointments for patients. Front desk
staff should be able to collect basic information of
the patients in order to register them. History of the
patients should be gathered through the system and
made available to the doctor where required.
Alternatively, the doctor should be able to open the
file (record) of a patient which is termed as
Chart/Patient Visit file. The doctor can view lab
reports/results of a specific patient. The system
should allow the doctor to electronically prescribe

medications. It should also allow the doctor to
suggest lab tests for a specific patient”.

A. Identifying Functional Requirements:

As the description is for an already developed
system, here it is only presented in the form of Use
Case diagram as shown in Figure 3. For presenting
the process of creating our proposed template, we
will utilize the use case of ‘Access History’.

Figure 3: Use case diagram for case study.

B. Identifying NFRs (Quality Factors):

As mentioned in the previous section, at this stage
we need to identify non-functional requirements
(NFRs) as global properties of the system that
provide certain constraints on functional
requirements. Each functional requirement may have
to fulfill particular constraints due to certain quality
factors associated with the functional requirement.
Here in this case the factor associated with the
functional requirement is usability and it can be
described in terms of its attributes that are task time
and reduction of errors.

C. Specifying Quality Requirements (with
Respect to Quality Factors):

In this stage certain constraints and obligations
linked to the specified quality attributes are
identified for a functional requirement. It provides a
quality requirement with respect to the selected
quality attributes. Table 2 shows identified quality
attributes for a FR and its related quality
requirement.

An Engineering Approach to Integrate Non-Functional Requirements (NFR) to Achieve High Quality Software Process

381

D. Integrating Functional and Quality
Requirements:

The quality factor requirement specified in the
previous stage can be integrated with the basic
functional requirement to obtain functional-quality
requirement. Table 3 provides the integration of both
these requirements into one concrete requirement.

Table 2: Specification of Quality Requirement.

Functional
Requirement

The system should present patient’s
history records to the user.

Quality Factors Task time, (Reduction of) Errors

Quality Factors
Requirement

<Average time> to interpret
patient’s history records should {be
less than 5 minutes}.

<Chances of error> while
interpreting patient’s history
records should be {minimum i.e. up
to 2 times}.

Table 3: Integration of Functional and Quality
Requirements.

Functional
Requirement

The system should present patient’s
history records to the user.

Quality Factors Task time, (Reduction of) Errors

Quality Factors
Requirement

<Average time> to interpret
patient’s history records should {be
less than 5 minutes}.

<Chances of error> while
interpreting patient’s history
records should be {minimum i.e. up
to 2 times}.

Integrated
Functional-
Quality
Requirement

The system should present patient’s
history records that should be
interpreted by the user within 5
minutes and with minimum error
i.e. up to 2 times.

E. Formulating Achievement Strategy:

Different strategies for achieving NFRs and
constraints can be followed depending on the nature
of Integrated Functional-Quality Requirement and
domain of the software project being constructed.
The strategy for fulfilling the previously specified
integrated functional-quality requirement has been
mentioned in Table 4.

Our proposed NFRs template is completed with
inclusion of achievement strategy.

Table 4: Achievement Approach Specification.

Functional
Requirement

The system should present
patient’s history records to the
user.

Quality Factors Task time, (Reduction of) Errors

Quality Factors
Requirement

<Average time> to interpret
patient’s history records should
{be less than 5 minutes}.

<Chances of error> while
interpreting patient’s history
records should be {minimum i.e.
up to 2 times}.

Integrated
Functional-
Quality
Requirement

The system should present
patient’s history records that
should be interpreted by the user
within 5 minutes and with
minimum error i.e. up to 2 times.

Achievement
Approach
Specification

Temporal layout and visuals

Use temporal history view to
reduce time.

Use red colour to indicate
alarming conditions in patient’s
history.

Use yellow colour to indicate
noteworthy situations in patient’s
history.

For clarification and a well-defined view, we are
providing our proposed template for another use
case i.e. ‘Register Patient’. This template is
presented in Tables 5.

Table 5: NFR Template for ‘Register Patient’.

Functional
Requirement

The system should present a form
for collecting basic information of
the user.

The user should be able to fill in
the required fields.

The system should save all filled
information.

Quality Factors Task time, Completeness

Quality Factors
Requirement

<Average time> to collect
information should be {within 5
minutes} and it must be
<Complete> with {no missing
required data fields}.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

382

Table 5: NFR Template for ‘Register Patient’ (cont.).

Integrated
Functional-
Quality
Requirement

The system should present a form
for collecting basic information.

<Average time> for the user to
fill in the required fields should
be {within 5 minutes}.

The system should only accept
<Complete> information and {no
missing required data fields}
should be there.

The system should save all filled
information.

Achievement
Approach
Specification

Auto-complete, Warning
messages

Use auto-complete and pre-
selected fields to reduce task time.

Divide the information entry
fields in categories of highly
required, required and optional.

Do not allow the user to leave any
‘highly required’ field blank.

Show a colour-based warning on
leaving ‘required’ fields blank.

5 CONCLUSIONS

In this paper, we presented an easy approach for
integrating NFRs in the SRS documents in an
intuitive way. We have provided details of the
process of integration and practically shown our
proposed template based on a case study.

The proposed approach is based on natural
language textual representation, which is one of the
most commonly used methods. It will ensure early
consideration of NFRs in the software development
process. Apart from NFR integration, we have also
extended our proposed template to achievement
methodology specification which will help in
finding practical solutions for fulfilling constraints
imposed by specific NFRs, at an early stage of
software development.

In future, we aim to explore the relationship of
multiple functional requirements in order to fulfil
one specific non-functional requirement or
constraint. For example, integrity requirements as
per McCall’s quality model are linked to authorized
access to features of the system. Let’s assume that in
a system, only admins can access certain features. In
such a scenario, these features might include
multiple functional requirements which together will
satisfy overall integrity requirements. Such an

approach might require creating separate tables for
collection of related functional requirements. Apart
from it, some NFR constraints can be related to data
and not to functional requirements.

REFERENCES

Ameller, D., Ayala, C., Cabot, J., & Franch, X. (2012).
Non-functional requirements in architectural decision
making. IEEE software, 30(2), 61-67.

Bano, J., Reddy, L. S. S., & Khammari, H. (2018). A
Significant Research Framework on Goal Oriented
Requirement Engineering. International Journal of
Applied Engineering Research, 13(11), 9558-9564.

Berry, D. M. (1995). The importance of ignorance in
requirements engineering. Journal of Systems and
Software.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., &
MacLeod, G. (1978). Merritt.: Characteristics of
Software Quality.

Carvalhaes, M. F., da Rocha, A. F., Vieira, M. F., &
Barbosa, T. M. D. A. (2014). Affective embedded
systems: a requirement engineering aproach.
International Journal of Computer Trends and
Technology (IJCTT), 8, 70-75.

Carvalho, Gustavo, et al. "NAT2TEST tool: From natural
language requirements to test cases based on CSP."
Software Engineering and Formal Methods. Springer,
Cham, 2015. 283-290.

Chung, L., & Nixon, B. A. (1995, April). Dealing with non-
functional requirements: three experimental studies of a
process-oriented approach. In 1995 17th International
Conference on Software Engineering (pp. 25-25). IEEE.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J.
(2012). Non-functional requirements in software
engineering (Vol. 5). Springer Science & Business
Media.

Cohn, M. (2004). User stories applied: For agile software
development. Addison-Wesley Professional.

Cysneiros, L. M., & Yu, E. (2004). Non-functional
requirements elicitation. In Perspectives on software
requirements (pp. 115-138). Springer, Boston, MA.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi,
F., Dinh, A., & Ta, A. (1993, May). Identifying and
measuring quality in a software requirements
specification. In [1993] Proceedings First International
Software Metrics Symposium (pp. 141-152). IEEE.

Davis, A. (2013). Just enough requirements management:
where software development meets marketing. Addison-
Wesley.

Dörr, J., Kerkow, D., Von Knethen, A., & Paech, B. (2003,
June). Eliciting efficiency requirements with use cases.
In Ninth international workshop on requirements
engineering: foundation for software quality. In
conjunction with CAiSE (Vol. 3).

Dromey, R. G. (1995). A model for software product
quality. IEEE Transactions on software engineering,
21(2), 146-162.

An Engineering Approach to Integrate Non-Functional Requirements (NFR) to Achieve High Quality Software Process

383

Durán Toro, A., Bernárdez Jiménez, B., Ruiz Cortés, A., &
Toro Bonilla, M. (1999). A requirements elicitation
approach based in templates and patterns.

Glinz, M. (2007, October). On non-functional requirements.
In 15th IEEE International Requirements Engineering
Conference (RE 2007) (pp. 21-26). IEEE.

Grady, R. B. (1992). Practical software metrics for project
management and process improvement. Prentice-Hall,
Inc.

Grunbacher, P., Egyed, A., & Medvidovic, N. (2001,
August). Reconciling software requirements and
architectures: The cbsp approach. In Proceedings Fifth
IEEE International Symposium on Requirements
Engineering (pp. 202-211). IEEE.

He, Q., & Antón, A. I. (2003, June). A framework for
modeling privacy requirements in role engineering.
In Proc. of REFSQ (Vol. 3, pp. 137-146).

Ho, C. W., Johnson, M. J., Williams, L., & Maximilien, E.
M. (2006, July). On agile performance requirements
specification and testing. In AGILE 2006
(AGILE'06) (pp. 6-pp). IEEE.

Hull, E., Jackson, K., & Dick, J. (2005). Advanced
traceability. Requirements Engineering, 131-151.

Ibrahim, N., Kadir, W. M. W., & Deris, S. (2014,
September). Documenting requirements specifications
using natural language requirements boilerplates.
In 2014 8th. Malaysian Software Engineering
Conference (MySEC) (pp. 19-24). IEEE.

IEEE Computer Society. Software Engineering Standards
Committee, & IEEE-SA Standards Board. (1998). IEEE
Recommended Practice for Software Requirements
Specifications. Institute of Electrical and Electronics
Engineers.

ISO, I. (1991). Information technology-software product
evaluation-quality characteristics and guidelines for
their use. ISO/IEC IS, 9126.

Jacobson, Ivar et al. (1999). The unified software
development process. Vol. 1. Reading: Addison-
Wesley.

Khan, A., Mukhtar, H., Ahmad, H. F., Gondal, M. A., &
Ilyas, Q. M. (2017, March). Improving Usability
through Enhanced Visualization in Healthcare.
In 2017 IEEE 13th International Symposium on
Autonomous Decentralized System (ISADS) (pp. 39-
44). IEEE.

Kopczyńska, S., & Nawrocki, J. (2014, August). Using
non-functional requirements templates for elicitation:
A case study. In 2014 IEEE 4th International
Workshop on Requirements Patterns (RePa) (pp. 47-
54). IEEE.

Liu, L., & Yu, E. (2004). Designing information systems
in social context: a goal and scenario modelling
approach. Information systems, 29(2), 187-203.

Luisa, M., Mariangela, F., & Pierluigi, N. I. (2004).
Market research for requirements analysis using
linguistic tools. Requirements Engineering, 9(1), 40-
56.

Maiti, R. R., & Mitropoulos, F. J. (2017, March).
Capturing, eliciting, and prioritizing (CEP) NFRs in

agile software engineering. In SoutheastCon 2017 (pp.
1-7). IEEE.

Martín, Y. S., Del Alamo, J. M., & Yelmo, J. C. (2014,
August). Engineering privacy requirements valuable
lessons from another realm. In 2014 IEEE 1st
International Workshop on Evolving Security and
Privacy Requirements Engineering (ESPRE) (pp. 19-
24). IEEE.

Mavin, A., Wilkinson, P., Harwood, A., & Novak, M.
(2009, August). Easy approach to requirements syntax
(EARS). In 2009 17th IEEE International
Requirements Engineering Conference (pp. 317-322).
IEEE.

McCall, J. A., Richards, P. K., & Walters, G. F.
(1977). Factors in software quality. volume i. concepts
and definitions of software quality. General Electric
Co Sunnyvale, CA.

Moreira, A., Araújo, J., & Brito, I. (2002, July).
Crosscutting quality attributes for requirements
engineering. In Proceedings of the 14th international
conference on Software engineering and knowledge
engineering (pp. 167-174).

Mylopoulos, J., Chung, L., & Nixon, B. (1992).
Representing and using nonfunctional requirements: A
process-oriented approach. IEEE Transactions on
software engineering, (6), 483-497.

Nikula, U., & Sajaniemi, J. (2002, September). Basyre: A
lightweight combination of proven RE techniques.
In Proceedings of the International Workshop on Time
Constrained Requirements Engineering.

Nuseibeh, B., & Easterbrook, S. (2000, May).
Requirements engineering: a roadmap. In Proceedings
of the Conference on the Future of Software
Engineering (pp. 35-46).

Ormeño, Y. I., Panach, J. I., Condori-Fern, N., & Pastor,
Ó. (2013, May). Towards a proposal to capture
usability requirements through guidelines. In IEEE 7th
International Conference on Research Challenges in
Information Science (RCIS) (pp. 1-12). IEEE.

Porter, C., Letier, E., & Sasse, M. A. (2014, August).
Building a National E-Service using Sentire
experience report on the use of Sentire: A volere-based
requirements framework driven by calibrated personas
and simulated user feedback. In 2014 IEEE 22nd
International Requirements Engineering Conference
(RE) (pp. 374-383). IEEE.

Pressman, R. S. (2005). Software engineering: a
practitioner's approach. Palgrave macmillan.

Robertson, J., & Robertson, S. (2006). Volere:
Requirements specification template (2006). The
Atlantic Systems Guild, 47.

Rosa, N. S., Justo, G. R., & Cunha, P. R. (2000, May).
Incorporating non-functional requirements into
software architectures. In International Parallel and
Distributed Processing Symposium (pp. 1009-1018).
Springer, Berlin, Heidelberg.

Younas, M., Wakil, K., Jawawi, D. N., Shah, M. A., &
Mustafa, A (2019). An Automated Approach for
Identification of Non-Functional Requirements using
Word2Vec Model.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

384

